DE19801575A1 - Preparative chromatographic separation, e.g. of enantiomers - Google Patents

Preparative chromatographic separation, e.g. of enantiomers

Info

Publication number
DE19801575A1
DE19801575A1 DE1998101575 DE19801575A DE19801575A1 DE 19801575 A1 DE19801575 A1 DE 19801575A1 DE 1998101575 DE1998101575 DE 1998101575 DE 19801575 A DE19801575 A DE 19801575A DE 19801575 A1 DE19801575 A1 DE 19801575A1
Authority
DE
Germany
Prior art keywords
separation
sorbent
monolithic
sorbents
chromatographic separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1998101575
Other languages
German (de)
Inventor
Karin Dr Cabrera
Olivier Ludemann-Hombourger
Michael Dr Schulte
Dieter Lubda
Andreas Dr Meudt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to DE1998101575 priority Critical patent/DE19801575A1/en
Priority to DE59814468T priority patent/DE59814468D1/en
Priority to JP50369899A priority patent/JP2002505006A/en
Priority to US09/445,585 priority patent/US6398962B1/en
Priority to PCT/EP1998/003546 priority patent/WO1998058253A1/en
Priority to AT98933607T priority patent/ATE478732T1/en
Priority to EP98933607A priority patent/EP0991940B1/en
Publication of DE19801575A1 publication Critical patent/DE19801575A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3833Chiral chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/287Non-polar phases; Reversed phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/29Chiral phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3225Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating involving a post-treatment of the coated or impregnated product
    • B01J20/3227Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating involving a post-treatment of the coated or impregnated product by end-capping, i.e. with or after the introduction of functional or ligand groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3251Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3253Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure not containing any of the heteroatoms nitrogen, oxygen or sulfur, e.g. aromatic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3255Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. heterocyclic or heteroaromatic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3263Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. an heterocyclic or heteroaromatic structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/52Sorbents specially adapted for preparative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N2030/524Physical parameters structural properties
    • G01N2030/528Monolithic sorbent material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

Preparative chromatographic separation of at least two substances, by a continuous or batch process, is effected using a monolithic sorbent (I) based on a shaped article of silicon dioxide, having macropores of diameter 2-20 mu m and meso-pores having a diameter of 2-100 nm (both median values).

Description

Die Erfindung betrifft die Verwendung von monolithischen Sorbentien, insbesondere solche, die Separationseffektoren enthalten, für präparative chromatographische Trennverfahren, sowie Verfahren zur präparativen chromatographischen Trennung mindestens zweier Substanzen unter Verwendung monolithischer Sorbentien.The invention relates to the use of monolithic sorbents, especially those containing separation effectors for preparative chromatographic separation processes, as well as processes for preparative chromatographic separation of at least two substances below Use of monolithic sorbents.

Das Ziel bei präparativen chromatographischen Trennverfahren ist die Isolierung der aufgereinigten Substanz. Im Gegensatz dazu sind analy­ tische chromatographische Trennverfahren auf hohe Selektivität bei geringer Bandenbreite ausgerichtet. Analytische Verfahren dienen nicht zur Isolierung der Substanz, allenfalls schließen sich zusätzliche Analysen­ verfahren (z. B. Massenspektrometrie, UV/VIS-Spektrometrie) dem Trenn­ verfahren an. Für präparative chromatographische Trennverfahren ist der optimale Kompromiß zwischen chromatographischer Auflösung und Produktivität wesentlich.The goal in preparative chromatographic separation processes is Isolation of the purified substance. In contrast, analy table chromatographic separation processes for high selectivity narrow band width aligned. Analytical methods are not used to isolate the substance, at most additional analyzes will follow procedure (e.g. mass spectrometry, UV / VIS spectrometry) the separation proceed on. For preparative chromatographic separation processes the optimal compromise between chromatographic resolution and Productivity essential.

Für die Wirtschaftlichkeit von präparativen Stofftrennungen sind die Erzielung hoher Flußraten, kurzer Elutionszeiten und die Einhaltung moderater Betriebsdrücke wesentliche Faktoren. Die Trennleistung einer chromatographischen Säule wird durch die Bodenhöhe (bzw. die Bodenzahl pro Meter) gekennzeichnet. Die Zusammenhänge mit Strömungs- und Diffusionsvorgängen wird durch die van Deemter Gleichung beschrieben. Vergrößert man den Durchmesser der Sorbenspartikel, so verringert sich die Bodenzahl und es muß die Säulenlänge vergrößert werden, um die Trennleistung nicht zu verringern. Wird der Durchmesser der Sorbenspartikel vergrößert, so wird die Bodenzahl in stärkerem Maße abhängig von der Flußrate. Somit ist in vielen Fällen die erreichbare chromatographische Trenn­ leistung im hohen Maße abhängig von der gewählten Flußrate (steile H(u)-Kurve). Die genannten Zusammenhänge sind dem Fachmann grundsätzlich bekannt und in Handbüchern wie z. B. "Handbuch der HPLC" (K.K. Unger, ed.; GIT-Verlag, Darmstadt, DE) beschrieben. Im Gegensatz dazu wurde festgestellt, daß bei der erfindungs­ gemäßen Verwendung von monolithischen Sorbentien der Poren­ durchmesser der Makroporen variiert werden kann, ohne daß die Dimension der zwischen den Makroporen befindlichen Skeleton­ phase variiert werden muß. Dadurch kann der Druckabfall durch Wahl eines Sorbens mit größeren Makroporen verringert werden während die erhöhte Flußrate die Trennleistung kaum beeinflußt.For the economy of preparative separations are the Achieving high flow rates, short elution times and compliance moderate operating pressures essential factors. The separation performance a chromatographic column is determined by the floor height (or the number of trays per meter). The connections with Flow and diffusion processes are carried out by the van Deemter Equation described. If you increase the diameter of the Sorbent particles, the number of trays is reduced and it must be Column length can be increased in order not to reduce the separation performance reduce. If the diameter of the sorbent particles is increased, the number of trays becomes more dependent on the flow rate. In many cases this is the achievable chromatographic separation performance to a large extent depending on the selected flow rate (steep  H (u) curve). The relationships mentioned are known to the person skilled in the art generally known and in manuals such. B. "Handbook of HPLC "(K.K. Unger, ed .; GIT-Verlag, Darmstadt, DE). In contrast, it was found that the invention according to the use of monolithic sorbents in the pores diameter of the macropores can be varied without the Dimension of the skeleton located between the macropores phase must be varied. This can cause the pressure drop through Selection of a sorbent with larger macropores can be reduced while the increased flow rate hardly affects the separation performance.

