DE19819902A1 - Production of conducting polymer film, used in e.g. solar cell and sensor - Google Patents

Production of conducting polymer film, used in e.g. solar cell and sensor

Info

Publication number
DE19819902A1
DE19819902A1 DE19819902A DE19819902A DE19819902A1 DE 19819902 A1 DE19819902 A1 DE 19819902A1 DE 19819902 A DE19819902 A DE 19819902A DE 19819902 A DE19819902 A DE 19819902A DE 19819902 A1 DE19819902 A1 DE 19819902A1
Authority
DE
Germany
Prior art keywords
polymer film
elements
ion source
ion
acceptors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19819902A
Other languages
German (de)
Inventor
Hartmut Frey
Hamid R Khan
Max Mayr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19819902A priority Critical patent/DE19819902A1/en
Publication of DE19819902A1 publication Critical patent/DE19819902A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0872Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using ion-radiation, e.g. alpha-rays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

The elements in gas or vapour form are dissociated and partly ionised in the discharge chamber of an ion source. The polymer film is bombarded with 5 keV to 10 MeV ions by the ion source extraction system. As a result, the implanted elements are added to the polymer chains. Production of ion and/or electron conducting polymer film with polar reactive groups for technical high grade applications involves ion implantation of ions and atoms with chemical elements having energies of 5 keV to 10 MeV. The elements in gas or vapour form are dissociated and partly ionised in the discharge chamber of an ion source. The polymer film is bombarded with 5 keV to 10 MeV ions by the ion source extraction system. As a result, the implanted elements are added to the polymer chains.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von 0,1 bis 200 µm dünner ionen- und elektronenleitender Polymerfolien durch Ionenimplantation bzw. Ionenstrahlmischung aus bereits vernetzten Kunststoffolien aus unterschiedlichen chemischen Sorten. Polymere unterscheiden sich von anderen Festkörpern dadurch, daß in ihnen die chemischen Bindungen vorwiegend gerichtet auftreten. Dadurch sind z. B. die Elektronen weitgehend lokalisiert und die Energiebänder sind ganz gefüllt oder ganz leer, so daß diese Substanzen als Isolatoren wirken. Nur in Polymeren mit ungesättigten Bindungen liegen teilweise Energiebänder vor. In Folge der gerichteten Bindungskräfte bilden sich häufig bevorzugt niedrig dimensionale Strukturen, wobei die einzelnen Monomergruppen kettenartig oder schichtartig verknüpft sind. Polymere Ketten aus ungesättigten -H-C- können von der Theorie her als eindimensionale Festkörper aufgefaßt werden, die alle Spielarten von Isolatoren über den Halbleiter bis zum Metall zeigen, aber auch durch den Einbau von Elementen, Akzeptoren und Donatoren, elektronen- und ionenleitende Eigenschaften aufweisen. Polymerfolien mit solchen funktionellen Gruppen zeigen eine unterschiedliche Sperrwirkung gegen Ionen und Co-Ionen, wie z. B. in Elektrolytlösungen. Die Eigenschaft der Kationen Permselektivität erreicht man durch großflächige Ionenimplantation mit breiten Schlitz-Ionenquellen.The invention relates to a method for producing 0.1 to 200 microns thinner ion- and electron-conducting polymer films by ion implantation or Ion beam mixture from already cross-linked plastic films from different chemical varieties. Polymers differ from other solids in that that the chemical bonds occur predominantly in them. Thereby are z. B. the electrons are largely localized and the energy bands are complete filled or completely empty, so that these substances act as isolators. Only in Some polymers with unsaturated bonds have energy bands. As a result Often, the directional binding forces preferably form low-dimensional ones Structures, the individual monomer groups being chain-like or layer-like are linked. Polymeric chains from unsaturated -H-C- can theoretically forth as one-dimensional solids, which all varieties of Insulators through the semiconductor to the metal show, but also by the installation of elements, acceptors and donors, electron and ion conducting Have properties. Show polymer films with such functional groups a different barrier effect against ions and co-ions, such as. B. in Electrolyte solutions. The property of the cation permselectivity is achieved through large-scale ion implantation with wide slot ion sources.

