DE19726023A1 - Infrared spectroscopic process for building materials, e.g. clay - Google Patents

Infrared spectroscopic process for building materials, e.g. clay

Info

Publication number
DE19726023A1
DE19726023A1 DE19726023A DE19726023A DE19726023A1 DE 19726023 A1 DE19726023 A1 DE 19726023A1 DE 19726023 A DE19726023 A DE 19726023A DE 19726023 A DE19726023 A DE 19726023A DE 19726023 A1 DE19726023 A1 DE 19726023A1
Authority
DE
Germany
Prior art keywords
spectrum
sample
building materials
peak
quantitative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19726023A
Other languages
German (de)
Inventor
Mario Dipl Chem Muehle
Reiner Prof Dr Rer Nat Salzer
Renate Chem Ing Lunkwitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Original Assignee
Technische Universitaet Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dresden filed Critical Technische Universitaet Dresden
Priority to DE19726023A priority Critical patent/DE19726023A1/en
Publication of DE19726023A1 publication Critical patent/DE19726023A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

An infrared spectroscopic process is used to make a quantitative and qualitative determination of the mineral constituents of the building materials. The novelty is that: (a) the representative sample is removed from the material; (b) the sample is homogenised and a fraction is ground to powder in a tungsten carbide mill for 14-16 min; (c) the particles are mixed with a calcium bromide embedding agent suitable for IR spectroscopy and pressed to form a plug for use as a test sample; (d) the test sample is inserted in an FTIR spectrometer in which the reflected light provides an absorbent spectrum for evaluation; (e) the spectrum is analysed , the signal/noise ratio is determined in those parts of the spectrum at which peaks are anticipated; (f) the peak separation provides a determination of the basic curve and the selection of the basic curve process; (g) a quantitative determination of the peak is undertaken in accordance with the spectral quality and nature of the mixture; and (h) the nature and respective portions of the ingredients is declared.

Description

Die Erfindung betrifft ein Verfahren zur qualitativen und quan­ titativen infrarotspektroskopischen Bestimmung mineralischer Baustoffe.The invention relates to a method for qualitative and quan quantitative infrared spectroscopic determination of mineral Building materials.

Herkömmliche identifizierende Baustoffanalyseverfahren sind Röntgendiffraktion, Röntgenfluoreszenz, sowie naßchemische Tech­ niken.Conventional identifying building material analysis methods are X-ray diffraction, X-ray fluorescence, and wet chemical tech niken.

Als nachteilig erweist sich dabei, daß diese Methoden mit einem hohen geräte- und bedienungstechnischen Aufwand und damit nicht unerheblichen Zeit- und Kostenfaktor verbunden sind. Darüber hinaus lassen sich amorphe bis nanokristalline Substanzen durch die Röntgenanalytik nicht erfassen; eine Auswertung von Mehr­ komponentensystemen wird mit zunehmender Zahl der Spezies unsi­ cher, für Baustoffe typische Tonminerale sind schwierig zu identifizieren, gestörte Kristalle geben keine eindeutigen Reflexe.It turns out to be disadvantageous that these methods with a high equipment and operating costs and therefore not insignificant time and cost factors are connected. About that In addition, amorphous to nanocrystalline substances can be passed through do not record X-ray analysis; an evaluation of more component systems becomes unsi with increasing number of species clay minerals typical of building materials are difficult to identify, disturbed crystals do not give clear reflections.

Die IR-Spektroskopie ist hinreichend bekannt und wird in den verschiedensten Bereichen der Technik angewendet. Eine Anwendung der IR-Spektroskopie bei der Bestimmung mineralischer Baustoffe ist bisher nur selten erfolgt, wobei die Auswertung manuell durchgeführt wurde. Derartige Auswertungen sind zeit- und ko­ stenintensiv.IR spectroscopy is well known and is used in the various areas of technology applied. An application IR spectroscopy when determining mineral building materials has rarely been done so far, the evaluation being manual was carried out. Such evaluations are timely and cost-effective very intensive.

