DE19828088A1 - Superconducting bolometer for detecting electromagnetic radiation - Google Patents

Superconducting bolometer for detecting electromagnetic radiation

Info

Publication number
DE19828088A1
DE19828088A1 DE19828088A DE19828088A DE19828088A1 DE 19828088 A1 DE19828088 A1 DE 19828088A1 DE 19828088 A DE19828088 A DE 19828088A DE 19828088 A DE19828088 A DE 19828088A DE 19828088 A1 DE19828088 A1 DE 19828088A1
Authority
DE
Germany
Prior art keywords
superconducting
thin film
bolometer
temperature
electromagnetic radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19828088A
Other languages
German (de)
Inventor
Gunter Kaiser
Sven Linzen
Henrik Schneidewind
Paul Seidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friedrich Schiller Universtaet Jena FSU
Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Original Assignee
Friedrich Schiller Universtaet Jena FSU
Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Schiller Universtaet Jena FSU, Institut fuer Luft und Kaeltetechnik Gemeinnuetzige GmbH filed Critical Friedrich Schiller Universtaet Jena FSU
Priority to DE19828088A priority Critical patent/DE19828088A1/en
Publication of DE19828088A1 publication Critical patent/DE19828088A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/023Particular leg structure or construction or shape; Nanotubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Radiation Pyrometers (AREA)

Abstract

The bolometer is operated at a temp. within the superconducting transition. Two electromagnetically absorbing, superconducting thin film structures (2) forming a first order gradiometer are formed on a common substrate (1). The thin film structures are connected in electrical anti-series and are connected to adjustable, highly constant crosscurrents from separate sources (3,3';4,4'). Connections (5,5') are arranged symmetrically with respect to a common earth pint for tapping the output voltage.

Description

Die Erfindung betrifft ein hochempfindliches und breitbandig thermisch wirkendes Bolome­ ter zur Detektion elektromagnetischer Strahlung.The invention relates to a highly sensitive and broadband thermal bolome ter for the detection of electromagnetic radiation.

Bolometer stellen neben Magnetometern eine wichtige Anwendung der Supraleiter- Hochtechnologie auf dem Gebiet der Sensorik dar. Bolometer aus konventionellen Supralei­ terwerkstoffen wie Niob oder Blei sind bereits hochentwickelte Sensoren. Die Entwicklung von Bolometern aus Hochtemperatursupraleitern (HTSL) steht jedoch noch am Anfang. Wesentliche Nachteile von HTSL-Bolometern sind das größere thermische Rauschen durch die höhere Arbeitstemperatur und eine geringere Empfindlichkeit durch die geringe Flan­ kensteilheit der Temperatur-Widerstandskennlinie beim supraleitenden Übergang.In addition to magnetometers, bolometers are an important application of superconductor High technology in the field of sensor technology. Bolometers made from conventional suprali Ter materials such as niobium or lead are already highly developed sensors. The development of bolometers made from high-temperature superconductors (HTSL) is only just beginning. The main disadvantages of HTSL bolometers are the greater thermal noise the higher working temperature and lower sensitivity due to the low flange The steepness of the temperature-resistance curve during the superconducting transition.

Bei der Entwicklung supraleitender Bolometer ist ein Kompromiß zwischen zwei sich ge­ genseitig ausschließenden Anforderungen zu schließen, die Realisierung einer hohen Empfindlichkeit bei einer möglichst kurzen thermischen Zeitkonstante. Dementsprechend haben sich zwei Entwicklungsrichtungen etabliert, einerseits die Entwicklung relativ unemp­ findlicher, dafür aber extrem schneller Bolometer, andererseits die Entwicklung langsamer aber hochempfindlicher Bolometer. Beide Entwicklungen lassen sich dadurch rechtfertigen, daß auch relativ unempfindliche supraleitende Bolometer dennoch oft um Größenordnun­ gen empfindlicher als vergleichbare andere Strahlungssensoren, wie z. B. Pyrometer oder Photoeffekt-Detektoren, sind.When developing superconducting bolometers, there is a compromise between two ge mutually exclusive requirements, the realization of a high Sensitivity with the shortest possible thermal time constant. Accordingly two directions of development have been established, on the one hand, the development is relatively unemp sensitive, but extremely fast bolometer, on the other hand, the development slower but highly sensitive bolometer. Both developments can be justified that even relatively insensitive superconducting bolometers are often by orders of magnitude gene more sensitive than comparable other radiation sensors, such as. B. pyrometer or Photo effect detectors are.