Ionen- und elektronenleitende Membranen hergestellt aus kommerziell gefertigten Kunstoffolien gewinnen immer mehr an Bedeutung bei der elektrochemischen Energieumwandlung. Sie werden in Brennstoffzellen und bei der Wasserelektrolyse eingesetzt. Auch zur Entsorgung von Salz-Abfällen und Freisetzung organischer Säuren, d. h. bei der Elektrodialyse mit bipolaren Membranen lassen sich ionenleitende Polymerfolien einsetzen. Allerdings sind die Herstellungskosten mit den gegenwärtig benutzten Verfahren der Monomersynthese, der anschließenden Polymerisation und der Funktionalisierung noch zu teuer, um die so hergestellten ionenleitenden Folien bei der Energiewandlung einsetzen zu können.Ion and electron conducting membranes made from commercially manufactured Plastic films are becoming increasingly important in electrochemical Energy conversion. They are used in fuel cells and in water electrolysis used. Also for the disposal of salt waste and organic release Acids, d. H. in electrodialysis with bipolar membranes Use ion-conducting polymer films. However, the manufacturing costs are included the currently used methods of monomer synthesis, the subsequent ones Polymerization and functionalization still too expensive to manufacture to be able to use ion-conducting foils for energy conversion.

Das Implantationsverfahren von Kunststoffolien läuft im Vakuum bei einem Arbeitsdruck zwischen 10-6 und 10-2 mbar ab. Der Beschuß von Polysulfonfolien mit einem S⁺ und O⁺-Ionengemisch bei einer Extraktionsspannung von 60 keV und einem Druck von 10-4 mbar führt zu einer protonenleitenden Kunststoffolie. Der Beschuß mit Kohlenstoffionen ergibt eine elektronenleitende Kunststoffolie. Die Dosis an implantierten Teilchen liegt je nach gewünschter Polymerfolieneigenschaft zwischen 1016 bis 1022 Teilchen pro cm2. Durch zeitliche Variation der Ionendosis und der Ionenzusammensetzung lassen sich auch Polymerfolien mit unterschiedlichen Leitfähigkeitszonen herstellen, z. B. für Polymersolarzellen oder Gassensoren.The implantation process of plastic films takes place in a vacuum at a working pressure between 10 -6 and 10 -2 mbar. The bombardment of polysulfone films with an S⁺ and O⁺ ion mixture at an extraction voltage of 60 keV and a pressure of 10 -4 mbar leads to a proton-conducting plastic film. The bombardment with carbon ions results in an electron-conducting plastic film. The dose of implanted particles is between 10 16 to 10 22 particles per cm 2, depending on the desired polymer film property. By varying the ion dose and the ion composition over time, polymer films with different conductivity zones can also be produced, e.g. B. for polymer solar cells or gas sensors.

Claims (7)

1. Verfahren zur Herstellung von ionen- bzw. elektronenleitenden Polymerfolien mit polaren, reaktiven Gruppen für technisch hochwertige Anwendungen durch Ionenimplantation von Ionen und Atomen sämtlicher chemischer Elemente mit Energien zwischen 5 keV bis 10 MeV.
Das Verfahren ist dadurch gekennzeichnet, daß die Elemente in gas- oder dampfförmiger Form in der Entladungskammer einer Ionenquelle dissoziert und teilweise ionisiert werden. Die Ionen werden mittels des Ionenquellen- Extraktionssystems mit Energien zwischen 5 keV und 10 MeV auf eine Kunststoffolie hin beschleunigt. In der Polymerfolie findet die Anlagerung der implantierten Elemente an den Polymerketten statt.
1. Process for the production of ion- or electron-conducting polymer films with polar, reactive groups for technically high-quality applications by ion implantation of ions and atoms of all chemical elements with energies between 5 keV to 10 MeV.
The method is characterized in that the elements in gaseous or vapor form are dissociated and partially ionized in the discharge chamber of an ion source. The ions are accelerated towards a plastic film with energies between 5 keV and 10 MeV using the ion source extraction system. The implantation of the implanted elements on the polymer chains takes place in the polymer film.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß damit gleichzeitig ionen- und elektronenleitende Folien hergestellt werden. Dies erreicht man durch Bestrahlen der Polymerfolie mit Akzeptoren (z. B. FeCl3, F, AsF5, BF4 oder ClO4) oder Donatoren (Alkalimetalle) mittels einer zweiten Ionenquelle. Akzeptoren oder Donatoren werden mittels Stoßprozessen zwischen den implantierten Elementen aus der ersten Ionenquelle in die Polymerfolie eingebaut.2. The method according to claim 1, characterized in that ion and electron-conducting foils are thus produced simultaneously. This is achieved by irradiating the polymer film with acceptors (e.g. FeCl 3 , F, AsF 5 , BF 4 or ClO 4 ) or donors (alkali metals) using a second ion source. Acceptors or donors are built into the polymer film by means of collision processes between the implanted elements from the first ion source. 3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Donatoren und Akzeptoren nicht direkt der zweiten Ionenquelle zugeführt werden sondern über die Substratoberfläche geleitet werden.3. The method according to claim 1 and 2, characterized in that the donors and acceptors are not fed directly to the second ion source but via the substrate surface are guided. 4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Elemente mit den Donatoren und Akzeptoren gemischt direkt der ersten Ionenquelle zugeführt wird.4. The method according to claim 1 to 3, characterized in that the elements with the donors and acceptors are mixed and fed directly to the first ion source becomes. 5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die Polymerfolie mit einer Dosis von 1015 bis 1022 Teilchen pro cm2 bestrahlt wird.5. The method according to claim 1 to 4, characterized in that the polymer film is irradiated with a dose of 10 15 to 10 22 particles per cm 2 . 6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die Polymerfolie mit einer zeitlich veränderlichen Dosis von 1015 bis 1022 Teilchen pro cm2 bestrahlt wird.6. The method according to claim 1 to 5, characterized in that the polymer film is irradiated with a time-varying dose of 10 15 to 10 22 particles per cm 2 . 7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Polymerfolie mit einer zeitlich veränderlichen Zusammensetzung von Elementen, Akzeptoren und Donatoren bestrahlt wird.7. The method according to claim 1 to 6, characterized in that the polymer film with a temporally changing composition of elements, acceptors and Donors is irradiated.
DE19819902A 1998-05-05 1998-05-05 Production of conducting polymer film, used in e.g. solar cell and sensor Withdrawn DE19819902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19819902A DE19819902A1 (en) 1998-05-05 1998-05-05 Production of conducting polymer film, used in e.g. solar cell and sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19819902A DE19819902A1 (en) 1998-05-05 1998-05-05 Production of conducting polymer film, used in e.g. solar cell and sensor