Bei präparativen Stofftrennungen haben Gegenstromverfahren an Bedeutung gewonnen. Da es technisch nur sehr schwer möglich ist, eine tatsächliche Bewegung einer stationären Phase zu realisieren, wird die Bewegung der stationären Phase simuliert. Dazu wird das gesamte Säulenbett in zyklisch hintereinandergeschaltete Einzel­ säulen unterteilt. Die Gesamtzahl der Säulen ist typischerweise ein Vielfaches von vier, da ein solches System vier chromatographische Zonen besitzt. Nach einer definierten Zeit werden die Leitungen um­ geschaltet, wodurch eine Bewegung des Säulenbettes in der entge­ gengesetzten Richtung simuliert wird. Für das kontinuierliche Ver­ fahren der "simulated moving bed"- Chromatographie (SMB-Chroma­ tographie) werden üblicherweise als Trennmaterialien partikuläre Sorbentien verwendet. Die dabei verwendeten Säulenpackungen lassen keine optimalen Flußraten zu, da der Betriebsdruck bei partikulären Trägern sehr hoch ist. Auch ist die mechanische Stabilität der partikulären Sorbensbetten nicht sehr gut. Weiterhin ist es für die SMB-Chromato­ graphie notwendig, eine Reihe chromatographischer Säulen (typischer­ weise bis zu 24) mit möglichst gleichen Eigenschaften bereitzustellen. Dies ist bei partikulären Sorbensbetten nur mit großem Aufwand beim Packen der Säulen und bei der Auswahl der gepackten Säulen realisier­ bar. Counter-current processes are used for preparative separations Gained meaning. Since it’s very difficult technically, to realize an actual movement of a stationary phase, the movement of the stationary phase is simulated. This will be Entire column bed in cyclically arranged single columns divided. The total number of columns is typically one Multiple of four, since such a system has four chromatographic Owns zones. After a defined time, the lines are switched switched, causing movement of the column bed in the opposite opposite direction is simulated. For continuous ver driving the "simulated moving bed" chromatography (SMB-Chroma topography) are usually particulate as separating materials Sorbents used. Leave the column packs used no optimal flow rates because the operating pressure at particulate Porters is very high. The mechanical stability is also particulate Sorbent beds are not very good. It is also for the SMB Chromato graphic necessary, a series of chromatographic columns (typical wise up to 24) with the same properties as possible. With particulate sorbent beds, this is very difficult Packing the pillars and realizing when choosing the packed pillars bar.  

Aufgabe der Erfindung ist es, chromatographische präparative Trenn­ verfahren, insbesondere für die SMB-Verfahren bereitzustellen, die bei moderatem Betriebsdruck hohe Flußraten aufweisen.The object of the invention is chromatographic preparative separation procedure, in particular for the SMB procedures, which are available at moderate operating pressure have high flow rates.

Es wurde gefunden, daß monolithische Sorbentien für Trennverfahren mit hohen Flußraten eingesetzt werden können; somit kann ein höherer Durch­ satz pro Zeiteinheit, d. h. eine verbesserte Produktivität erzielt werden. Die nach erfindungsgemäßen Trennverfahren unter Verwendung von mono­ lithischen Sorbentien erreichbare Produktivität ist typischerweise um eine Größenordnung höher als bei Trennverfahren unter Verwendung von partikulären Sorbentien.It has been found that monolithic sorbents are used for separation processes high flow rates can be used; thus a higher through rate per unit of time, d. H. improved productivity can be achieved. The after separation processes according to the invention using mono productivity achievable with lithic sorbents is typically around one Order of magnitude higher than when using separation processes particulate sorbents.

Gegenstand der Erfindung sind Verfahren zur präparativen chromato­ graphischen Trennung mindestens zweier Substanzen, insbesondere nach dem SMB-Verfahren, wobei als stationäre Phase ein monolithisches Sorbens verwendet wird.The invention relates to methods for preparative chromato graphic separation of at least two substances, especially after the SMB process, with a monolithic as the stationary phase Sorbent is used.

Die Abb. 1 und 2 zeigen Trennungen von Toluol, 2- und 3-Nitro­ acetanilid an zwei unmodifizierten monolithischen Sorbentien mit unter­ schiedlicher Porenweite der Makroporen, hergestellt nach PCT/EP97/06 980; experimentelle Einzelheiten: siehe Beispiel 1. Abb. 3 zeigt die Trennung von Dimethylphthalat und Dibutylphthalat auf einem nach üblichen Verfahren RP 18 endcapped-modifizierten porösen Formkörper; experimentelle Einzelheiten: siehe Beispiel 2. Abb. 4 zeigt die Trennung einer Mischung von Xylose, Fructose, Glucose und Saccharose auf dem mit Aminopropyltrimethoxysilan modifizierten partikulären Sorbens; experimentelle Einzelheiten: siehe Beispiel 3. Abb. 5 zeigt die Trennung der Enantiomeren von 2,2,2-Trifluor-1-anthrylethanol auf dem nach Beispiel 4 hergestellten chiralen monolithischen Sorbens (Pirkle­ type); experimentelle Einzelheiten: siehe Beispiel 4. Abb. 6 zeigt die Trennung der Enantiomeren von Chlorthalidon auf dem nach Beispiel 5 hergestellten chiralen monolithischen Sorbens; experimentelle Einzel­ heiten: siehe Beispiel 5. Fig. 1 and 2 show separations of toluene, 2- and 3-nitro acetanilide on two unmodified monolithic sorbents with different pore sizes of the macropores, produced according to PCT / EP97 / 06 980; Experimental details: see Example 1. Fig. 3 shows the separation of dimethyl phthalate and dibutyl phthalate on a porous molded body which has been end-capped by conventional RP 18 processes; Experimental details: see Example 2. Fig. 4 shows the separation of a mixture of xylose, fructose, glucose and sucrose on the particulate sorbent modified with aminopropyltrimethoxysilane; Experimental details: see Example 3. Fig. 5 shows the separation of the enantiomers of 2,2,2-trifluoro-1-anthrylethanol on the chiral monolithic sorbent (Pirkle type) prepared according to Example 4; Experimental details: see Example 4. Fig. 6 shows the separation of the enantiomers of chlorothalidone on the chiral monolithic sorbent prepared according to Example 5; Experimental details: see example 5.