Die Aufgabe der Erfindung besteht nun darin, die IR-Spektrosko­ pie für die qualitative und quantitative Bestimmung von minera­ lischen Baustoffen zu automatisieren. Dabei soll eine eindeutige Bestimmung der verschiedenen Spezies historischer sowie ein­ zusetzender aktueller Baustoffe ermöglicht werden. Von besonde­ rem Interesse ist die Identifizierung von Tonmineralien, die mit den bisher angewandten Methoden nur schwer möglich war.The object of the invention is now the IR spectroscope pie for the qualitative and quantitative determination of minera automate building materials. It should be a clear one Determining the different species historically as well as a addition of current building materials are made possible. By particular  Rem is interested in the identification of clay minerals with the previously used methods was difficult.

Erfindungsgemäß wird die Aufgabe durch ein Verfahren mit den im Anspruch 1 genannten Merkmalen gelöst. Vorteilhafte Varianten des Verfahrens ergeben sich im Zusammenhang mit den Unteransprü­ chen.According to the invention, the object is achieved by a method with the Features mentioned claim 1 solved. Advantageous variants of the procedure arise in connection with the subclaims chen.

Aus dem zu bestimmenden Baustoff wird zunächst eine repräsenta­ tive Probe entnommen, die anschließend homogenisiert und davon ein bestimmter Teil vermahlen wird. Auf die Homogenisierung ist besonderes Augenmerk zu legen, da nur ein kleiner Teil der ent­ nommen Probe mit einem Einbettungskörper zu einem Probenkörper verpreßt wird (Schritt c).A representative is first made from the building material to be determined tive sample taken, which is then homogenized and from it a certain part is ground. On the homogenization is Pay special attention because only a small part of the ent take sample with an embedding body to a sample body is pressed (step c).

Nun wird das Spektrum des Probenkörpers mittels FTIR-Spektro­ meter in Transmission aufgenommen und das gewonnene Spektrum in ein Absorbansspektrum umgerechnet.Now the spectrum of the specimen is measured using FTIR spectro meters recorded in transmission and the spectrum obtained in converted an absorbance spectrum.

Anschließend erfolgt die qualitative und quantitative Auswertung des Spektrums. Dabei wird folgendermaßen vorgegangen:
The qualitative and quantitative evaluation of the spectrum then takes place. The procedure is as follows:

  • - Analyse der vorhandenen Spezies aus dem Signal-/Rauschverhältnis,- Analysis of the existing species from the Signal / noise ratio,
  • - Peak-Separation und eine Bestimmung der Grundlinie und Aus­ wahl eines geeigneten Grundlinienverfahrens,- Peak separation and a determination of the baseline and off selection of a suitable baseline method,
  • - quantitative Auswertung durch eine Peakaufbereitung ent­ sprechend der Spektrenqualität und des Mischungscharakters der Spezies.- quantitative evaluation using a peak preparation speaking of the spectra quality and the mixture character of the species.

Schließlich werden die nachgewiesenen Spezies benannt und dessen Anteil an der untersuchten Probe angegeben.Finally, the identified species are named and its Proportion of the sample examined is given.

Der Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß auf IR-Spektrometer zurückgegriffen werden kann, die zur Stan­ dardausrüstung analytischer Laboratorien gehören. Das Verfahren als molekülspektroskopische Methode erlaubt die konkrete Be­ stimmung mineralischer Spezies. Es kann mit geringen Probenmen­ gen gearbeitet und in kurzer Zeit eine Aussage über die für Baustoffe relevanten Systeme erhalten werden. Dies ist besonders wichtig bei der Sanierung von historischen Bauwerken, über deren Bau- und Zuschlagstoffe wenig Klarheit herrscht, aber auch beim Neubau zur Auswahl der Zuschlag- und Zusatzstoffe.The advantage of the method according to the invention is that IR spectrometers can be used, which go to Stan  equipment of analytical laboratories. The procedure as a molecular spectroscopic method, the concrete Be mood of mineral species. It can be done with small samples worked and in a short time a statement about the for Systems relevant to building materials can be obtained. This is special important in the renovation of historical buildings, about their There is little clarity in building materials and aggregates, but also in New building for the selection of additives and additives.

