DE19921007C1 - PEM fuel cell with membrane electrode assembly has gas channels integrated in bipolar plates cladded with fluid transporting layer for damping membranes via condensed water - Google Patents

PEM fuel cell with membrane electrode assembly has gas channels integrated in bipolar plates cladded with fluid transporting layer for damping membranes via condensed water

Info

Publication number
DE19921007C1
DE19921007C1 DE19921007A DE19921007A DE19921007C1 DE 19921007 C1 DE19921007 C1 DE 19921007C1 DE 19921007 A DE19921007 A DE 19921007A DE 19921007 A DE19921007 A DE 19921007A DE 19921007 C1 DE19921007 C1 DE 19921007C1
Authority
DE
Germany
Prior art keywords
fuel cell
transporting layer
liquid
layer
dew point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19921007A
Other languages
German (de)
Inventor
Felix Blank
Cosmas Heller
Wolfram Kaiser
Ottmar Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Dornier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH filed Critical Dornier GmbH
Priority to DE19921007A priority Critical patent/DE19921007C1/en
Application granted granted Critical
Publication of DE19921007C1 publication Critical patent/DE19921007C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The fuel cell has the membranes of the membrane electrode assembly damped via gas channels incorporated in the bipolar plates, which are clad with a fluid transporting capillary layer (8), extending between a region in which the thermodynamic state of the gas is below the water saturation dew point and a region in which the thermodynamic state of the gas is above the dew point, for water condensation.

Description

Die Erfindung betrifft die Befeuchtung der Membran einer PEM Brennstoffzelle mit Membran-Elektroden-Einheiten (MEA) und in den Bipolarplatten integrierten Gaska­ nälen.The invention relates to the moistening of the membrane of a PEM fuel cell Membrane electrode units (MEA) and Gaska integrated in the bipolar plates neal.

In US 5529855 wird ein Verfahren zur Befeuchtung der Membran-Elektroden-Einheit (MEA) beschrieben, mittels in oder auf der MEA angebrachter Kanäle oder Leitun­ gen. Das zur Beschickung der Kanäle oder Leitungen verwendete Wasser kann aus einem Reservoir bezogen und mit einer Pumpe gefördert werden.US 5529855 describes a method for moistening the membrane electrode assembly (MEA), by means of channels or lines installed in or on the MEA The water used to feed the canals or pipes can run out can be obtained from a reservoir and pumped.

Aufgabe der Erfindung ist die wartungsfreie und zuverlässige Befeuchtung der Membran einer Brennstoffzelle. Diese Aufgabe wird durch den Gegenstand des Patentanspruchs gelöst; die Unteransprüche betreffen vorteilhafte Ausgestaltungen der Erfindung.The object of the invention is the maintenance-free and reliable humidification of the Membrane of a fuel cell. This task is the subject of Claim resolved; the subclaims relate to advantageous refinements the invention.

Die Erfindung wird nachfolgend anhand von Figuren näher erläutert.The invention is explained in more detail below with reference to figures.

Es zeigen:Show it:

Fig. 1-4 die Befeuchtung eine Zone einer MEA (Membran-Electrode- Assembly) in prinzipieller Darstellung, Fig. 1-4 moistening a zone of a MEA (membrane-Electrode- Assembly) in a basic representation,

Fig. 5 die Entwässerung einer MEA, Fig. 5, the dewatering of a MEA,

Fig. 6A-6C Leitungsmechanismen für den Flüssigkeitstransport, Fig. 6A-6C conduction mechanisms for liquid transport,

Fig. 7A-7B Einzelheiten von Fig. 6. 7A-7B. Details of Fig. 6.

Die Figuren zeigen eine Zone einer PEM-Brennstoffzelle mit einer MEA 2, Bipolar­ platten (BIP) 4, Kanälen 6, Kapillarschicht 8, Gaseintritt 10, Produktwasser-Ausfall 12 Gasaustritt 26.The figures show a zone of a PEM fuel cell with an MEA 2 , bipolar plates (BIP) 4 , channels 6 , capillary layer 8 , gas inlet 10 , product water failure 12, gas outlet 26 .

Zur Befeuchtung der MEA wird ein Teil des im Brennstoffzellenbetrieb anfallenden Produktwassers durch Kapillarkräfte zum Gaseingang zurückgeleitet (Fig. 3). Der (relativ) trockene Gasstrom kann sich dadurch mit Wasser anreichern; damit wird das Austrocknen der MEA durch den trockenen Eintrittsgasstrom vermieden. Zum Flüssigkeitstransport können dabei sowohl der Kanalboden 14 als auch die Kanal­ wände 16 mit einer Kapillarschicht 8 versehen werden (Fig. 2). Die Kapillarschicht 8 kann als offene oder teilweise geschlossene Struktur ausgeführt werden. Im ge­ schlossenen Fall ist die Kapillarschicht im Bereich der Wasseraufnahme und Was­ serabgabe geöffnet, um den Wasseraustausch an den gewünschten Stellen zu ermöglichen. Die Flüssigkeitsabgabe der Kapillarschicht am Gaseintritt kann dabei sowohl an den Gasstrom als auch direkt an die MEA erfolgen. Zur Mitbefeuchtung der MEA kann z. B. die Fließrichtung der Flüssigkeit an den Kanalwänden so einge­ stellt werden, daß die Kapillarenden direkten Kontakt mit der MEA-Zone erhalten (Fig. 4). Alternativ dazu kann durch Verwendung einer amorphen, schwammartigen Kapillarstruktur eine homogene Befeuchtung des gesamten Sektors erzielt werden (Fig. 1).To humidify the MEA, part of the product water generated in fuel cell operation is returned to the gas inlet by capillary forces ( FIG. 3). The (relatively) dry gas flow can thereby be enriched with water; this prevents the MEA from drying out due to the dry inlet gas flow. For liquid transport, both the channel bottom 14 and the channel walls 16 can be provided with a capillary layer 8 ( Fig. 2). The capillary layer 8 can be designed as an open or partially closed structure. In the closed case, the capillary layer in the area of water absorption and water discharge is open to enable water exchange at the desired locations. The liquid release of the capillary layer at the gas inlet can take place both to the gas flow and directly to the MEA. To moisten the MEA z. B. the flow direction of the liquid on the channel walls is set so that the capillary ends get direct contact with the MEA zone ( Fig. 4). Alternatively, homogeneous humidification of the entire sector can be achieved by using an amorphous, sponge-like capillary structure ( FIG. 1).

Analog zur Befeuchtung kann die Kapillarwirkung des weiteren zur Abführung des in der Zelle entstandenen Produktwassers verwendet werden; dabei wird das von der Kapillarschicht 8 aufgenommene, überschüssige Produktwasser aus der Zelle transportiert und die Zelle somit entwässert (Fig. 5). Zum Flüssigkeitstransport können dabei sowohl der Kanalboden als auch die Kanalwände mit einer Kapillar­ schicht versehen werden.Analogous to moistening, the capillary action can also be used to drain the product water that has formed in the cell; the excess product water taken up by the capillary layer 8 is transported out of the cell and the cell is thus dewatered ( FIG. 5). For the liquid transport, both the channel floor and the channel walls can be provided with a capillary layer.

In Ihrer Ausführung kann die Kapillarschicht eine amorphe (schwammartige) oder auch eine gerichtete Struktur aufweisen. Darüber hinaus kann die gewünschte Kapillarwirkung auch durch Modifikation der Kanaloberfläche durch mechanische, chemische oder andersgeartete Bearbeitung erzeugt werden.In its design, the capillary layer can be an amorphous (sponge-like) or also have a directional structure. It can also be the one you want Capillary action also through modification of the channel surface by mechanical, chemical or other types of processing are generated.

AusführungsbeispieleEmbodiments

Fig. 2
Es wird eine bereits konturierte bipolare Platte mit einem oxidierbaren Material - z. B. Nickel - beschichtet, oxidiert und zur Porenausbildung wieder reduziert. Der Vorteil dieser Variante liegt im reduzierten Materialverbrauch der (teureren) Nickelbe­ schichtung, da kein Beschichtungsmaterial weggeätzt werden muß und die Be­ schichtung damit dünner ausfallen kann.
Fig. 2
An already contoured bipolar plate with an oxidizable material - e.g. B. Nickel coated, oxidized and reduced again to form pores. The advantage of this variant lies in the reduced material consumption of the (more expensive) nickel coating, since no coating material has to be etched away and the coating can therefore be thinner.