Monolithische Sorbentien sind grundsätzlich aus der Literatur bekannt dazu gehören vor allem poröse keramische Formkörper, wie sie in WO 94/19687 und in WO 95/03256 offenbart sind. Besonders bevorzugt sind monolithische Sorbentien auf der Grundlage von porösen Form­ körpern, die untereinander verbundene Makroporen sowie Mesoporen in den Wänden der Makroporen aufweisen, wobei der Durchmesser der Makroporen einen Medianwert größer als 0,1 µm aufweist, und wobei der Durchmesser der Mesoporen einen Medianwert von 2 und 100 nm auf­ weist. Insbesondere sind monolithische Sorbentien auf der Grundlage von porösen Formkörpern, deren Makroporen Durchmesser zwischen 0,3 und 20 µm, insbesondere zwischen 2 und 15 µm aufweisen (jeweils Median­ werte), und deren Mesoporen Durchmesser zwischen 2 und 100 nm (Medianwerte) aufweisen. Poröse Formkörper mit derartig erweiterten Makroporen sind insbesondere nach Verfahren zugänglich, wie sie in der Patentanmeldung PCT/EP97/06 980 offenbart sind.Monolithic sorbents are generally known from the literature this includes, above all, porous ceramic moldings, as described in WO 94/19687 and WO 95/03256. Particularly preferred are monolithic sorbents based on porous form bodies, the interconnected macropores and mesopores in have the walls of the macropores, the diameter of the Macropores has a median value greater than 0.1 µm, and the Diameter of the mesopores have a median of 2 and 100 nm points. In particular, monolithic sorbents are based on porous shaped bodies whose macropores have a diameter between 0.3 and 20 µm, especially between 2 and 15 µm (each median values), and their mesopore diameter between 2 and 100 nm (Median values). Porous shaped bodies with such an enlarged Macropores are particularly accessible by methods such as those in the Patent application PCT / EP97 / 06 980 are disclosed.

Monolithische Sorbentien bestehen aus anorganischen Materialien, wie sie für partikuläre Sorbentien im Gebrauch sind. In vielen Fällen (z. B. SiO2) können diese Sorbentien ohne weiteres für chromatographische Trennun­ gen verwendet werden. Häufiger jedoch werden die Basisträger derivati­ siert, um die Trenneigenschaften zu verbessern; dabei werden zusätzliche Gruppierungen eingeführt, die unter der Bezeichnung Separationseffekto­ ren zusammengefaßt werden.Monolithic sorbents consist of inorganic materials as are used for particulate sorbents. In many cases (e.g. SiO 2 ) these sorbents can easily be used for chromatographic separations. However, the base supports are derivatized more frequently in order to improve the separation properties; additional groups are introduced, which are summarized under the name Separationseffekto ren.

Separationseffektoren und Verfahren zu ihrer Einführung in den Basisträger sind dem Fachmann grundsätzlich bekannt. Beispiele für Reaktionen, mit denen Separationseffektoren eingeführt werden können, sind:
Separation effectors and methods for their introduction into the base support are known in principle to the person skilled in the art. Examples of reactions with which separation effectors can be introduced are:

  • a) Die Derivatisierung mit Silanderivaten der Formel I
    SiXnR1 (3-n)R2 (I)
    worin
    X eine reaktive Gruppe, wie z. B. Methoxy, Ethoxy oder Halogen, R1 C1-C5-Alkyl,
    n 1, 2 oder 3
    bedeuten und
    R2 eine der im folgenden angegebene Bedeutungen besitzt:
    • a1) unsubstituiertes oder substituiertes Alkyl oder Aryl, wie z. B. n-Octadecyl, n-Octyl, Benzyl- oder Cyanopropyl;
    • a2) anionische oder saure Reste, wie z. B. Carboxypropyl;
    • a3) kationische oder basische Reste, wie z. B. Aminopropyl, Diethylaminopropyl oder Triethylammoniumpropyl;
    • a4) hydrophile Reste, wie z. B. (2,3-Dihydroxypropyl)-oxypropyl;
    • a5) bindungsfähige aktivierte Reste, wie z. B. (2,3-Epoxypropyl)-oxypropyl.
    a) The derivatization with silane derivatives of the formula I.
    SiX n R 1 (3-n) R 2 (I)
    wherein
    X is a reactive group, such as. B. methoxy, ethoxy or halogen, R 1 C 1 -C 5 alkyl,
    n 1, 2 or 3
    mean and
    R 2 has one of the meanings given below:
    • a1) unsubstituted or substituted alkyl or aryl, such as. B. n-octadecyl, n-octyl, benzyl or cyanopropyl;
    • a2) anionic or acidic residues, such as. B. carboxypropyl;
    • a3) cationic or basic radicals, such as. B. aminopropyl, diethylaminopropyl or triethylammonium propyl;
    • a4) hydrophilic residues, such as. B. (2,3-dihydroxypropyl) oxypropyl;
    • a5) bindable activated residues, such as. B. (2,3-epoxypropyl) oxypropyl.
  • b) Die Adsorption oder chemische Bindung von Polymeren wie Poly­ butadien, Siloxanen, Polymeren auf der Grundlage von Styroll Divinyl­ benzol, von (Meth)acrylsäurederivaten oder von anderen Vinylverbin­ dungen, sowie von Peptiden, Proteinen, Polysacchariden und Poly­ saccharidderivaten an dem Basisträger;b) The adsorption or chemical binding of polymers such as poly butadiene, siloxanes, polymers based on Styroll Divinyl benzene, (meth) acrylic acid derivatives or other vinyl compounds and peptides, proteins, polysaccharides and poly saccharide derivatives on the base support;
  • c) Die chemische Bindung von unter b) genannten Polymeren über die unter a) genannten Derivate; dazu gehören Pfropfpolymerisate von Poly(meth)acrylsäurederivaten auf diolmodifiziertem Kieselgel nach EP-B-0 337 144. c) The chemical bonding of the polymers mentioned under b) via the derivatives mentioned under a); these include graft polymers of Poly (meth) acrylic acid derivatives on diol-modified silica gel EP-B-0 337 144.  
  • d) Die Adsorption oder chemische Bindung von chiralen Phasen, wie z. B. von Aminosäurederivaten, Peptiden oder Proteinen, oder von Cyclo­ dextrinen, Polysacchariden oder Polysaccharidderivaten.d) The adsorption or chemical binding of chiral phases, such as. B. of amino acid derivatives, peptides or proteins, or of cyclo dextrins, polysaccharides or polysaccharide derivatives.