Die Erfindung wird nachfolgend an Hand eines Ausführungsbei­ spiels näher erläutert. In den Zeichnungen zeigen:The invention is illustrated below with the aid of an embodiment explained in more detail. The drawings show:

Fig. 1 ein IR-Spektrum für reines Kaolinit in Transmission und ungeglätteter Form Fig. 1 shows an IR spectrum for pure kaolinite in transmission and unsmoothed form

Fig. 2 eine IR-Spektrum einer synthetischen Kalkmörtelmi­ schung mit 20% Kaolinitanteil in Transmission und ungeglätteter Form Fig. 2 shows an IR spectrum of a synthetic lime mortar mixture with 20% kaolinite in transmission and unsmoothed form

Fig. 3 ein IR-Spektrum eines historischen Kalkmörtels mit 4% Kaolinitanteil in Transmission und ungeglätteter Form Fig. 3 shows an IR spectrum of a historic lime mortar with 4% kaolinite in transmission and unsmoothed form

Fig. 4 ein Diagramm zur Darstellung eines Peakerwartungs­ bereiches. Fig. 4 is a diagram showing a peak maintenance area.

In den Fig. 1 und 2 werden IR-Spektren von Modellsubstanzen gezeigt, die zur Festlegung des Peakerwartungsbereiches gemäß der Fig. 4 dienen. Die Modellsubstanzen liefern also Aussagen darüber, an welchen Stellen auswertbare Peaks einer realen Probe entsprechend der Fig. 3 zu erwarten sind.In Figs. 1 and 2 IR spectra are shown of model substances for determining the peak expected range of FIG. 4 are used. The model substances therefore provide information about the points at which evaluable peaks of a real sample can be expected in accordance with FIG. 3.

Die Herstellung eines Probenkörpers erfolgte folgendermaßen:
Aus einer Mörtelprobe wurden eine Materialmenge von 1 g entnommen und diese in einer Kugelmühle homogenisiert. Von dieser homogenisierten Menge wurden 0,1 g in einer Wolframkarbid-Kugelmühle 15 min lang aufgemahlen. Aus dieser aufgemahlenen Menge wurde mit 400 g Kaliumbromid eine Probentablette hergestellt. Anschließend erfolgte die Aufnahme des FTIR-Spektrums.
A test specimen was produced as follows:
A material amount of 1 g was taken from a mortar sample and homogenized in a ball mill. 0.1 g of this homogenized amount was ground in a tungsten carbide ball mill for 15 minutes. A sample tablet was prepared from this ground amount using 400 g of potassium bromide. The FTIR spectrum was then recorded.

Die Spektrenauswertung erfolgte folgendermaßen:
The spectra were evaluated as follows:

  • 1. Analyse des Signal-Rauschverhältnisses, durch Bestimmung und Quotientenbildung der Standardabweichung der Extinktionswerte im Bereich 3749 bis 3742 cm-1 und im Bereich 3727 bis 3721 cm-1.1. Analysis of the signal-to-noise ratio, by determining and forming the quotient of the standard deviation of the extinction values in the range 3749 to 3742 cm -1 and in the range 3727 to 3721 cm -1 .
  • 2. Entsprechend des bestimmten Quotienten wird die Glättungs­ quantität festgeschrieben und als (eventl. wiederholte) Methode der gleitenden Mittelwertbildung durchgeführt.2. According to the given quotient, the smoothing Quantity committed and as (possibly repeated) method of moving averages.
  • 3. Anschließend werden die Peakerwartungsbereiche 3698 bis 3691 cm-1 und 3623 bis 3615 cm-1 ausgelesen (vgl. Fig. 4). Sofern in diesen Bereichen Peaks auftreten, ist der Nachweis von Kaolinit erfolgt.3. The peak expectation ranges 3698 to 3691 cm -1 and 3623 to 3615 cm -1 are then read out (cf. FIG. 4). If peaks occur in these areas, kaolinite has been detected.
  • 4. Nachfolgend wird eine Grundlinienbestimmung durchgeführt, indem eine Tangente (Grundlinie) linear regressiv zwischen den Bereichen 3725 bis 3520 cm-1 und 3520 bis 3515 cm-1 angelegt wird.4. In the following, a baseline determination is carried out by creating a tangent (baseline) linearly regressively between the areas 3725 to 3520 cm -1 and 3520 to 3515 cm -1 .
  • 5. Entsprechend der Spektrenqualität (bestimmt durch das Signal- Rauschverhältnis) und dem Mischungscharakter wird bei der Er­ mittlung der Kaolinitquantität auf ungeglättete oder geglättete Extinktionswerte zurückgegriffen.5. According to the spectrum quality (determined by the signal Noise ratio) and the mixture character is with the Er averaging the kaolinite quantity to unsmoothed or smoothed Absorbance values used.
  • 6. Die Ermittlung der quantitativen Werte erfolgt aus der Peak­ höhe über der Grundlinie.6. The quantitative values are determined from the peak height above the baseline.
  • 7. Der Relativwert wird mit dem Intensitätsfaktor (Ermittelt aus Mehrstoff-Modellmischungen der mörtelrelevanten Komponenten zur Kalibration des Systems) multipliziert und kann somit mit den weiterhin bestimmten Komponenten des Mörtels ins Verhältnis gesetzt werden.7. The relative value is determined with the intensity factor (from Multi-component model mixtures of the mortar-relevant components for Calibration of the system) multiplied and can thus with the continue to relate certain components of the mortar be set.
  • 8. Anschließend erfolgt die Werteausgabe.8. The values are then output.

Claims (3)

1. Verfahren zur qualitativen und quantitativen infrarotspek­ troskopischen Bestimmung mineralischer Baustoffe, bei dem
  • a) aus dem zu bestimmenden Baustoff eine repräsentative Probe entnommen wird,
  • b) anschließend die Probe homogenisiert und ein bestimmter Teil vermahlen wird,
  • c) der vermahlene Teil mit einem für die IR-Spektroskopie geeigneten Einbettungsmittel zu einem Probenkörper verpreßt wird,
  • d) das Spektrum des Probenkörpers mittels FTIR-Spektrometer in Transmission aufgenommen und in ein Absorbansspektrum umgerechnet wird,
  • e) und das Spektrum so ausgewertet wird, daß
    • - eine Analyse des Signal/Rauschverhältnisses in Erwar­ tungsbereichen relevanter Peaks erfolgt,
    • - eine Peak-Separation durchgeführt wird und eine Be­ stimmung der Grundlinie und Auswahl des Grundlinien­ verfahrens erfolgt,
    • - und die quantitative Auswertung durch eine Peakauf­ bereitung entsprechend der Spektrenqualität und des Mischungscharakters der Spezies erfolgt,
  • d) und schließlich die nachgewiesenen Spezies benannt und dessen Anteil an der untersuchten Probe angegeben werden.
1. Method for the qualitative and quantitative infrared spectroscopic determination of mineral building materials, in which
  • a) a representative sample is taken from the building material to be determined,
  • b) the sample is then homogenized and a certain part is ground,
  • c) the ground part is pressed to a test specimen using an embedding agent suitable for IR spectroscopy,
  • d) the spectrum of the specimen is recorded in transmission by means of an FTIR spectrometer and converted into an absorbance spectrum,
  • e) and the spectrum is evaluated so that
    • an analysis of the signal / noise ratio in expected ranges of relevant peaks takes place,
    • a peak separation is carried out and the baseline is determined and the baseline method is selected,
    • and the quantitative evaluation is carried out by a peak preparation according to the spectra quality and the mixture character of the species,
  • d) and finally the identified species are named and the proportion of the sample examined is stated.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Einbettungsmittel Kaliumbromid verwendet wird. 2. The method according to claim 1, characterized in that as Embedding potassium bromide is used.   3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Probe in einer Wolfram-Karbidmühle 14 bis 16 min vermahlen wird, wobei einer Mühle mit einem Fassungsvermögen von 5 ml bis zu 1 g Mahlgut zugegeben wird.3. The method according to claim 1, characterized in that the Grind the sample in a tungsten carbide mill for 14 to 16 min a mill with a capacity of 5 ml up to 1 g regrind is added.
DE19726023A 1997-06-19 1997-06-19 Infrared spectroscopic process for building materials, e.g. clay Withdrawn DE19726023A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19726023A DE19726023A1 (en) 1997-06-19 1997-06-19 Infrared spectroscopic process for building materials, e.g. clay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19726023A DE19726023A1 (en) 1997-06-19 1997-06-19 Infrared spectroscopic process for building materials, e.g. clay