Da supraleitende Bolometer thermisch wirkende Detektoren sind, lassen sich außerdem oft mit einem Sensor Eingangssignale vom fernen Infrarot bis hin zum fernen Ultraviolett de­ tektieren. Außerdem lassen sich durch zusätzliche Maßnahmen wie angepaßte Antennen oder Absorberschichten auch Millimeterwellen oder Teilchenstrahlströme detektieren.Since superconducting bolometers are thermal detectors, they can also often be used with one sensor input signals from far infrared to far ultraviolet de tect. In addition, additional measures such as adapted antennas can be used or absorber layers also detect millimeter waves or particle beam currents.

Die Empfindlichkeit von supraleitenden Bolometern ist zu hohen Frequenzen hin durch die thermische Trägheit des Detektors, bei tiefen Frequenzen durch das niederfrequente, durch Temperaturfluktationen bedingte, Rauschen begrenzt.The sensitivity of superconducting bolometers is due to the high frequencies thermal inertia of the detector, at low frequencies due to the low frequency Temperature fluctuations, noise limited.

Aufgabe der Erfindung ist es, die Empfindlichkeit supraleitender Bolometer zu erhöhen, indem u. a. das Signal/Rausch-Verhältnis bei tiefen Frequenzen verbessert wird.The object of the invention is to increase the sensitivity of superconducting bolometers, by u. a. the signal-to-noise ratio at low frequencies is improved.

Die Aufgabe wird durch die Merkmale des Patentanspruches gelöst, indem der Sensor als supraleitendes Doppelbolometer bei einer Temperatur innerhalb des supraleitenden Über­ gangs betrieben wird. Trifft elektromagnetische Strahlung den Sensor, so wird diese von den Dünnfilmstrukturen absorbiert und in Wärme umgewandelt. Die resultierende Tempera­ turänderung bewirkt eine Änderung des elektrischen Widerstandes und damit der Aus­ gangsspannung.The object is achieved by the features of the claim by the sensor as superconducting double bolometer at a temperature within the superconducting super  gangs is operated. If electromagnetic radiation hits the sensor, this is from absorbed in the thin film structures and converted into heat. The resulting tempera The change in the door causes a change in the electrical resistance and thus the off output voltage.

Durch die erfindungsgemäße Geometrie des Bolometers lassen sich folgende Betriebsarten realisieren:The geometry of the bolometer according to the invention enables the following operating modes realize:

Bei der Betriebsart als gradiometrisches Bolometer sind die Querströme durch die Dünn­ filmstrukturen 2 so einzustellen, daß die Strahlungsempfindlichkeit beider Dünnfilmstruktu­ ren 2 gleich groß ist. Trifft elektromagnetische Strahlung mit gleicher Leistungsdichte beide Dünnfilmstrukturen 2, bewirkt dies keine Änderung des Ausgangssignals. Werden die Dünnfilmstrukturen 2 jedoch mit unterschiedlicher Leistungsdichte bestrahlt, ist das Aus­ gangssignal im Kleinsignalbereich proportional zum Leistungsdichteunterschied beider Dünnfilmstrukturen 2.In the operating mode as a gradiometric bolometer, the cross currents through the thin film structures 2 are to be set so that the radiation sensitivity of both thin film structures 2 is the same. If electromagnetic radiation with the same power density strikes both thin-film structures 2 , this does not change the output signal. However, if the thin film structures 2 are irradiated with different power densities, the output signal in the small signal range is proportional to the power density difference between the two thin film structures 2 .