Weitere gebräuchliche Derivatisierungsmöglichkeiten und Derivatisierungs­ verfahren sind dem Fachmann bekannt und in gängigen Handbüchern wie Unger, K.K. (ed) Porous Silica, Elsevier Scientific Publishing Company (1979) oder Unger, K.K. Packings and Stationary Phases in Chromatographic Techniques, Marcel Dekker (1990) beschrieben.Other common derivatization options and derivatization procedures are known to the person skilled in the art and are known in common manuals such as Unger, K.K. (ed) Porous Silica, Elsevier Scientific Publishing Company (1979) or Unger, K.K. Packings and Stationary Phases in Chromatographic Techniques, Marcel Dekker (1990).

Weitere Beispiele für verschiedene Separationseffektoren und für Verfah­ ren, die Separationseffektoren in monolithische Sorbentien einzuführen sind in den folgenden Druckschriften genannt:
Further examples of different separation effectors and of processes for introducing the separation effectors into monolithic sorbents are given in the following publications:

  • a) Aus DE 38 11 042 sind unter anderem Monomere bekannt, die zur Her­ stellung von Ionenaustauschern geeignet sind; dazu gehören beispiels­ weise Acrylsäure, N-(Sulfoethyl)-acrylamid, 2-Acrylamido-2-methyl­ propansulfonsäure, N,N-Dimethylaminoethyl-acrylamid, N,N-Diethyl­ aminoethyl-acrylamid, sowie Trimethylammoniumethyl-acrylamid.
    Andere in dieser Druckschrift genannte Monomere erlauben die Bindung von Affinitätsliganden oder von Enzymen, oder eignen sich für reversed phase Chromatographie: dazu gehören beispielsweise Acrylsäure, Acrylamid, Allylamin oder Acrylnitril.
    a) DE 38 11 042, inter alia, discloses monomers which are suitable for the preparation of ion exchangers; These include, for example, acrylic acid, N- (sulfoethyl) acrylamide, 2-acrylamido-2-methyl propanesulfonic acid, N, N-dimethylaminoethyl-acrylamide, N, N-diethylaminoethyl-acrylamide, and trimethylammoniumethyl-acrylamide.
    Other monomers mentioned in this publication allow the binding of affinity ligands or enzymes, or are suitable for reversed phase chromatography: these include, for example, acrylic acid, acrylamide, allylamine or acrylonitrile.
  • b) Aus DE 43 10 964 sind Monomere bekannt, die einen Oxiranring, einen Azlactonring oder eine Gruppierung enthalten, die in einen Azlactonring umgesetzt werden kann. Polymere, die derartige Monomere enthalten, sind besonders gut für die Bindung von Affinitätsliganden oder von Enzymen geeignet. Affinitätsliganden sind beispielhaft in DE 43 10 964 offenbart.
    Weiterhin können die Epoxidgruppen in derartigen Polymeren in vorteil­ hafter Weise weiter umgesetzt werden, wodurch Ionenaustauscher thiophile Sorbentien oder Sorbentien für die Metallchelat- oder die hydrophobe Chromatographie bereitgestellt werden. Dabei werden bei­ spielsweise Phosphorsäure, Ammoniak, Diethylamin, Trimethylamin, schweflige Säure oder auch Komplexbildner wie Iminodiessigsäure an den Oxiranring addiert.
    Die Herstellung von thiophilen Sorbentien und von Sorbentien für die Metallchelatchromatographie ist in DE 43 10 964 offenbart.
    In DE 43 33 674 und in DE 43 33 821 sind derartige Umsetzungen, mit derer Hilfe Ionenaustauscher bereitgestellt werden können, offenbart.
    In DE 43 23 913 werden Sorbentien für die hydrophobe Interaktions­ chromatographie beschrieben.
    b) DE 43 10 964 discloses monomers which contain an oxirane ring, an azlactone ring or a group which can be converted into an azlactone ring. Polymers containing such monomers are particularly well suited for binding affinity ligands or enzymes. Affinity ligands are disclosed by way of example in DE 43 10 964.
    Furthermore, the epoxide groups can be reacted further in such polymers in an advantageous manner, whereby ion exchangers thiophilic sorbents or sorbents for metal chelate or hydrophobic chromatography are provided. For example, phosphoric acid, ammonia, diethylamine, trimethylamine, sulfurous acid or complexing agents such as iminodiacetic acid are added to the oxirane ring.
    The production of thiophilic sorbents and of sorbents for metal chelate chromatography is disclosed in DE 43 10 964.
    DE 43 33 674 and DE 43 33 821 disclose such reactions which can be used to provide ion exchangers.
    DE 43 23 913 describes sorbents for hydrophobic interaction chromatography.

Chirale Trennmaterialien für die Trennung von Enantiomeren sind in großer Anzahl im Stand der Technik bekannt. Es handelt sich ausschließ­ lich um partikuläre Trennmaterialien. Die bekannten chiralen Trenn­ materialien bestehen entweder aus der chiralen Verbindung selbst (zum Beispiel Cellulosetriacetat) oder aber ein chiraler Separationseffektor ist auf einen Träger aufgezogen oder chemisch an einen Träger gebunden (z. B. chemisch gebundene Aminosäurederivate). Außerdem ist es möglich, chirale Separationseffektoren, die mit einer stationären Phase in Wechselwirkung treten, im Elutionsmittel zuzusetzen (dynamische Belegung mit z. B. Cyclodextrinen).Chiral separation materials for the separation of enantiomers are in a large number are known in the prior art. It is exclusive around particulate separation materials. The well-known chiral separation materials either consist of the chiral connection itself (for Example is cellulose triacetate) or a chiral separation effector mounted on a support or chemically bound to a support (e.g. chemically bound amino acid derivatives). Besides, it is possible to use chiral separation effectors with a stationary phase Interact, add in the eluent (dynamic Assignment with z. B. cyclodextrins).