Publications (1)

Publication Number Publication Date
DE19726023A1 true DE19726023A1 (en) 1998-12-24

Family

ID=7833017

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19726023A Withdrawn DE19726023A1 (en) 1997-06-19 1997-06-19 Infrared spectroscopic process for building materials, e.g. clay

Country Status (1)

Country Link
DE (1) DE19726023A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006034913A1 (en) * 2004-09-29 2006-04-06 Siemens Aktiengesellschaft Sample preparation for an analysis
CN105823742A (en) * 2016-03-16 2016-08-03 江西耀升钨业股份有限公司 Method for measuring additive content of tungsten carbide
JP2017116476A (en) * 2015-12-25 2017-06-29 株式会社トプコン Method for measuring concrete

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2240809A1 (en) * 1972-08-18 1974-02-28 Siemens Ag PROCESS FOR DEGRADING SILICATES, IN PARTICULAR CEMENT FLOUR
DE3124948A1 (en) * 1980-06-27 1982-03-18 Société des Ciments Français, 78930 Guerville DEVICE FOR AUTOMATICALLY PRODUCING SAMPLES FOR ANALYSIS
DE3517162A1 (en) * 1984-05-16 1985-12-05 Société des Ciments Français, Puteaux METHOD AND DEVICE FOR AUTOMATICALLY DETERMINING SPECIFIC CEMENT PROPERTIES
DE4030699C1 (en) * 1990-09-28 1991-10-10 Bruker Analytische Messtechnik Gmbh, 7512 Rheinstetten, De
GB2259766A (en) * 1991-09-17 1993-03-24 Schlumberger Services Petrol Phase composition of cement
WO1993011423A1 (en) * 1991-11-29 1993-06-10 Services Petroliers Schlumberger Method for predicting cement properties
GB2265710A (en) * 1992-03-31 1993-10-06 Schlumberger Services Petrol Data compression of FTIR Spectra
DE4428920A1 (en) * 1994-08-16 1996-02-22 Krupp Polysius Ag Material prepn. and application of X=ray fluorescence analysis

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2240809A1 (en) * 1972-08-18 1974-02-28 Siemens Ag PROCESS FOR DEGRADING SILICATES, IN PARTICULAR CEMENT FLOUR
DE3124948A1 (en) * 1980-06-27 1982-03-18 Société des Ciments Français, 78930 Guerville DEVICE FOR AUTOMATICALLY PRODUCING SAMPLES FOR ANALYSIS
DE3517162A1 (en) * 1984-05-16 1985-12-05 Société des Ciments Français, Puteaux METHOD AND DEVICE FOR AUTOMATICALLY DETERMINING SPECIFIC CEMENT PROPERTIES
DE4030699C1 (en) * 1990-09-28 1991-10-10 Bruker Analytische Messtechnik Gmbh, 7512 Rheinstetten, De
GB2259766A (en) * 1991-09-17 1993-03-24 Schlumberger Services Petrol Phase composition of cement
US5475220A (en) * 1991-09-17 1995-12-12 Schlumberger Technology Corporation Method to determine the phase composition of cement
WO1993011423A1 (en) * 1991-11-29 1993-06-10 Services Petroliers Schlumberger Method for predicting cement properties
GB2265710A (en) * 1992-03-31 1993-10-06 Schlumberger Services Petrol Data compression of FTIR Spectra
DE4428920A1 (en) * 1994-08-16 1996-02-22 Krupp Polysius Ag Material prepn. and application of X=ray fluorescence analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CROW,R.F.,CONNOLLY,J.D.: Atomic Absorption Analysis of Portland Cement and Raw Mix Using a Lithium Metaborate Fusion. In: Journal of Testing and Evaluation JTEVA, Vol. 1, No. 5, Sep. 1973, S.pp382-393 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006034913A1 (en) * 2004-09-29 2006-04-06 Siemens Aktiengesellschaft Sample preparation for an analysis
JP2017116476A (en) * 2015-12-25 2017-06-29 株式会社トプコン Method for measuring concrete
CN105823742A (en) * 2016-03-16 2016-08-03 江西耀升钨业股份有限公司 Method for measuring additive content of tungsten carbide
CN105823742B (en) * 2016-03-16 2018-06-29 江西耀升钨业股份有限公司 The assay method of additive content in a kind of tungsten carbide

Similar Documents

Publication Publication Date Title
EP0094374B1 (en) Method for the continuous measurement of the mass of aerosol particles in gaseous samples, and device for carrying out the method
DE69605801T2 (en) PREDICTING THE PROPERTIES OF A PLATE USING A SPECTROSCOPIC METHOD IN COMBINATION WITH MULTIVARIABLE CALIBRATION
DE69711308T2 (en) Determination of the boiling point curves of a crude oil or a fraction
DE102009028254A1 (en) Method for investigations on liquids and device therefor
DE2832091A1 (en) OPTICAL METHOD FOR DETERMINING THE PARTICLE SIZE OF COLLOIDAL SOLUTIONS AND MEASURING DEVICE FOR IMPLEMENTING THE METHOD
DE3146253A1 (en) "Gamma ray analysis of multi-component materials"
DE3240559C2 (en) Process for the continuous measurement of the mass of aerosol particles in gaseous samples and device for carrying out the process
DE102011017280A1 (en) Method of measuring wood material emitting volatiles and apparatus for measuring the emission of volatile materials from wood-based materials
EP1287310B1 (en) Method and device for determining the thickness of transparent organic layers
DE2439413A1 (en) PHOTOMETRIC PROCESS FOR THE QUANTITATIVE DETERMINATION OF A SUBSTANCE IN A MIXED PHASE
DE19726023A1 (en) Infrared spectroscopic process for building materials, e.g. clay
DE2622175A1 (en) METHOD AND DEVICE FOR DETERMINING THE VOLUME CONTENT OF A THREE COMPONENT MIXTURE
EP1240501A1 (en) Method and device for the online analysis of solvent mixtures
DE10208403A1 (en) Fluorescent X-ray analysis method for contaminants in silicon substrate surface, involves estimating amount of measured object based on ratio of intensity of X-rays irradiated to sample at given angle
WO1999009391A2 (en) Photometer with non-dispersive infrared absorption spectroscopy (ndir) for measuring several constituents
WO2017032497A1 (en) Method and device for determining a substance concentration or a substance in a liquid medium
DE4240301A1 (en)
DE69407300T2 (en) METHOD AND DEVICE FOR MEASURING THE CONCENTRATION OF A COMPONENT PRESENT IN A FLOWING LIQUID IN THE FORM OF A DISPERSION
DE19958641A1 (en) Process for quality control of layers of material
DE1673263A1 (en) Device for the X-ray oradiometric determination of elements in samples
EP3561487B1 (en) Measuring device for analysis of a composition of a combustible gas with a filter chamber arranged in front of a detector
DE19731889A1 (en) Calibration of gas analysis equipment measuring isotopic proportions and concentration of e.g. carbon di:oxide
DE19628310A1 (en) Optical gas analyser to detect components in gas sample
DE3623052A1 (en) Fluorescence analyser
DE102009058394B3 (en) Method for measuring the concentration of at least one gas component in a sample gas

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8141 Disposal/no request for examination