Bei der Betriebsart als temperaturkompensiertes Bolometer sind die Querströme durch die Dünnfilmstrukturen 2 so einzustellen, daß die Temperaturempfindlichkeit beider Dünnfilm­ strukturen 2 gleich groß ist. Es wird nur eine der Dünnfilmstrukturen 2 der elektromagneti­ schen Strahlung ausgesetzt die andere wird entweder abgedeckt oder reflektierend be­ schichtet. Temperaturvariationen, die gleichphasig an beiden Dünnfilmstrukturen 2 wirken, werden im Ausgangssignal unterdrückt. Die durch die elektromagnetische Bestrahlung her­ vorgerufene Temperaturvariation erzeugt jedoch im Kleinsignalbereich ein proportionales Ausgangssignal. Dadurch lassen sich Bolometer realisieren, die auch in Kryostaten mit un­ günstiger Temperaturstabilität, z. B. Refrigeratorkryostaten, betrieben werden können. Ins­ besondere läßt sich im Vergleich zu einfachen Bolometern das Signal/Rausch-Verhältnis und die Detektivität im Bereich sehr niedriger Frequenzen um 40. . .60 dB verbessern.In the operating mode as a temperature-compensated bolometer the cross-currents are set by the thin-film structures 2 so that the temperature sensitivity of both thin-film structure 2 is the same. Only one of the thin-film structures 2 is exposed to electromagnetic radiation, the other is either covered or coated in a reflective manner. Temperature variations which act in phase on both thin film structures 2 are suppressed in the output signal. However, the temperature variation caused by the electromagnetic radiation produces a proportional output signal in the small signal range. This makes it possible to realize bolometers that are also used in cryostats with unfavorable temperature stability, e.g. B. refrigerator cryostats can be operated. In particular, compared to simple bolometers, the signal-to-noise ratio and the detectivity in the range of very low frequencies can be around 40. .60 dB improve.

In Abb. 1 ist das Layout eines erfindungsgemäßen Doppelbolometers als Ausführungsbei­ spiel dargestellt. Die Dünnfilmstrukturen 2 sind in definiertem Abstand zueinander auf dem gemeinsamen Substrat 1 angeordnet. Die Kontaktierung für die Querströme aus separaten Stromquellen erfolgt über die Punkte 3, 3' und 4, 4'. Die Ausgangsspannung wird zwischen den Punkten 5, 5' abgegriffen.In Fig. 1, the layout of a double bolometer according to the invention is shown as a game Ausführungsbei. The thin film structures 2 are arranged at a defined distance from one another on the common substrate 1 . The contacts for the cross currents from separate current sources are made via points 3 , 3 'and 4 , 4 '. The output voltage is tapped between points 5 , 5 '.

Abb. 2 zeigt das durch Temperaturfluktuation hervorgerufene Ausgangssignal eines Dop­ pelbolometers im unkompensierten Betrieb und unter Anwendung des Prinzips zur Tempe­ raturkompensation. Im dargestellten Fall konnten die niederfrequenten Temperaturfluka­ tionen um etwa 40 dB unterdrückt werden. Fig. 2 shows the output signal of a double bolometer caused by temperature fluctuation in uncompensated operation and using the principle of temperature compensation. In the case shown, the low-frequency temperature fluctuations could be suppressed by around 40 dB.

Claims (2)

1. Supraleitendes Bolometer, das bei einer Temperatur innerhalb des supraleitenden Über­ gangs betrieben wird, dadurch gekennzeichnet, daß auf einem gemeinsamen Substrat (1) zwei elektromagnetisch absorbierende, supraleitende, ein Gradiometer erster Ordnung bil­ dende Dünnfilmstrukturen (2) angebracht sind, die elektrisch antiseriell geschaltet und an einstellbare hochkonstante Querströme aus separaten Stromquellen (3, 3' und 4, 4') ange­ schlossen sind und daß zum Abgreifen der Ausgangsspannung symmetrisch zum gemein­ samen Massepunkt Anschlüsse (5, 5') angeordnet sind.1. Superconducting bolometer, which is operated at a temperature within the superconducting transition, characterized in that two electromagnetically absorbing, superconducting, a first order gradiometer thin film structures ( 2 ) are attached to a common substrate ( 1 ), which are electrically anti-serial switched and connected to adjustable high constant cross currents from separate current sources ( 3 , 3 'and 4 , 4 ') and that for tapping the output voltage symmetrically to the common ground point connections ( 5 , 5 ') are arranged. 2. Supraleitendes Bolometer nach Anspruch 1, dadurch gekennzeichnet, daß bei tempera­ turkompensierter Betriebsweise eine Dünnfilmstruktur (2) gegen elektromagnetische Strah­ lung abgedeckt bzw. reflektierend beschichtet ist.2. Superconducting bolometer according to claim 1, characterized in that a thin film structure ( 2 ) is covered against electromagnetic radiation or coated with reflective coating in temperature-compensated mode of operation.
DE19828088A 1998-06-24 1998-06-24 Superconducting bolometer for detecting electromagnetic radiation Withdrawn DE19828088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19828088A DE19828088A1 (en) 1998-06-24 1998-06-24 Superconducting bolometer for detecting electromagnetic radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19828088A DE19828088A1 (en) 1998-06-24 1998-06-24 Superconducting bolometer for detecting electromagnetic radiation