Chirale Separationseffektoren sind in großer Zahl bekannt; die wichtigsten Gruppen bekannter chiraler Separationseffektoren sind:
Chiral separation effectors are known in large numbers; the most important groups of known chiral separation effectors are:

  • a) Aminosäuren und ihre Derivate, z. B. L-Phenylalanin, oder D-Phenyl­ alanin, Ester oder Amide von Aminosäuren oder acylierte Aminosäuren oder Oligopeptide; a) amino acids and their derivatives, e.g. B. L-phenylalanine, or D-phenyl alanine, esters or amides of amino acids or acylated amino acids or oligopeptides;  
  • b) natürliche und synthetische Polymere mit einer Asymmetrie oder Dis­ symmetrie in der Hauptkette; dazu gehören Proteine (z. B. saures α1- Glycoprotein, Rinderserumalbumin, Cellulase; siehe J. Chrom. 264, Seiten 6368 (1983), J. Chrom. 269, Seiten 71-80 (1983), WO 91/12221), Cellulose und Cellulosederivate, sowie andere Polysaccharide und deren Derivate (z. B. Cellulosetribenzoat, Cellulosetribenzylether, Cellulose-trisphenylcarbamat, Cellulose-tris-3-chlorobenzoat, Amylose­ tris-(3,5-dimethylphenylcarbamat), Cellulose-tris-(3,5-dimethylbenzoat), Cellulose-tris-(3,5-dimethylphenylcarbamat); siehe EP 0 147 804, EP 0 155 637, EP 0 718 625);b) natural and synthetic polymers with asymmetry or dis symmetry in the main chain; these include proteins (e.g. acidic α 1 -glycoprotein, bovine serum albumin, cellulase; see J. Chrom. 264, pages 6368 (1983), J. Chrom. 269, pages 71-80 (1983), WO 91/12221) , Cellulose and cellulose derivatives, as well as other polysaccharides and their derivatives (e.g. cellulose tribenzoate, cellulose tribenzyl ether, cellulose trisphenyl carbamate, cellulose tris-3-chlorobenzoate, amylose tris- (3,5-dimethylphenyl carbamate), cellulose tris- (3, 5-dimethylbenzoate), cellulose tris (3,5-dimethylphenyl carbamate); see EP 0 147 804, EP 0 155 637, EP 0 718 625);
  • c) Cyclodextrine und seine Derivate (z. B. J. High Resol.Chrom. & Chromat. Comm. 3, Seiten 147-148(1984); EP 0 407 412; EP 0 445 604);c) Cyclodextrins and their derivatives (e.g. J. High Resol. Chrom. & Chromat. Comm. 3, pp. 147-148 (1984); EP 0 407 412; EP 0 445 604);
  • d) Polymere mit Asymmetriezentren in der Seitenkette (z. B. EP 0 249 078; EP 0 282 770; EP 0 448 823).d) polymers with asymmetry centers in the side chain (e.g. EP 0 249 078; EP 0 282 770; EP 0 448 823).
  • e) Polymere, die Hohlräume aufweisen, wobei die Hohlräume ein Abdruck des Analyten darstellen (imprinted polymers; WO 93/09 075).e) polymers which have cavities, the cavities being an impression represent the analyte (imprinted polymers; WO 93/09 075).

Die enantiomerenrein vorliegenden chiralen Separationseffektoren können an einen geeigneten Basisträger, gegebenenfalls nach Derivatisierung adsorbiert werden. Es ist auch möglich, die enantiomerenrein vorliegen­ den chiralen Separationseffektoren, gegebenenfalls nach Einführung geeigneter funktioneller Gruppen, an den Basisträger zu binden. Für diesen Zweck können auch bifunktionelle Reagenzien verwendet werden. Für diese Verfahrensvarianten geeignete Umsetzungen sind dem Fachmann bekannt und sind in Handbüchern beschrieben.The enantiomerically pure chiral separation effectors can to a suitable base carrier, if necessary after derivatization be adsorbed. It is also possible to have the enantiomerically pure the chiral separation effectors, if necessary after introduction suitable functional groups to bind to the base support. For bifunctional reagents can also be used for this purpose. Suitable implementations for these process variants are Known to those skilled in the art and are described in manuals.

In den Beispielen sind erfindungsgemäß geeignete Formkörper mit chiralen Separationseffektoren genannt.In the examples, moldings suitable according to the invention are also included called chiral separation effectors.

Weitere Einzelheiten der Herstellung der verschiedenen Sorbentien und deren Verwendung können den oben genannten Druckschriften entnom­ men werden; die diesbezügliche Offenbarung dieser Druckschriften ist durch Bezugnahme in die vorliegende Anmeldung eingeführt.Further details of the manufacture of the various sorbents and their use can be found in the above-mentioned documents  men will; the relevant disclosure of these documents is incorporated by reference into the present application.

Die oben genannten monolithischen Sorbentien können in Vorrichtungen zur Stofftrennung enthalten sein, die sich im wesentlichen wie chromato­ graphische Säulen handhaben lassen. Dabei können die bekannten Trennverfahren angewandt werden: batch-Verfahren, kontinuierliche Verfahren, wie z. B. das simulated moving bed (SMB) Verfahren, oder andere Gegenstromverfahren, wie sie beispielsweise in US 5,630,943 offenbart werden.The above monolithic sorbents can be used in devices be included for separation, which is essentially like chromato Have graphic columns handled. The known Separation processes are used: batch process, continuous Methods such as B. the simulated moving bed (SMB) method, or other countercurrent processes, as described, for example, in US Pat. No. 5,630,943 be disclosed.

Es wurde gefunden, daß bei Verwendung dieser bevorzugten Sorbentien die Flußgeschwindigkeit über einen weiten Bereich variiert werden kann, ohne daß die Trenneigenschaften dabei verschlechtert werden. Unter Ausnutzung dieser Eigenschaft ist es möglich, die Flußgeschwindigkeit an das Elutionsprofil anzupassen, ohne daß die Trennleistung verringert wird Dadurch kann der Zeitbedarf der Trennung stark reduziert werden. Ins­ besondere für präparative Trennungen ergeben sich somit große Vorteile. Für die Anwendung des SMB-Verfahrens ist auch der geringe Druckabfall bei hoher Flußgeschwindigkeit relevant, da bei diesem Verfahren eine Anzahl Säulen hintereinander geschaltet werden. It has been found that using these preferred sorbents the flow rate can be varied over a wide range, without the separation properties being impaired. Under Taking advantage of this property, it is possible to control the flow rate adjust the elution profile without reducing the separation efficiency This can greatly reduce the time required for the separation. Ins There are therefore great advantages especially for preparative separations. The low pressure drop is also important for the application of the SMB process relevant at high flow rates, since a Number of columns can be connected in series.  

BeispieleExamples

Die folgende Beispiele soll die Erfindung verdeutlichen; sie bedeuten keine Einschränkung des Erfindungsgedankens.The following examples are intended to illustrate the invention; they mean no limitation of the inventive concept.

Beispiel 1example 1 Trennung von Toluol, 2-Nitroacetanilid und 3-Nitroacet­ anilid an monolithischen Sorbentien mit verschiedenen Durchmesser der MakroporenSeparation of toluene, 2-nitroacetanilide and 3-nitroacet anilide on monolithic sorbents with different Macropores diameter

Poröse monolithische Formkörper aus SiO2 (83.7,2 mm) mit unterschied­ lichen Durchmesser der Makroporen (1,8 und 6 µm) wurden nach PCT/EP97/06 980 hergestellt. Eine Lösung von Toluol, 2- und 3-Nitro­ acetanilid wird aufgetragen und in Heptan/Dioxan 80 : 20 als Laufmittel getrennt (Flußrate: 8 ml/min; UV-Detektion).Porous monolithic molded articles made of SiO 2 (83.7.2 mm) with different diameters of the macropores (1.8 and 6 µm) were produced in accordance with PCT / EP97 / 06 980. A solution of toluene, 2- and 3-nitro acetanilide is applied and separated into eluent in heptane / dioxane 80:20 (flow rate: 8 ml / min; UV detection).

Die Elutionsdiagramme sind in den Abb. 1 (1,8 µm Porenweite) und 2 (6 µm Porenweite) dargestellt.The elution diagrams are shown in Fig. 1 (1.8 µm pore size) and 2 (6 µm pore size).

Beispiel 2Example 2 Trennung an einem mit einer C18-reversed phase modifizierten monolithischen SorbensSeparation on a monolithic sorbent modified with a C 18 reversed phase

Aus einem porösen Formkörper (83.7,2 mm; 1,5 µm Porenweite) bestehend aus SiO2 hergestellt nach EP 0 710 219 wird nach Standard­ verfahren durch Umsetzung mit einem Silanderivat und anschließender endcapping Reaktion ein RP-18 modifiziertes monolithisches Trenn­ material hergestellt. Eine Lösung von Dimethylphthalat und Dibutyl­ phthalat wird aufgetragen und in Methanol/Wasser 90 : 10 als Laufmittel getrennt (Flußrate 4 ml/min; UV-Detektion). From a porous molded body (83.7.2 mm; 1.5 µm pore size) consisting of SiO 2 produced according to EP 0 710 219, an RP-18 modified monolithic separating material is produced according to the standard procedure by reaction with a silane derivative and subsequent endcapping reaction. A solution of dimethyl phthalate and dibutyl phthalate is applied and separated in methanol / water 90:10 as eluent (flow rate 4 ml / min; UV detection).

Das Elutionsdiagramm ist in Abb. 3 dargestellt.The elution diagram is shown in Fig. 3.

Beispiel 3Example 3 Trennung an einem mit Aminogruppen modifizierten monolithischen SorbensSeparation on a modified with amino groups monolithic sorbent

  • 1) Herstellung: Ein poröser Formkörper (83.7,2 mm, 1,8 µm Porenweite), hergestellt nach EP 0710219, wird nach Standardverfahren durch Hindurchpumpen von einer Lösung von Aminopropyltrimethoxysilan in Toluol zu einem mit Aminogruppen modifizierten Sorbens umgesetzt.1) Production: A porous molded body (83.7.2 mm, 1.8 µm pore size), manufactured according to EP 0710219, is manufactured using standard processes Pumping through a solution of aminopropyltrimethoxysilane in Toluene converted to a sorbent modified with amino groups.
  • 2) Trennbeispiel: Eine Lösung von Xylose, Fructose, Glucose und Saccharose werden auf dem auf dem mit Aminopropyltrimethoxysilan modifizierten Sorbens aufgetragen und mit Acetonitril/Wasser 80 : 20 als Flußmittel aufgetrennt (Flußrate 4 ml/min; RI-Detektion).2) Separation example: A solution of xylose, fructose, glucose and Sucrose are based on that with aminopropyltrimethoxysilane modified sorbent applied and with acetonitrile / water 80:20 as Flux separated (flow rate 4 ml / min; RI detection).

Das Elutionsdiagramm ist in Abb. 4 dargestellt.The elution diagram is shown in Fig. 4.

Beispiel 4Example 4 Trennung an einem mit (R)-(-)-N-(2,4-Dinitrobenzoyl)- phenylglycin modifizierten monolithischen Sorbens (Pirkle-type modifiziertes chirales Sorbens)Separation on a with (R) - (-) - N- (2,4-dinitrobenzoyl) - phenylglycine modified monolithic sorbent (Pirkle-type modified chiral sorbent)

  • 1) Herstellung: Der nach Beispiel 3 hergestellte mit Aminogruppen derivatisierte poröse Formkörper wird weiter umgesetzt, indem eine Lö­ sung von (R)-(-)-N-(2,4-Dinitrobenzoyl)phenylglycin und N-Ethoxycarbonyl- 2-ethoxy-1,2-dihydrochinolin (EEDQ) in Toluol durchgepumpt wird. Es wird ein chirale Sorbens erhalten.1) Production: The one prepared according to Example 3 with amino groups derivatized porous moldings are further implemented by a Lö solution of (R) - (-) - N- (2,4-dinitrobenzoyl) phenylglycine and N-ethoxycarbonyl- 2-ethoxy-1,2-dihydroquinoline (EEDQ) is pumped through in toluene. It will received a chiral sorbent.
  • 2) Trennbeispiel: Die Enantiomeren von 2,2,2-Trifluor-1-anthrylethanol werden auf dem wie oben beschrieben hergestellten chiralen Pirkle-type Sorbens in Heptan/i-Propanol 99,5 : 0,5 getrennt (Flußrate: 8 ml/min; UV- Detektion).2) Separation example: The enantiomers of 2,2,2-trifluoro-1-anthrylethanol are made on the chiral pirkle-type produced as described above  Sorbent separated in heptane / i-propanol 99.5: 0.5 (flow rate: 8 ml / min; UV Detection).

Das Elutionsdiagramm ist in Abb. 5 dargestellt.The elution diagram is shown in Fig. 5.

Beispiel 5Example 5 Trennung an einem mit N-Acryloyl-L-phenylalänin­ ethylester als Monomereinheiten modifizierten monolithischen SorbensSeparation on one with N-acryloyl-L-phenylalanine modified ethyl ester as monomer units monolithic sorbent

  • 1) Herstellung: Ein poröser Formkörper (83.7,2 mm; 1,7 µm Porenweite), hergestellt nach EP 0 710 219, wird durch Hindurchpumpen von a) einer Lösung von 3-Glycidyloxypropyltrimethoxysilan in Toluol und b) einer Lösung von N-Acryloyl-L-phenylalaninethylester in Toluol unter Zusatz von Azoisobutyronitril (AlBN) zu einem chiral modifizierten Sorbens umgesetzt.
    Es wird ein modifizierter monolithischer Formkörper erhalten, an dem als Separationseffektoren kovalent gebundene L-Phenylalaninethylester- Gruppen vorliegen.
    1) Production: A porous molded body (83.7.2 mm; 1.7 µm pore size), produced according to EP 0 710 219, is pumped through by a) a solution of 3-glycidyloxypropyltrimethoxysilane in toluene and b) a solution of N-acryloyl -L-phenylalanine ethyl ester in toluene with the addition of azoisobutyronitrile (AlBN) converted to a chirally modified sorbent.
    A modified monolithic shaped body is obtained, on which covalently bound L-phenylalanine ethyl ester groups are present as separation effectors.
  • 2) Trennbeispiel: Abb. 6 zeigt die Trennung der Enantiomeren von Chlorthalidon auf dem wie oben beschrieben hergestellten chiralen Sorbens (Bedingungen: Heptan/Dioxan 50 : 50; 4 ml/min; UV-Detektion).2) Separation example: Fig. 6 shows the separation of the enantiomers of chlorothalidone on the chiral sorbent prepared as described above (conditions: heptane / dioxane 50:50; 4 ml / min; UV detection).
VergleichsbeispielComparative example Vergleich der Trennung an einem partikulären Sorbens mit der Trennung an einem monolithischen SorbensComparison of the separation on a particulate Sorbent with the separation on a monolithic Sorbent

Die Produktivität eines LiChrospher® Si 100 15 µm Sorbens wird mit der eines monolithischen Sorbens hergestellt nach PCT/EP97/06 980 verglichen. Das monolithische Sorbens weist genau wie das handels­ übliche partikuläre Sorbens LiChrospher® Mesoporen mit 10 nm Poren­ weite auf. Die Partikelgröße des LiChrospher® Si100 beträgt 15 µm. Das partikuläre Sorbens weist eine Skeleton size von 1,5-2 µm und Makroporen von 6 µm auf.The productivity of a LiChrospher® Si 100 15 µm sorbent is increased with the of a monolithic sorbent manufactured according to PCT / EP97 / 06 980 compared. The monolithic sorbent shows just like the trade  usual particulate sorbent LiChrospher® mesopores with 10 nm pores widen. The particle size of the LiChrospher® Si100 is 15 µm. The particulate sorbent has a skeleton size of 1.5-2 µm and macropores from 6 µm.

Für das partikuläre Sorbens wurden folgende Kenndaten gefunden:
The following characteristic data were found for the particulate sorbent:

ΔP/L(bar/m) = 26540.u(m/sec)
H(m) = 0,03657.u(m/sec) + 5,5.10-5 für u < 2.10-3n/sec.
ΔP / L (bar / m) = 26540.u (m / sec)
H (m) = 0.03657.u (m / sec) + 5.5.10 -5 for u <2.10 -3 n / sec.

Für das monolithische Sorbens wurden folgende Kenndaten gefunden:
The following characteristic data were found for the monolithic sorbent:

ΔP/L(bar/m)=8500.u(m/sec)
H(m) = 0,00403.(m/sec) + 1,8.10-5 für u < 2.10-3m/sec.
ΔP / L (bar / m) = 8500.u (m / sec)
H (m) = 0.00403. (M / sec) + 1.8.10 -5 for u <2.10 -3 m / sec.

Die beste Produktivität ist erreicht, wenn man gerade bei der gewünschten Bodenzahl bei maximalem Druckabfall arbeitet. Die optimale Fließmittel­ geschwindigkeit und Säulenlänge sind dann:
The best productivity is achieved when you are working at the desired number of trays with maximum pressure drop. The optimal flow rate and column length are then:

Die Geschwindigkeit ist dann auf dem partikulären Sorbens 5,7mal größer. Die Produktivität (g/Tag) ist dann für denselben Säulendurchmesser vierfach erhöht. Da die erforderliche Säulenlänge kürzer ist, ist die relative Produktivität (g/Tag/L stationäre Phase) um den Faktor 10,5 erhöht.The speed is then 5.7 times greater on the particulate sorbent. The productivity (g / day) is then for the same column diameter increased fourfold. Since the required column length is shorter, the relative one is Productivity (g / day / L stationary phase) increased by a factor of 10.5.