Publications (1)

Publication Number Publication Date
DE19819902A1 true DE19819902A1 (en) 1999-11-11

Family

ID=7866648

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19819902A Withdrawn DE19819902A1 (en) 1998-05-05 1998-05-05 Production of conducting polymer film, used in e.g. solar cell and sensor

Country Status (1)

Country Link
DE (1) DE19819902A1 (en)

Similar Documents

Publication Publication Date Title
DE60024252T2 (en) POLYMERMEMBRANE AND METHOD FOR THE PRODUCTION THEREOF
DE3850333T2 (en) Immobilized electrolyte membrane and method of making the same.
DE2442209C2 (en) Membrane made by treating a shaped polymer structure with a plasma
DE3750444T2 (en) Bipolar membrane and method of manufacturing the same.
EP0667983B1 (en) Electrochemical cell with a polymer electrolyte and process for producing these polymer electrolytes
US4452827A (en) Method for surface modification of synthetic artificial and natural polymers and polymer compositions using metals, non-metals and gases
DE3852476T2 (en) Manufacturing methods of interpenetrating polymer networks, anodic and cathodic half elements and their application in electrochemical cells.
DE112006000472T5 (en) Functional membrane and electrolyte membrane for fuel cells and method of making same
EP0459820A2 (en) Bipolar membrane and method for its production
DE69811134T2 (en) Device for the production of demineralized water
DE10107324A1 (en) Electrolyte membrane comprises surface-treated, block-polymerizable membrane onto which side chain polymer with subsequently-introduced proton-conducting groups is block polymerized
DE112006000450B4 (en) Functional membrane, e.g. An electrolyte membrane for use in a fuel cell, and manufacturing method thereof
US4923611A (en) Novel anion-exchange membrane
DE60014713T2 (en) Membranes of graft polymers and ion exchange membranes thereof
DE69326359T2 (en) MEMBRANE ELECTRODE STRUCTURE FOR ELECTROCHEMICAL CELLS
DE2718307B2 (en) Process for improving the properties of a cation exchange membrane - US Pat
DE3881376T2 (en) DOUBLE DISASSEMBLY METHOD OF A NEUTRAL SALT.
Kravets et al. Fabrication and electrochemical properties of polymer bilayered membranes
DE19819902A1 (en) Production of conducting polymer film, used in e.g. solar cell and sensor
US20230119424A1 (en) Anion exchange membrane and method for producing same
DE4220171C2 (en)
DE69306816T2 (en) MEMBRANE ELECTRODE STRUCTURE FOR ELECTROCHEMICAL CELLS
JP2016193407A (en) Ion exchange membrane for radioactive substance concentrator
EP1020489B1 (en) Polymer electrolyte membrane, especially for methanol-fuel cells and process for their production
Omichi et al. Electrical and other properties of mutual radiation‐induced methacrylic acid grafted polyethylene films

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
8105 Search report available
8139 Disposal/non-payment of the annual fee