DE19616443A1 - Push=pull end stage device for analogue and digital circuit e.g. AND=gate - Google Patents

Push=pull end stage device for analogue and digital circuit e.g. AND=gate

Info

Publication number
DE19616443A1
DE19616443A1 DE1996116443 DE19616443A DE19616443A1 DE 19616443 A1 DE19616443 A1 DE 19616443A1 DE 1996116443 DE1996116443 DE 1996116443 DE 19616443 A DE19616443 A DE 19616443A DE 19616443 A1 DE19616443 A1 DE 19616443A1
Authority
DE
Germany
Prior art keywords
collector
transistor
base
emitter
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1996116443
Other languages
German (de)
Inventor
Cafer Borucu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1996116443 priority Critical patent/DE19616443A1/en
Publication of DE19616443A1 publication Critical patent/DE19616443A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/001Arrangements for reducing power consumption in bipolar transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3083Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type
    • H03F3/3084Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type one of the power transistors being controlled by the output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/50Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5012Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the source follower has a controlled source circuit, the controlling signal being derived from the drain circuit of the follower
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5021Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the source follower has a controlled source circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5031Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the source circuit of the follower being a current source

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)

Abstract

The device includes two NPN bipolar transistors (T1,T2), a PNP (T3) together with a resistor (R1) and two series connected diodes. One transistor (T1) has a collector which is coupled to an operational voltage via the resistor, while its emitter is linked to the collector of one of the other transistor (T2). The emitter of this latter transistor is coupled to the operational voltage minus pole. The series-connected diodes are in parallel to the resistor. The emitter of the PNP transistor is coupled to the first transistor collector, while the third transistor collector is linked to the second transistor base. The first transistor collector current is so coupled to the second transistor base, via the third transistor that the second transistor base current is reduced with the increased first transistor collector current.

Description

In digitalen Schaltkreisen wie z. B. bei einem UND-Gatter ist zur Realisierung der ei­ gentlichen Funktion keine Gegentakt-Endstufe ( Gegentakt-Ausgang) notwendig. Muß das UND-Gatter aber einen großen Strom liefern, ist es von Vorteil, eine Gegentakt-Endstufe zu verwenden, um die Leistungsaufnahme des Gatters gering zu halten. Es ist bekannt, diese Aufgabe mit der Totempole Endstufe ( Totempole Ausgang) zu lösen. Der Totempole Ausgang hat allerdings den Nachteil, daß beim Wechseln des Logischen Zustandes von "H" auf "L" und umgekehrt kurzzeitig ein großer Strom gleichzeitig durch beide Endtransistoren fließt. Dieser 10 bis 20 ns andauernde Querstrom wird über einen Widerstand auf 10 bis 15 mA begrenzt. Dieser Begrenzungswiderstand begrenzt aber auch den maximalen Ausgangsstrom der End­ stufe auf 10 bis 20 mA. Des weiteren verursacht der kurzzeitige Querstrom durch die beiden Endtransistoren einen kurzen Einbruch auf der Betriebsspannungsleitung, so daß Entkoppelkondensatoren nötig sind, die die Betriebsspannung wieder "glätten". Wenn größere Ausgangsströme nötig sind, werden Transistoren mit offenem Kol­ lektor ("open collektor") oder offenem Emitter verwendet. Diese können aber eine an den Ausgang angeschlossene Kapazität schnell aufladen, aber nur langsam entladen und umgekehrt.In digital circuits such as B. with an AND gate is to implement the egg Functional no push-pull output stage (push-pull output) necessary. However, if the AND gate has to supply a large current, it is advantageous to have one Push-pull output stage to use to reduce the power consumption of the gate hold. It is known that this task with the Totempole final stage (Totempole Output) to solve. The Totempole output has the disadvantage that when Change the logic state from "H" to "L" and vice versa for a short time large current flows through both end transistors simultaneously. This 10 to 20 ns Continuous cross current is limited to 10 to 15 mA via a resistor. This Limiting resistance also limits the maximum output current of the end level to 10 to 20 mA. Furthermore, the brief cross current caused by the both end transistors a short dip on the operating voltage line, so that decoupling capacitors are necessary which "smooth" the operating voltage again. If larger output currents are required, open-col lector ("open collector") or open emitter used. But these can quickly charge a capacity connected to the output, but only slowly unload and vice versa.