Fig. 4
Zur Mitbefeuchtung der MEA kann die Fließrichtung der Flüssigkeit an den Kanal­ wänden so eingestellt werden, daß die Kapillarenden direkten Kontakt mit der MEA- Zone erhalten und die MEA durch direkten Wasseraustausch mit der Kapillarschicht gezielt direkt befeuchtet wird
Fig. 4
To co-moisten the MEA, the direction of flow of the liquid on the channel walls can be set so that the capillary ends are in direct contact with the MEA zone and the MEA is specifically moistened by direct water exchange with the capillary layer

Fig. 6A
Zur Erzeugung von Kapillarkräften können z. B. fluidleitende Folien 20 in die Kanalstruktur durch Einlegen oder einkleben eingebracht werden. Diese Folien sind beispielsweise in der Zeitschrift "bild der wissenschaft" 2, 1998 auf den Seiten 16 bis 21 beschrieben und weisen eine mikroreplizierte Oberfläche auf. Mitteis der Folien ist eine gerichtete Flüssigkeitslei­ tung im. Kanal möglich. Zur gleichzeitigen Entwässerung und Befeuchtung kann es sinnvoll sein, einen Teil des Produktwassers zum Eingang zurückzuleiten (um die Befeuchtung zu verbessern) und den Rest in Richtung Ausgang abzuführen (Fig. 5).
Figure 6A
To generate capillary forces z. B. fluid-conducting films 20 can be introduced into the channel structure by inserting or gluing. These foils are described, for example, in the journal "picture of science" 2, 1998 on pages 16 to 21 and have a microreplicated surface. The middle of the foils is a directional liquid line in the. Channel possible. For simultaneous dewatering and humidification, it can make sense to return part of the product water to the entrance (to improve humidification) and to discharge the rest towards the exit ( Fig. 5).

Fig. 6B
Alternativ zur fluidleitenden Folie können schwammartige Kapillarstrukturen 22 Verwendung finden. Ein Vorteil dieser amorphen Kapillarstruktur legt in der einfa­ cheren Einbringung in stark gekrümmte Kanäle. Ein Nachteil liegt im reduzierten und nicht genau gerichteten, langsameren Flüssigkeitstransport sowie in der Tatsache, daß ein Flüssigkeitsverlust durch unkontrolliertes Abdampfen möglich ist.
Figure 6B
As an alternative to the fluid-conducting film, sponge-like capillary structures 22 can be used. One advantage of this amorphous capillary structure lies in the simpler introduction into strongly curved channels. A disadvantage is the reduced and not precisely directed, slower liquid transport and the fact that a loss of liquid is possible due to uncontrolled evaporation.

Alternativ zur fluidleitenden Folie können auch röhrenförmige Kapillarstrukturen 24, wie sie z. B. in Wärmerohren (Heatpipes) eingesetzt werden, Verwendung finden. Da röhrenförmige Kapillarstrukturen auch in stark gekrümmte Kanäle - zum Beispiel durch Einlegen oder Einkleben - eingebracht werden können, tritt nur ein geringer Flüssigkeitsverlust durch unkontrolliertes Ausdampfen während des Transportes zwischen den Enden auf. Zur Erzielung einer genügend großen Wasseraufnahme am "feuchten" Ende muß ein breiter Einzugsbereich durch unterschiedliche Kapillar­ längen vorgesehen werden.As an alternative to the fluid-conducting film, tubular capillary structures 24 , such as, for. B. are used in heat pipes (heat pipes). Since tubular capillary structures can also be introduced into highly curved channels - for example, by inserting or gluing - there is only a small loss of liquid due to uncontrolled evaporation during transport between the ends. In order to achieve a sufficiently large water absorption at the "moist" end, a wide intake area through different capillary lengths must be provided.

Fig. 7A
Als ganzheitlicher Lösungsansatz kann der Transport des Produktwassers zur Befeuchtung/Entwässerung der Zelle auch in kapillaren Strukturen innerhalb der Kanalstege 8 erfolgen.
Figure 7A
As a holistic solution, the transport of the product water for moistening / dewatering the cell can also take place in capillary structures within the channel webs 8 .