Claims (3)

1. Verfahren zur präparativen chromatographischen Trennung mindestens zweier Substanzen, dadurch gekennzeichnet, daß die Stofftrennung unter Verwendung monolithischer Sorbentien erfolgt.1. A process for the preparative chromatographic separation of at least two substances, characterized in that the separation is carried out using monolithic sorbents. 2. Verfahren nach Anspruch 1, weiterhin dadurch gekennzeichnet, daß die chromatographische Trennung im batch-Verfahren ausgeführt wird.2. The method according to claim 1, further characterized in that the chromatographic separation is carried out in a batch process becomes. 3. Verfahren nach Anspruch 1, weiterhin dadurch gekennzeichnet, daß die chromatographische Trennung in einem kontinuierlichen Verfahren ausgeführt wird.3. The method according to claim 1, further characterized in that the chromatographic separation in a continuous Procedure is executed.
DE1998101575 1997-06-18 1998-01-19 Preparative chromatographic separation, e.g. of enantiomers Withdrawn DE19801575A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE1998101575 DE19801575A1 (en) 1998-01-19 1998-01-19 Preparative chromatographic separation, e.g. of enantiomers
DE59814468T DE59814468D1 (en) 1997-06-18 1998-06-12 USE OF MONOLITHIC SORBENTS FOR PREPARATIVE CHROMATOGRAPHIC SEPARATION METHODS
JP50369899A JP2002505006A (en) 1997-06-18 1998-06-12 Use of monolithic adsorbents for separation by preparative chromatography
US09/445,585 US6398962B1 (en) 1997-06-18 1998-06-12 Use of monolithic sorbents for preparative chromatographic separation
PCT/EP1998/003546 WO1998058253A1 (en) 1997-06-18 1998-06-12 Use of monolithic sorbents for preparative chromatographic separation
AT98933607T ATE478732T1 (en) 1997-06-18 1998-06-12 USE OF MONOLITHIC SORBENTS FOR PREPARATIVE CHROMATOGRAPHIC SEPARATION PROCESSES
EP98933607A EP0991940B1 (en) 1997-06-18 1998-06-12 Use of monolithic sorbents for preparative chromatographic separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1998101575 DE19801575A1 (en) 1998-01-19 1998-01-19 Preparative chromatographic separation, e.g. of enantiomers

Publications (1)

Publication Number Publication Date
DE19801575A1 true DE19801575A1 (en) 1999-07-22

Family

ID=7854864

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1998101575 Withdrawn DE19801575A1 (en) 1997-06-18 1998-01-19 Preparative chromatographic separation, e.g. of enantiomers

Country Status (1)

Country Link
DE (1) DE19801575A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1818675A1 (en) * 2004-11-29 2007-08-15 Daicel Chemical Industries, Ltd. Separating agent for optical isomer and separation column for optical isomers
CN100374858C (en) * 2006-03-30 2008-03-12 复旦大学 Method for simultanuously enriching desalting and appraising micro protein or polypeptide solution
CN100439918C (en) * 2006-06-29 2008-12-03 复旦大学 Method for enriching, desalting protein or polypeptide in minute quantities, and carrying out analysis directly
DE102018000650A1 (en) 2018-01-27 2019-08-01 Friedrich-Schiller-Universität Jena Method for the determination of impurities in polyalkylene ethers or polyalkyleneamines and its use

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1818675A1 (en) * 2004-11-29 2007-08-15 Daicel Chemical Industries, Ltd. Separating agent for optical isomer and separation column for optical isomers
EP1818675A4 (en) * 2004-11-29 2008-11-05 Daicel Chem Separating agent for optical isomer and separation column for optical isomers
CN101111765B (en) * 2004-11-29 2011-02-16 大赛璐化学工业株式会社 Separating agent for optical isomer and separation column for optical isomers
US8883001B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers
US8883002B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers
CN100374858C (en) * 2006-03-30 2008-03-12 复旦大学 Method for simultanuously enriching desalting and appraising micro protein or polypeptide solution
CN100439918C (en) * 2006-06-29 2008-12-03 复旦大学 Method for enriching, desalting protein or polypeptide in minute quantities, and carrying out analysis directly
DE102018000650A1 (en) 2018-01-27 2019-08-01 Friedrich-Schiller-Universität Jena Method for the determination of impurities in polyalkylene ethers or polyalkyleneamines and its use
WO2019145117A1 (en) 2018-01-27 2019-08-01 Friedrich-Schiller-Universität Jena (FSU) Method for determining impurities in polyalkylene ethers or polyalkylene amines and use thereof
US12017154B2 (en) 2018-01-27 2024-06-25 Friedrich-Schiller-Universitaet Jena Method for determining impurities in polyalkylene ethers or polyalkylene amines and use thereof

Similar Documents

Publication Publication Date Title
EP0991940B1 (en) Use of monolithic sorbents for preparative chromatographic separation
DE3007869C2 (en)
DE69932944T2 (en) CHROMATOGRAPHIC METHOD AND SEMEN MATERIAL SUITABLE FOR THE PROCESS
EP0445604B1 (en) Separation materials for chromatography
DE69228312T2 (en) SELECTIVE AFFINITY MATERIAL, ITS PRODUCTION THROUGH MOLECULAR EMBOSSING AND ITS USE
DE10050343A1 (en) Porous silica microsphere as a cleaning agent
DE3117732A1 (en) MIXED-PHASE CHROMATOGRAPHIC MASSES AND METHOD FOR THEIR PRODUCTION
EP3347125B1 (en) Adsorption medium, method for production thereof, and use thereof for purification of biomolecules
KR100777553B1 (en) Process for producing optically active ethyl (3r,5s,6e)-7-[2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl]-3,5-dihydroxy-6-heptenoate
US5055194A (en) Support for high performance liquid chromatography in a magnetically stabilized fluidized bed
US4816159A (en) Supercritical fluid chromatography packing material
DE69834558T2 (en) Release agents for optical isomers and methods for their preparation
DE3934068A1 (en) POROESE PARTICLES FILLED WITH POLYMER GELS FOR GELPERMEATION CHROMATOGRAPHY AND METHOD FOR THE PRODUCTION THEREOF
EP0921847B1 (en) Use of non-particulate sorbents for simulated moving bed separating methods
DE2323422C2 (en) Process for the isolation of biologically active compounds by affinity chromatography
DE69522411T2 (en) Separating agent for optical isomers
DE19801575A1 (en) Preparative chromatographic separation, e.g. of enantiomers
DE112016000366T5 (en) Chromatographic material with improved pH stability, process for its preparation and its uses
DE60222243T2 (en) RELEASE AGENT FOR OPTICAL ISOMER
WO1998003261A1 (en) Chiral non-particulate sorbents
DE19726151B4 (en) Use of monolithic sorbents for simulated moving bed separation processes
DE2605789A1 (en) CHROMATOGRAPHIC SEPARATION PROCESS
DE60315440T2 (en) Separating agent for optical isomers and method for the production thereof
DE19726152A1 (en) Chiral sorbent for rapid enantiomer separation
DE102013014242A1 (en) Hydrolytically Stable Ion-Exchange Stationary Phases and Uses Thereof

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8130 Withdrawal