Der Erfindung liegt die Aufgabe zugrunde, eine Gegentakt-Endstufe zu realisieren, die keine Störimpulse verursacht und einen großen Ausgangsstrom zu liefern imstande ist.The invention is based, to realize a push-pull output stage, the task causes no glitches and is able to deliver a large output current.

Mit der Erfindung sind bei großen Kapazitäten am Ausgang kürzere Schaltzeiten möglich. Große Kapazitäten treten z. B. bei Vernetzung von Computern über lange Kabel auf. Aber auch der Anschluß eines Druckers über ein Kabel ist mit großen Kapazitäten verbunden, so daß die Verwendung einer Endstufe mit großem Aus­ gangsstrom sich lohnt.With the invention there are shorter switching times for large capacities at the output possible. Large capacities occur e.g. B. when networking computers over long Cable on. But the connection of a printer via a cable is also great Capacities connected, so the use of a power amplifier with a large off gangsstrom is worthwhile.

Die Aufgabe wird durch die im Patentanspruch aufgeführten Merkmale gelöst. The object is achieved by the features listed in the claim.  

Fig. 1 zeigt die Erfindung Fig. 1 shows the invention

Fig. 2 zeigt die Eingangsseite eines TTL-Gatters mit Schaltkapazität. Fig. 2 shows the input side of a TTL gate with switching capacitance.

Fig. 1: Fig. 1:

Die Transistoren T1 und T2 stellen die Endtransistoren der Endstufe dar. T2 ist mit T1 derart gekoppelt, daß er sperrt, wenn T1 Strom liefert und umgekehrt. Im Ruhe­ zustand, wenn an den Ausgang keine Last angeschlossen ist und T4 gesperrt ist, fließt durch die Endtransistoren ein Ruhestrom. Dieser Ruhestrom wird bestimmt von dem Spannungsabfall über R3 und von dem Widerstandswert von R1.The transistors T1 and T2 represent the final transistors of the final stage Coupled T1 such that it locks when T1 supplies power and vice versa. In peace state when no load is connected to the output and T4 is blocked, flows a quiescent current through the end transistors. This quiescent current is determined by the Voltage drop across R3 and from the resistance value of R1.

Bei fehlendem Widerstand R2 sind der Emitterstrom von T2 und der Strom durch R1 gleich (bei Vernachlässigung des Basisstroms von T3). Der Spannungsabfall über R1 beträgt 0.6 V, so daß die Dioden D1 und D2 gesperrt sind. Die Basen von T1 und T3 führen gleiches Potential, so daß dem Transistor T1 eine Kollektor-Basis-Spannung von 0,6 V verbleibt.If there is no resistor R2, the emitter current is T2 and the current through R1 equal (if the base current of T3 is neglected). The voltage drop across R1 is 0.6 V, so that the diodes D1 and D2 are blocked. The bases of T1 and T3 carry the same potential, so that the transistor T1 has a collector-base voltage of 0.6 V remains.

Wenn an den Ausgang ein Widerstand gegen Masse angeschlossen wird, liefert T1 Strom, die Dioden D1 und D2 schalten durch. Die negativer werdende Spannung am Emitter von T3 schaltet T3 und damit T2 ab.If a resistance to ground is connected to the output, T1 delivers Current, the diodes D1 and D2 turn on. The negative voltage on Emitter of T3 switches off T3 and thus T2.

Wenn an den Ausgang ein Widerstand gegen die Betriebsspannung angeschlossen wird, sperrt T1 etwas. Sein Kollektor wird positiver. Die positiver werdende Span­ nung am Emitter von T3 steuert T3 auf, und daraufhin führt T2 einen größeren Kol­ lektorstrom.If a resistor to the operating voltage is connected to the output T1 blocks something. His collector is becoming more positive. The more positive span voltage on the emitter of T3 turns on T3, and then T2 leads a larger Kol editor current.

Wird an den Ausgang der Endstufe der Eingang eines TTL-Gatters mit Schaltkapazität Cs angeschlossen (Fig. 2), ergibt sich folgender Funktionsablauf: Wenn T4 ge­ sperrt war und durchschaltet (HL-Sprung am Ausgang), sperrt T1 sofort, weil seine Basis negativer wird, während die Schaltkapazität den Ausgang der Endstufe auf einem konstanten Potential hält. Nach der Einschaltzeit von T3 schalten T3 und T2 durch; T2 entlädt die Schaltkapazität Cs. Wenn T4 ganz durchgeschaltet ist, beträgt die Basis-Emitter-Spannung von T1 nur noch ca. 0,4 V, so daß T1 sperrt. T2 bleibt durchgeschaltet, weil er über R1 und T3 seinen Basisstrom bekommt. Es fließt ein Strom durch R (Fig. 2) und T2.If the input of a TTL gate with switching capacity Cs is connected to the output of the output stage ( Fig. 2), the following functional sequence results: If T4 was blocked and switched through (HL jump at the output), T1 blocks immediately because its base is more negative while the switching capacity keeps the output of the output stage at a constant potential. After the switch-on time of T3, T3 and T2 switch through; T2 discharges the switching capacity Cs. When T4 is fully switched on, the base-emitter voltage of T1 is only about 0.4 V, so that T1 blocks. T2 remains on because it receives its base current via R1 and T3. A current flows through R ( Fig. 2) and T2.

Wenn T4 sperrt, wird Cs über T1 aufgeladen. Die Spannung am Ausgang steigt an. Danach fließt durch die beiden Endtransistoren nur noch ein Ruhestrom. Dieser Ruhe­ strom ist ein Maß für den maximalen Ausgangsstrom der Endstufe. Wenn dieser ge­ samte Ruhestrom anstatt durch den Kollektor von T2 durch die Basis fließt, beträgt der Gesamtstrom, den T2 aufnehmen kann, das Hundertfache (Stromverstärkung) des Ruhestroms.When T4 locks, Cs is charged via T1. The voltage at the output rises. Then only a quiescent current flows through the two end transistors. That calm  current is a measure of the maximum output current of the output stage. If this ge total quiescent current instead of flowing through the collector of T2 through the base the total current that T2 can absorb, a hundred times (current gain) of the quiescent current.

Der Nachteil der Erfindung gegenüber dem TotemPole-Ausgang ist, daß der "HL"- Sprung am Ausgang wegen T3 länger dauert. Dieser Nachteil wird aber bei kapa­ zitiver Last durch den großen Ausgangsstrom wieder wettgemacht. Der Vorteil gegenüber dem TotemPole-Ausgang ist, daß beim Wechseln des Logischen Zustandes kein Kurzschlußstrom entseht.The disadvantage of the invention compared to the TotemPole output is that the "HL" Jump at the exit takes longer because of T3. This disadvantage is with kapa quit load made up for by the large output current. The advantage compared to the TotemPole output is that when the logic state changes no short-circuit current.

Die Erfindung ist auch als Endstufe für analoge Schaltungen gut geeignet, weil sie keinen PNP-Leistungstransistor enthält. In integrierter Technik haben PNP-Leistungs­ transistoren den Nachteil, daß sie auf dem Chip großen Platz beanspruchen. Außerdem wäre diese Analog-Endstufe TTL-kompatibel.The invention is also well suited as an output stage for analog circuits because it does not contain a PNP power transistor. In integrated technology have PNP performance transistors have the disadvantage that they take up a lot of space on the chip. Furthermore this analog power amplifier would be TTL compatible.

Claims (1)

Der Kollektor eines Transistors T1 (NPN) führt über einen Widerstand R1 zur Be­ triebsspannung, während sein Emitter mit dem Kollektor eines weiteren Transistors T2 verbunden ist. Der Emitter von T2 (NPN) führt zum Minuspol der Betriebsspannung (Masse). Dem Widerstand R1 sind zwei in Reihe geschaltete Dioden parallel geschal­ tet, die auch in Durchlaßrichtung geschaltet sind. Eine der Dioden ist eine Silizium­ diode, die zweite eine Schotky-Diode. Der Emitter eines weiteren Transistors T3 (PNP) ist mit dem Kollektor von T1 verbunden, während sein Kollektor zur Basis von T2 führt. Von der Basis von T2 führt ein Widerstand zur Masse. Sowohl die Basis von T1, als auch die von T3 führen gleiches Potential. Letztlich ist an die Basis von T1 ein weiterer Transistor T4 (NPN) angeschlossen, dessen Emitter zur Masse und dessen Kollektor zur Basis von T1 führt. Der Verbindungspunkt des Emitters von T1 mit dem Kollektor von T2 bildet den Ausgang der Endstufe. Hier kann z. B. über einen Elektrolytkondensator ein Lastwiderstand angeschlossen werden. Dadurch gekennzeichnet, daß der Kollektorstrom von T1 über T3 mit der Basis von T2 so gekoppelt ist, daß der Basisstrom von T2 kleiner wird, wenn der Kollektorstrom von T1 wächst und umgekehrt.The collector of a transistor T1 (NPN) leads to the operating voltage via a resistor R1, while its emitter is connected to the collector of a further transistor T2. The emitter of T2 (NPN) leads to the negative pole of the operating voltage (ground). The resistor R1 two diodes connected in series are switched in parallel, which are also connected in the forward direction. One of the diodes is a silicon diode, the second a Schotky diode. The emitter of another transistor T3 (PNP) is connected to the collector of T1, while its collector leads to the base of T2. From the base of T2, resistance leads to ground. Both the base of T1 and that of T3 have the same potential. Finally, a further transistor T4 (NPN) is connected to the base of T1, the emitter of which leads to ground and the collector of which leads to the base of T1. The connection point of the emitter from T1 to the collector of T2 forms the output of the output stage. Here z. B. a load resistor can be connected via an electrolytic capacitor. Characterized in that the collector current from T1 via T3 is coupled to the base of T2 such that the base current of T2 becomes smaller as the collector current of T1 increases and vice versa.
DE1996116443 1996-04-25 1996-04-25 Push=pull end stage device for analogue and digital circuit e.g. AND=gate Withdrawn DE19616443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1996116443 DE19616443A1 (en) 1996-04-25 1996-04-25 Push=pull end stage device for analogue and digital circuit e.g. AND=gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1996116443 DE19616443A1 (en) 1996-04-25 1996-04-25 Push=pull end stage device for analogue and digital circuit e.g. AND=gate

Publications (1)

Publication Number Publication Date
DE19616443A1 true DE19616443A1 (en) 1997-10-30

Family

ID=7792360

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1996116443 Withdrawn DE19616443A1 (en) 1996-04-25 1996-04-25 Push=pull end stage device for analogue and digital circuit e.g. AND=gate

Country Status (1)

Country Link
DE (1) DE19616443A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0963038A2 (en) * 1998-06-01 1999-12-08 Sony Corporation SRPP circuit having wide frequency range
WO2000065712A1 (en) * 1999-04-26 2000-11-02 Maxim Integrated Products, Inc. Class ab emitter follower buffers
WO2001047104A1 (en) * 1999-12-22 2001-06-28 Micro Analog Systems Oy Emitter follower with constant collector current biasing means
WO2006112957A2 (en) * 2005-04-12 2006-10-26 Raytheon Company Amplifying a signal using a current shared power amplifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2068190A (en) * 1980-01-21 1981-08-05 Philips Nv Class "b" type amplifier
US4405902A (en) * 1980-05-27 1983-09-20 U.S. Philips Corporation Push-pull output stage
EP0502805A2 (en) * 1991-02-12 1992-09-09 International Business Machines Corporation Low power push-pull driver
US5252931A (en) * 1991-07-17 1993-10-12 Sony Corporation Wide band frequency amplifiers
EP0634838A1 (en) * 1993-06-15 1995-01-18 Texas Instruments Deutschland Gmbh Circuit assembly for controlling a MOS field effect transistor push-pull stage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2068190A (en) * 1980-01-21 1981-08-05 Philips Nv Class "b" type amplifier
US4405902A (en) * 1980-05-27 1983-09-20 U.S. Philips Corporation Push-pull output stage
EP0502805A2 (en) * 1991-02-12 1992-09-09 International Business Machines Corporation Low power push-pull driver
US5252931A (en) * 1991-07-17 1993-10-12 Sony Corporation Wide band frequency amplifiers
EP0634838A1 (en) * 1993-06-15 1995-01-18 Texas Instruments Deutschland Gmbh Circuit assembly for controlling a MOS field effect transistor push-pull stage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0963038A2 (en) * 1998-06-01 1999-12-08 Sony Corporation SRPP circuit having wide frequency range
EP0963038B1 (en) * 1998-06-01 2005-01-19 Sony Corporation SRPP circuit having wide frequency range
KR100646026B1 (en) * 1998-06-01 2006-11-13 소니 가부시끼 가이샤 SRPP circuit having wide frequency range
WO2000065712A1 (en) * 1999-04-26 2000-11-02 Maxim Integrated Products, Inc. Class ab emitter follower buffers
US6154063A (en) * 1999-04-26 2000-11-28 Maxim Integrated Products, Inc. Class AB emitter follower buffers
WO2001047104A1 (en) * 1999-12-22 2001-06-28 Micro Analog Systems Oy Emitter follower with constant collector current biasing means
WO2006112957A2 (en) * 2005-04-12 2006-10-26 Raytheon Company Amplifying a signal using a current shared power amplifier
WO2006112957A3 (en) * 2005-04-12 2007-02-08 Raytheon Co Amplifying a signal using a current shared power amplifier
US7256654B2 (en) 2005-04-12 2007-08-14 Raytheon Company Amplifying a signal using a current shared power amplifier

Similar Documents

Publication Publication Date Title
DE60129649T2 (en) Power supply with pulse width modulation control system
DE2330233C3 (en) Electronic, preferably contact-free, SchaH device
EP0762651B1 (en) Driver circuit for a light emitting diode
DE4236430C1 (en) Switching stage using current switch technology
DE69226004T2 (en) Bootstrap circuit for driving a power MOS transistor in a boost mode
DE19616443A1 (en) Push=pull end stage device for analogue and digital circuit e.g. AND=gate
DE3525522C2 (en)
DE1054118B (en) Regenerative optional OR circuit
DE60204677T2 (en) COMPARATOR CIRCUIT AND METHOD FOR OPERATING A COMPARATOR CIRCUIT
DE2314015B2 (en) Signal amplifier
WO2007096305A1 (en) Circuit for switching a voltage-controlled transistor
DE3878276T2 (en) TRI-STATE OUTPUT SWITCHING.
DE19547754C1 (en) Control circuit for BiCMOS bus driver
DE19839997C1 (en) Electronic circuitry
DE4321483C2 (en) Line driver switching stage in current switch technology
DE10317374A1 (en) Control circuit for power device
DE2200580B2 (en) Difference amplifier comparison circuit
DE2030135B2 (en) Logic circuit
DE69031019T2 (en) Output control circuit
DE69025567T2 (en) Integrated CMOS output circuit with bipolar transistors in the output stage
EP0421016A1 (en) ECL-TTL signal level converter
DE4020187A1 (en) CONTROL CIRCUIT FOR A TRANSISTOR DEVICE
EP2346168A2 (en) Level converter circuit
EP0588111B1 (en) Memory element
DE102007005374A1 (en) Circuit arrangement and method for operating a circuit arrangement

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8122 Nonbinding interest in granting licenses declared
8139 Disposal/non-payment of the annual fee