Zur Erzeugung einer möglichst umfangreichen, kapillar wirksamen Schicht im Steg kann z. B. ein oxidierbares Material, z. B. Nickel, auf die glatte Bipolarplatte - z. B. galvanisch - aufgebracht und durch Anwendung chemischer Ätzverfahren mit einer Kanalstruktur versehen werden. Durch Oxidation der verbleibenden Nickelstege bei hohen Temperaturen (< 600°C) und anschließende Reduktion wandelt sich der Steg in eine stark poröse, schwammartige Struktur um, welche die geforderte Kapillarwir­ kung entwickeln kann.To create the largest possible capillary layer in the web can e.g. B. an oxidizable material, e.g. B. nickel, on the smooth bipolar plate - z. B. electroplated and applied using chemical etching techniques with a Channel structure. By oxidizing the remaining nickel bars high temperatures (<600 ° C) and subsequent reduction, the web changes into a highly porous, sponge-like structure, which creates the required capillary kung can develop.

Fig. 7B
Es kann auch eine Bipolarplatte aus einem vollständig porösen Material verwendet werden, die zur Vermeidung eines etwaigen Wasser- und Gasdurchtritts senkrecht zur Plattenebene mindestens einseitig - z. B. durch eine Beschichtung - versiegelt ist 25.
Figure 7B
It is also possible to use a bipolar plate made of a completely porous material, which at least on one side - e.g. B. by a coating - is sealed 25.

Claims (7)

1. PEM Brennstoffzelle mit einer MEA und in den Bipolarplatten integrierten Gaska­ nälen dadurch gekennzeichnet,
  • - daß die Gaskanäle zumindest teilweise mit einer flüssigkeitstransportierenden Schicht ausgekleidet sind,
  • - daß diese flüssigkeitstransportierende Schicht in einem Bereich beginnt, in dem der thermodynamische Zustand des Gasstroms unterhalb des Taupunkts der Wassersättigung liegt und in einem Bereich endet, in dem der thermody­ namische Zustand des Gasstroms über dem Taupunkt liegt, d. h. in dem Was­ ser auskondensiert.
  • - daß diese Schicht zumindest einen Teil des bei der Brennstoffzellenreaktion entstehenden Produktwassers in einem Zellbereich, in dem der thermodyna­ mische Zustand des Gasstroms oberhalb des Taupunkts der Wassersättigung liegt, aufnimmt, in einen Bereich transportiert, in dem der thermodynamische Zustand des Gasstroms unterhalb des Taupunkts liegt, d. h. der Gasstrom noch ungesättigt ist, und diesen dort an den Gasstrom abgibt.
1. PEM fuel cell with a MEA and the bipolar integrated Gaska nälen characterized in
  • that the gas channels are at least partially lined with a liquid-transporting layer,
  • - That this liquid-transporting layer begins in an area in which the thermodynamic state of the gas flow is below the dew point of the water saturation and ends in an area in which the thermody namic state of the gas flow is above the dew point, ie in which water condenses.
  • - That this layer takes up at least a portion of the product water formed in the fuel cell reaction in a cell area in which the thermodynamic state of the gas flow is above the dew point of water saturation, transported into an area in which the thermodynamic state of the gas flow is below the dew point , ie the gas stream is still unsaturated, and releases it there to the gas stream.
2. Brennstoffzelle nach Anspruch 1, dadurch gekennzeichnet, daß die flüssig­ keitstransportierende Schicht am Kanalgrund und/oder an den Kanalwänden an­ geordnet ist.2. Fuel cell according to claim 1, characterized in that the liquid speed-transporting layer on the channel base and / or on the channel walls is ordered. 3. Brennstoffzelle nach Anspruch 1, dadurch gekennzeichnet, daß die flüssig­ keitstransportierende Schicht im Steg zwischen zwei Kanälen integriert ist.3. Fuel cell according to claim 1, characterized in that the liquid speed-transporting layer is integrated in the web between two channels. 4. Brennstoffzelle nach Anspruch 1, dadurch gekennzeichnet, daß die flüssig­ keitstransportierende Schicht in die Bipolarplatte integriert ist. 4. Fuel cell according to claim 1, characterized in that the liquid speed-transporting layer is integrated in the bipolar plate.   5. Brennstoffzelle nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß die flüssigkeitstransportierende Schicht eine poröse Schicht oder eine Schicht mit Kapillarstruktur oder eine Schicht mit einer mikroreplizierten Oberfläche ist.5. Fuel cell according to one of claims 1-4, characterized in that the liquid-transporting layer has a porous layer or a layer Capillary structure or a layer with a microreplicated surface. 6. Brennstoffzelle nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß die flüssigkeitstransportierende Schicht durch Modifikation des Bipolarplatten­ materials oder durch Auflegen oder Aufkleben eines anderen Materials oder einer Folie oder eines Folien-Systems erzeugt wird.6. Fuel cell according to one of claims 1-5, characterized in that the liquid-transporting layer by modification of the bipolar plate materials or by laying on or sticking on another material or Foil or a foil system is generated. 7. Brennstoffzelle mit einer flüssigkeitstransportierenden Schicht nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Grenzfläche der Schicht zur Gaspha­ se teilweise fluiddicht ist.7. Fuel cell with a liquid-transporting layer according to claim 5 or 6, characterized in that the interface of the layer with the gas phase it is partially fluid-tight.
DE19921007A 1999-05-06 1999-05-06 PEM fuel cell with membrane electrode assembly has gas channels integrated in bipolar plates cladded with fluid transporting layer for damping membranes via condensed water Expired - Fee Related DE19921007C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19921007A DE19921007C1 (en) 1999-05-06 1999-05-06 PEM fuel cell with membrane electrode assembly has gas channels integrated in bipolar plates cladded with fluid transporting layer for damping membranes via condensed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19921007A DE19921007C1 (en) 1999-05-06 1999-05-06 PEM fuel cell with membrane electrode assembly has gas channels integrated in bipolar plates cladded with fluid transporting layer for damping membranes via condensed water

Publications (1)

Publication Number Publication Date
DE19921007C1 true DE19921007C1 (en) 2000-11-16

Family

ID=7907258

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19921007A Expired - Fee Related DE19921007C1 (en) 1999-05-06 1999-05-06 PEM fuel cell with membrane electrode assembly has gas channels integrated in bipolar plates cladded with fluid transporting layer for damping membranes via condensed water

Country Status (1)

Country Link
DE (1) DE19921007C1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061775A2 (en) * 2000-02-17 2001-08-23 Nedstack Holding B.V. Water removal in pem fuel cells
WO2004021497A2 (en) * 2002-08-07 2004-03-11 Battelle Memorial Institute Passive vapor exchange systems and techniques for fuel reforming and prevention of carbon fouling
WO2005004265A1 (en) * 2003-06-30 2005-01-13 Paul Scherrer Institut Method and apparatus for internal humidification of the membrane of a fuel cell
EP1920486A1 (en) * 2005-07-15 2008-05-14 UTC Power Corporation Single plate pem fuel cell
DE102009011239A1 (en) * 2009-03-02 2010-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Low-temperature fuel cell with integrated water management system for the passive discharge of product water
DE102017212067A1 (en) * 2017-07-14 2019-01-17 Bayerische Motoren Werke Aktiengesellschaft Fuel cell stack and its stacking elements
DE102020202061A1 (en) 2020-02-19 2021-08-19 Robert Bosch Gesellschaft mit beschränkter Haftung Surface structure for separating water in a fuel cell system
US11695134B2 (en) 2018-06-07 2023-07-04 Volkswagen Ag Method for humidifying a reactant, and fuel cell system for carrying out the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529855A (en) * 1992-12-24 1996-06-25 Tanaka Kikinzoku Kogyo K.K. Structure for wetting diaphragm of solid polymer electolyte electrochemical cell and process of preparing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529855A (en) * 1992-12-24 1996-06-25 Tanaka Kikinzoku Kogyo K.K. Structure for wetting diaphragm of solid polymer electolyte electrochemical cell and process of preparing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE-Z: Bild der Wissenschaft, 2/1998, 1b-21 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061775A2 (en) * 2000-02-17 2001-08-23 Nedstack Holding B.V. Water removal in pem fuel cells
WO2001061775A3 (en) * 2000-02-17 2002-08-22 Nedstack Holding B V Water removal in pem fuel cells
WO2004021497A2 (en) * 2002-08-07 2004-03-11 Battelle Memorial Institute Passive vapor exchange systems and techniques for fuel reforming and prevention of carbon fouling
WO2004021497A3 (en) * 2002-08-07 2005-09-22 Battelle Memorial Institute Passive vapor exchange systems and techniques for fuel reforming and prevention of carbon fouling
WO2005004265A1 (en) * 2003-06-30 2005-01-13 Paul Scherrer Institut Method and apparatus for internal humidification of the membrane of a fuel cell
JP2009501421A (en) * 2005-07-15 2009-01-15 ユーティーシー パワー コーポレイション Single plate proton exchange membrane fuel cell
EP1920486A1 (en) * 2005-07-15 2008-05-14 UTC Power Corporation Single plate pem fuel cell
EP1920486A4 (en) * 2005-07-15 2009-10-21 Utc Power Corp Single plate pem fuel cell
US7871732B2 (en) 2005-07-15 2011-01-18 Utc Power Corporation Single reactant gas flow field plate PEM fuel cell
CN101238604B (en) * 2005-07-15 2011-11-16 Utc电力公司 Single plate PEM fuel cell
DE102009011239A1 (en) * 2009-03-02 2010-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Low-temperature fuel cell with integrated water management system for the passive discharge of product water
DE102017212067A1 (en) * 2017-07-14 2019-01-17 Bayerische Motoren Werke Aktiengesellschaft Fuel cell stack and its stacking elements
US11695134B2 (en) 2018-06-07 2023-07-04 Volkswagen Ag Method for humidifying a reactant, and fuel cell system for carrying out the method
DE102020202061A1 (en) 2020-02-19 2021-08-19 Robert Bosch Gesellschaft mit beschränkter Haftung Surface structure for separating water in a fuel cell system

Similar Documents

Publication Publication Date Title
DE69219758T2 (en) METHOD AND APPARATUS FOR THE WATER REMOVAL OF ELECTROCHEMICAL FUEL CELLS
DE112005000365B4 (en) Electrochemical cell with a membrane electrode assembly
DE112005001084B4 (en) Gas separator and method for its operation
DE10195996B4 (en) Polymer electrolyte fuel cell stack and method of operating this fuel cell stack
DE102005011853B4 (en) Fuel cell and gas diffusion medium for balanced humidification in proton exchange membranes of fuel cells
DE102008016093B4 (en) Fuel cell assembly with a water transport device and their use in a vehicle
DE10102447B4 (en) Humidifier for use with a fuel cell
DE102008003608B4 (en) Bipolar plate for a fuel cell with a water removal channel and fuel cell stack
DE10104246C1 (en) Fuel cell e.g. for electric traction drive, incorporates dampening of process gas used for operation of fuel cell
DE19921007C1 (en) PEM fuel cell with membrane electrode assembly has gas channels integrated in bipolar plates cladded with fluid transporting layer for damping membranes via condensed water
DE10297156T5 (en) Two-zone water transport plate for a fuel cell
DE10145875A1 (en) Membrane electrode unit for a self-humidifying fuel cell
EP1435121B1 (en) Humidification cell
EP3884535B1 (en) Fuel cell plate, bipolar plate and fuel cell device
DE102005035098A1 (en) Polymer electrolyte membrane fuel cell with dosing space and production process has separation wall forming closing space for feeding controlled amount of oxidant to cathode space
DE10155349C2 (en) Micro fuel cell system and method for its production
EP2243182B1 (en) Humidification cell
DE102009005766A1 (en) Bipolar plate with variable surface properties for a fuel cell
DE10063254A1 (en) Fuel cell system with flow passages and / or spaces which carry moist gases during operation and a method for operating such a fuel cell system
EP2025026B1 (en) Fuel cell with a separator plate unit, and a separator plate unit
DE102007014046B4 (en) Fuel cell and method for its production
WO2000059060A1 (en) Htm fuel cell or battery with reduced washing-out of the electrolyte, and starting method
DE102018213148A1 (en) Layer structure for a fuel cell and method for producing such a layer structure
WO2003090301A2 (en) Electrode plate comprising a humidification region
EP2139061A1 (en) Membrane-dampening cell and fuel cell device containing the same

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DAIMLERCHRYSLER AG, 70567 STUTTGART, DE

8339 Ceased/non-payment of the annual fee