Publications (1)

Publication Number Publication Date
DE19828088A1 true DE19828088A1 (en) 1999-12-30

Family

ID=7871843

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19828088A Withdrawn DE19828088A1 (en) 1998-06-24 1998-06-24 Superconducting bolometer for detecting electromagnetic radiation

Country Status (1)

Country Link
DE (1) DE19828088A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171733A (en) * 1990-12-04 1992-12-15 The Regents Of The University Of California Antenna-coupled high Tc superconducting microbolometer
DE69007303T2 (en) * 1989-01-13 1994-06-23 Thomson Csf Radiation detector.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69007303T2 (en) * 1989-01-13 1994-06-23 Thomson Csf Radiation detector.
US5171733A (en) * 1990-12-04 1992-12-15 The Regents Of The University Of California Antenna-coupled high Tc superconducting microbolometer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALFEEV,V.N., et.al.: Mechanism of detection of infrared radiation by a high-T¶c¶ superconducting bolometer. In: Sov. Tech. Phys. Lett. 17 (10), Oct. 1991, S.727,728 *
DWIR,B., PAVUNA,D.: A sensitive YBaCuO thin film bolometer with ultrawide wavelength response. In: J. Appl. Phys. 72 (9), 1 Nov. 1992, S.3855-3861 *
JANIK,Dieter, WOLF,Henning: Leistungsmessung im Millimeterwellengebiet bei Raum- und Stickstofftemperaturen mit Dünnschicht- Bolometern. In: tm - Technisches Messen 62, 1995, 2, S.49-57 *
LI,Q., et.al.: Epitaxial YBa¶2¶Cu¶3¶O¶7-x¶ bolometers on micromachined windows in silicon wafers. In: Appl. Phys. Lett.62(19), 10 May 1993, S.2428-2430 *
VERGHESE,S. et.al.: Feasibility of infrared imaging arrays using high-T¶c¶ superconducting bolometers. In: J. Appl. Phys. 71 (6), 15 March 1992, S.2491-2498 *

Similar Documents

Publication Publication Date Title
US5600243A (en) Magnetically shielded magnetic sensor with squid and ground plane
Xu et al. Low-noise second-order gradient SQUID current sensors overlap-coupled with input coils of different inductances
Balbin et al. Measurement of density and temperature fluctuations using a fast‐swept Langmuir probe
Rossi Contact potential measurement: Spacing‐dependence errors
US2932743A (en) Radiation detection system
DE3930828C3 (en) Method for compensating the housing temperature in the measurement signal of a pyrometer and pyrometer device
DE19828088A1 (en) Superconducting bolometer for detecting electromagnetic radiation
Cochrane et al. A low-power AC differential ohm-meter
Ito et al. Vortex penetration field measurement system based on third-harmonic method for superconducting RF materials
Labbé et al. Effects of flux pinning on the DC characteristics of meander-shaped superconducting quantum interference filters with flux concentrator
Gubrud et al. Sub-gap leakage in Nb/AlO/sub x//Nb and Al/AlO/sub x//Al Josephson junctions
Tympel et al. First measurements of a new type of Coreless Cryogenic Current Comparators (4C) for non-destructive intensity diagnostics of charged particles
EP0812479B1 (en) Superconductive tunnel elements, stack of tunnel elements and their use
Boltovets et al. New generation of resistance thermometers based on Ge films on GaAs substrates
Arndt et al. Novel detection scheme for cryogenic bolometers with high sensitivity and scalability
Menkel et al. A resistive dc SQUID noise thermometer
Keene et al. Noise performance of a composite HTC/niobium SQUID in RF and DC bias modes
Gioacchino et al. A novel particle/photon detector based on a superconducting proximity array of nanodots
Hamilton et al. Standards and high-speed instrumentation
Hao et al. Comparative noise measurements in YBCO step-edge and bi-crystal grain-boundary junctions
Chen et al. Cross-Coupling First-Order Gradient Superconducting Quantum Interference Device for Current Sensing
Denisov et al. Primary trends in superconductive microwave radioelectronics
Li et al. Time domain analysis of different ballistic deficit correct methods
Ruede et al. Readout system for NanoSQUID sensors using a SQUID amplifier
Chen et al. Dynamic range of high temperature superconducting Josephson detecting systems at millimeter-wave band

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee