DE19524755A1 - Switch magnets stroke-monitoring device for electromagnetically operated switch - delivers binary signal denoting travel of armature on basis of derivative of coil current drawn through low-impedance transformer winding. - Google Patents

Switch magnets stroke-monitoring device for electromagnetically operated switch - delivers binary signal denoting travel of armature on basis of derivative of coil current drawn through low-impedance transformer winding.

Info

Publication number
DE19524755A1
DE19524755A1 DE1995124755 DE19524755A DE19524755A1 DE 19524755 A1 DE19524755 A1 DE 19524755A1 DE 1995124755 DE1995124755 DE 1995124755 DE 19524755 A DE19524755 A DE 19524755A DE 19524755 A1 DE19524755 A1 DE 19524755A1
Authority
DE
Germany
Prior art keywords
armature
switch
coil
travel
binary signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1995124755
Other languages
German (de)
Inventor
Horst Bendrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1995124755 priority Critical patent/DE19524755A1/en
Publication of DE19524755A1 publication Critical patent/DE19524755A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1684Armature position measurement using coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H2047/008Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current with a drop in current upon closure of armature or change of inductance

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The device powered by a battery (1) includes a transformer having its primary winding (3) in series with the coil (5) of the electromagnet. As the winding has a much lower impedance, the current drawn when a switch (2) is closed depends predominantly on the coil impedance, so that the voltage induced in the secondary winding (4) simulates the mathematical derivative of the coil current. This voltage is taken as a criterion of the travel of the armature, and is applied via a resistive divider (7,8) to the base of a transistor (9). At a threshold level the binary signal obtained from output terminals (11,12) changes from one to zero.

Description

Schaltmagnete werden eingesetzt um mittels elektrischer Energie eine mechanische Bewe­ gung zu erreichen. Dazu wird ein bewegliches Teil (Anker) aus ferromagnetischem Material von einem Magnetfeld angezogen. Das Magnetfeld wird von einer Drahtspule erzeugt. Zur Überwachung der tatsächlichen Ankerbewegung werden oft zusätzliche Sensoren wie End­ schalter oder Näherungsinitiatoren eingesetzt.Switching magnets are used to mechanically use electrical energy to achieve. For this purpose, a moving part (armature) made of ferromagnetic material attracted to a magnetic field. The magnetic field is generated by a wire coil. For Monitoring the actual armature movement often becomes additional sensors like End switches or proximity switches used.

Nach dem Anlegen einer elektrischen Spannung an die Drahtspule würde sich der Strom nach der FormelAfter applying an electrical voltage to the wire coil, the current would flow back of the formula

aufbauen, wobeibuild up, in which

I = Strom durch die Spule,
U = Angelegte Spannung,
R = Ohmscher Widerstand im Spulenkreis,
L = Induktivität der Spule und
t = Verstrichene Zeit seit dem Anlegen der Spannung ist.
I = current through the coil,
U = applied voltage,
R = ohmic resistance in the coil circuit,
L = inductance of the coil and
t = elapsed time since the voltage was applied.

Der Strom baut sich jedoch nur dann nach dieser idealen "e-Funktion" auf, wenn die ange­ gebenen Konstanten sich während der Zeit t nicht verändern. Bei einem ordnungsgemäß funktionierenden Schaltmagneten ist dies jedoch nicht der Fall, weil sich die Induktivität L der Spule erhöht, während der Anker sich bewegt (angezogen wird). Die Spule erzeugt da­ durch eine Spannung Us, die der angelegten Spannung U entgegengerichtet ist. Damit wird während der Bewegung des Ankers der Strom I kleiner als es die "e-Funktion" erwarten läßt.However, the current builds up according to this ideal "e-function" only if the specified constants do not change during the time t. With a properly functioning switching magnet, however, this is not the case because the inductance L of the coil increases as the armature moves (is attracted). The coil generates a voltage U s which is opposite to the voltage U applied. The current I thus becomes smaller than the "e-function" would expect during the movement of the armature.

Es ist bekannt, daß die Stromanstiegskurve eines Schaltmagneten einen Einbruch aufweist, während der Anker sich bewegt. Dieser Einbruch kann als Kriterium für ein ordnungsgemä­ ßes Schalten des Schaltmagneten herangezogen werden.It is known that the current rise curve of a switching magnet has a dip, while the anchor is moving. This drop can serve as a criterion for a proper ß switching the switching magnet can be used.

Der Einbruch der Stromanstiegskurve ist jedoch von einer automatischen elektronischen Überwachungseinrichtung nur schwer zu erfassen, weil er in vielen Fällen nicht sehr ausge­ prägt, stark von der Schaltgeschwindigkeit abhängig oder stark verrauscht ist.However, the dip in the current rise curve is from an automatic electronic one Monitoring device difficult to detect because in many cases it is not very effective characterizes, strongly depends on the switching speed or is very noisy.

Diese Erfindung beschreibt eine Einrichtung, die ein einwandfreies Erkennen des Schaltvor­ ganges durch eine elektronische Schaltung ermöglicht.This invention describes a device which allows the switch to be correctly recognized ganges enabled by an electronic circuit.

Zunächst soll der theoretische Hintergrund der Erfindung erläutert werden. Hierzu wird auch Bezug genommen auf die Diagramme Fig. 1a-c. Die Maßstäbe dieser Diagramme sind relativ gewählt. Fig. 1a zeigt den typischen Stromverlauf in der Spule eines Schaltmagneten. Nach dem Anlegen der Spannung zum Zeitpunkt t = 0 steigt der Strom zunächst nach einer "e-Funktion" an, bis sich der Anker zu bewegen beginnt. Mit der Ankerbewegung wird die Stromanstiegsgeschwindigkeit kleiner bis hin zu negativen Werten. Sobald der Anker den Punkt der geringsten möglichen Reluktanz, z. B. durch einen mechanischen Anschlag, er­ reicht hat, nimmt der Strom weiter nach einer "e-Funktion" zu. Die durch die Ankerbewegung verursachte Einbuchtung der Stromanstiegskurve kann je nach den physikalischen Daten des Schaltmagneten stärker oder schwächer als in Fig. 1a dargestellt ausfallen. Um die Einbuch­ tung der Stromanstiegskurve ausgeprägter und damit besser erfaßbar zu machen, wird erfin­ dungsgemäß die mathematische Ableitung der Stromanstiegskurve gebildet. Die mathemati­ sche Ableitung der Stromanstiegskurve ist in relativem Maßstab in Fig. 1b dargestellt. Wird der Kurvenzug von Fig. 1b mit einem Schwellwert von z. B. 0,2 auf der relativen Skala von Fig. 1b verglichen, dem Zustand < = Schwellwert der Wert "0" und dem Zustand < Schwellwert der Wert "1" zugewiesen, erhält man eine binäre Aussage, aus der geschlossen werden kann, daß der Anker sich bewegt hat, wenn zu einem Zeitpunkt t = t₁, der abhängig von der physikali­ schen Auslegung des Schaltmagneten ist, das binäre Signal den Wert "1" hat. Hätte der An­ ker sich z. B. wegen eines Defekts des Schaltmagneten nicht bewegt, hätte das binäre Signal zu diesem Zeitpunkt den Wert "0". Der zeitliche Verlauf des binären Signals, bei ordnungs­ gemäßem Funktionieren des Schaltmagneten, ist in Fig. 1c dargestellt.First, the theoretical background of the invention will be explained. For this purpose, reference is also made to the diagrams Fig. 1a-c. The scales of these diagrams are chosen relatively. Fig. 1a shows a typical current waveform in the coil of a solenoid. After applying the voltage at time t = 0, the current initially rises according to an "e-function" until the armature begins to move. With the armature movement, the rate of current rise becomes smaller up to negative values. Once the anchor reaches the point of least possible reluctance, e.g. B. by a mechanical stop, he has enough, the current continues to increase after an "e-function". Depending on the physical data of the switching magnet, the indentation of the current rise curve caused by the armature movement can be stronger or weaker than shown in FIG. 1a. In order to make the registration of the current rise curve more pronounced and thus easier to grasp, the mathematical derivation of the current rise curve is formed according to the invention. The mathematical derivation of the current rise curve is shown on a relative scale in Fig. 1b. If the curve of Fig. 1b with a threshold of z. B. 0.2 compared on the relative scale of Fig. 1b, the state <= threshold value "0" and the state <threshold value "1" assigned, you get a binary statement from which it can be concluded that the armature has moved if at a time t = t 1, which is dependent on the physical design of the switching magnet, the binary signal has the value "1". If the anchor had z. B. not moving due to a defect of the switching magnet, the binary signal would have the value "0" at this time. The time course of the binary signal, with the proper functioning of the switching magnet, is shown in Fig. 1c.

In einem bevorzugten Ausführungsbeispiel wird ein Transformator zur Bildung der Ableitung der Stromanstiegskurve benutzt. Wird in die Primärwicklung eines Transformators ein Strom eingeprägt, so ist die in der Sekundärwicklung des Transformators induzierte Spannung pro­ portional zur Ableitung des Stromes in der Primärwicklung. Ein solches bevorzugtes Ausfüh­ rungsbeispiel ist in Fig. 2 dargestellt, auf die jetzt Bezug genommen wird.In a preferred embodiment, a transformer is used to form the derivative of the current rise curve. If a current is impressed into the primary winding of a transformer, the voltage induced in the secondary winding of the transformer is proportional to the derivation of the current in the primary winding. Such a preferred embodiment is shown in FIG. 2, to which reference is now made.

Die Batterie (1) dient zur Versorgung der Einrichtung mit elektrischer Energie. An Stelle der Batterie kann auch eine andere Vorrichtung, z. B. ein Netzteil, verwendet werden. Mit dem Schalter (2), der auch als elektronischer Schalter ausgeführt werden kann, wird der Strom durch die Primärwicklung (3) des Transformators und die Spule (5) des Schaltmagneten ein­ geschaltet. Die Primärwicklung (3) des Transformators ist so ausgeführt, daß ihre Impedanz klein gegenüber der Impedanz der Spule (5) des Schaltmagneten ist. Dadurch wird gewährlei­ stet, daß der Strom durch die Primärwicklung (3) und die Spule (5) in erster Linie von der Impedanz der Spule (5) abhängt und nur geringfügig durch die Primärwicklung (3) verändert wird. In einer im Labor realisierten Ausführung besteht die Primärwicklung (3) aus 3 Win­ dungen, was eine sehr kleine Impedanz gegenüber der Impedanz der Spule (5) darstellt. Die in der Sekundärwicklung (4) des Transformators erzeugte Spannung stellt ein Abbild der mathematischen Ableitung des in der Primärwicklung (3) und damit in der Spule (5) des Schaltmagnet fließenden Stromes dar. Um in der Sekundärwicklung (4) eine möglichst große Spannung zu erzeugen, die sich leicht auswerten läßt, erhält die Sekundärwicklung (4) eine große Windungszahl. In der bereits erwähnten labormäßigen Ausführung hat sich für die Se­ kundärwicklung eine Windungszahl von 1600 bewährt. Die in der Sekundärwicklung (4) erzeugte Spannung wird über das Widerstandsnetzwerk (7 und 8) der Basis des Transistors (9) zugeführt. Übersteigt die Spannung an der Basis des Transistors die Basisschaltschwelle, wird der Transistor leitend, und das Ausgangssignal am Ausgangsterminal (11) wechselt von "1" nach "0". Durch die Auslegung der Widerstände (7 und 8) kann das Verhaltnis der in der Sekundärspule (4) erzeugten Spannung zur Basisspannung des Transistors und damit die An­ sprechschwelle der Schaltung festgelegt werden. Durch die Diode (6) werden negative Span­ nungen vom Transistor (9) ferngehalten, der Widerstand (10) definiert das "1"-Signal am Ausgangsterminal (11) und das Ausgangsterminal (12) stellt einer nachfolgenden Schaltung das elektrische Bezugspotential zur Verfügung.The battery ( 1 ) is used to supply the device with electrical energy. Instead of the battery, another device, e.g. B. a power supply can be used. With the switch ( 2 ), which can also be designed as an electronic switch, the current through the primary winding ( 3 ) of the transformer and the coil ( 5 ) of the switching magnet is switched on. The primary winding ( 3 ) of the transformer is designed so that its impedance is small compared to the impedance of the coil ( 5 ) of the switching magnet. This ensu stet that the current is dependent through the primary winding (3) and the coil (5) primarily from the impedance of the coil (5) and is only slightly changed by the primary winding (3). In a version implemented in the laboratory, the primary winding ( 3 ) consists of 3 windings, which represents a very low impedance compared to the impedance of the coil ( 5 ). That in the secondary winding (4) of the transformer voltage generated is an image of the mathematical derivative of the in the primary winding (3) and thus in the coil (5) of the solenoid current flowing. Order in the secondary winding as large a voltage (4) generate that can be easily evaluated, the secondary winding ( 4 ) receives a large number of turns. In the laboratory version already mentioned, a number of turns of 1,600 has proven itself for secondary winding. The voltage generated in the secondary winding ( 4 ) is fed through the resistor network ( 7 and 8 ) to the base of the transistor ( 9 ). If the voltage at the base of the transistor exceeds the base switching threshold, the transistor becomes conductive and the output signal at the output terminal ( 11 ) changes from "1" to "0". By designing the resistors ( 7 and 8 ), the ratio of the voltage generated in the secondary coil ( 4 ) to the base voltage of the transistor and thus the response threshold of the circuit can be determined. The diode ( 6 ) keeps negative voltages away from the transistor ( 9 ), the resistor ( 10 ) defines the "1" signal at the output terminal ( 11 ) and the output terminal ( 12 ) provides a subsequent circuit with the electrical reference potential.

Claims (2)

1. Einrichtung zur Hubüberwachung von Schaltmagneten, dadurch gekennzeichnet, daß die mathematische Ableitung des Stromes durch die Spule des Schaltmagneten als Kriterium für die Ankerbewegung herangezogen wird.1. Device for stroke monitoring of switching magnets, characterized in that the mathematical derivation of the current through the coil of the switching magnet is used as a criterion for the armature movement. 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die mathematische Ableitung des Stromes durch die Spule des Schaltmagneten mit Hilfe eines Transformators gebildet wird.2. Device according to claim 1, characterized in that the mathematical derivation of the current through the coil of the switching magnet with the help of a transformer becomes.
DE1995124755 1995-07-07 1995-07-07 Switch magnets stroke-monitoring device for electromagnetically operated switch - delivers binary signal denoting travel of armature on basis of derivative of coil current drawn through low-impedance transformer winding. Withdrawn DE19524755A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1995124755 DE19524755A1 (en) 1995-07-07 1995-07-07 Switch magnets stroke-monitoring device for electromagnetically operated switch - delivers binary signal denoting travel of armature on basis of derivative of coil current drawn through low-impedance transformer winding.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1995124755 DE19524755A1 (en) 1995-07-07 1995-07-07 Switch magnets stroke-monitoring device for electromagnetically operated switch - delivers binary signal denoting travel of armature on basis of derivative of coil current drawn through low-impedance transformer winding.

Publications (1)

Publication Number Publication Date
DE19524755A1 true DE19524755A1 (en) 1997-01-09

Family

ID=7766244

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1995124755 Withdrawn DE19524755A1 (en) 1995-07-07 1995-07-07 Switch magnets stroke-monitoring device for electromagnetically operated switch - delivers binary signal denoting travel of armature on basis of derivative of coil current drawn through low-impedance transformer winding.

Country Status (1)

Country Link
DE (1) DE19524755A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650517A1 (en) * 2012-04-11 2013-10-16 TI Automotive Fuel Systems SAS Method for monitoring a fluid injection system and system thereof
WO2017055031A1 (en) 2015-10-02 2017-04-06 BSH Hausgeräte GmbH Household appliance
EP3246718A4 (en) * 2015-06-16 2018-03-14 LG Chem, Ltd. Transformation relay and battery voltage measurement system using same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3150814A1 (en) * 1981-12-22 1983-06-30 Herion-Werke Kg, 7012 Fellbach Device for the contact-free determination of the switching position of the armature of an electromagnet
DE3615908A1 (en) * 1986-05-12 1987-11-19 Siemens Ag Electromagnetic switching apparatus
DE3807278A1 (en) * 1988-03-05 1989-09-14 Tech Ueberwachungs Verein Rhei Method for the safety-testing of magnetic valves and measuring arrangement for carrying out the method
DE3913222A1 (en) * 1988-04-22 1989-11-23 Tokyo Keiki Kk ELECTROMAGNETIC DIRECTIONAL VALVE
DE3817770A1 (en) * 1988-05-26 1989-11-30 Daimler Benz Ag Device for the timed operation of an electromagnetic valve
DE3925767A1 (en) * 1988-10-25 1990-04-26 Siemens Ag Control procedure for electromechanical relay - using circuit to reduce coil current and maintain switched state after response
DE4122348A1 (en) * 1990-07-06 1992-01-23 Jatco Corp SOLENOID VALVE FAILURE DETECTING DEVICE
DE4118975A1 (en) * 1991-06-08 1992-12-10 Vdo Schindling Detecting position of core of electromagnetic control element - determining time required for current produced by pulses superimposed on control voltage to achieve defined change
DE4129265A1 (en) * 1991-08-30 1993-03-04 Mannesmann Ag ELECTROMAGNETIC SWITCHGEAR
DE4208367A1 (en) * 1992-03-16 1993-09-23 Bosch Gmbh Robert ELECTROMECHANICAL DOUBLE LIFT MAGNET
DE4242432A1 (en) * 1992-12-16 1994-06-23 Ebern Fahrzeugtech Gmbh Control of electromagnetic valve, solenoid rotary electromagnet or relay

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3150814A1 (en) * 1981-12-22 1983-06-30 Herion-Werke Kg, 7012 Fellbach Device for the contact-free determination of the switching position of the armature of an electromagnet
DE3615908A1 (en) * 1986-05-12 1987-11-19 Siemens Ag Electromagnetic switching apparatus
DE3807278A1 (en) * 1988-03-05 1989-09-14 Tech Ueberwachungs Verein Rhei Method for the safety-testing of magnetic valves and measuring arrangement for carrying out the method
DE3913222A1 (en) * 1988-04-22 1989-11-23 Tokyo Keiki Kk ELECTROMAGNETIC DIRECTIONAL VALVE
DE3817770A1 (en) * 1988-05-26 1989-11-30 Daimler Benz Ag Device for the timed operation of an electromagnetic valve
DE3925767A1 (en) * 1988-10-25 1990-04-26 Siemens Ag Control procedure for electromechanical relay - using circuit to reduce coil current and maintain switched state after response
DE4122348A1 (en) * 1990-07-06 1992-01-23 Jatco Corp SOLENOID VALVE FAILURE DETECTING DEVICE
DE4118975A1 (en) * 1991-06-08 1992-12-10 Vdo Schindling Detecting position of core of electromagnetic control element - determining time required for current produced by pulses superimposed on control voltage to achieve defined change
DE4129265A1 (en) * 1991-08-30 1993-03-04 Mannesmann Ag ELECTROMAGNETIC SWITCHGEAR
DE4208367A1 (en) * 1992-03-16 1993-09-23 Bosch Gmbh Robert ELECTROMECHANICAL DOUBLE LIFT MAGNET
DE4242432A1 (en) * 1992-12-16 1994-06-23 Ebern Fahrzeugtech Gmbh Control of electromagnetic valve, solenoid rotary electromagnet or relay

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650517A1 (en) * 2012-04-11 2013-10-16 TI Automotive Fuel Systems SAS Method for monitoring a fluid injection system and system thereof
EP3246718A4 (en) * 2015-06-16 2018-03-14 LG Chem, Ltd. Transformation relay and battery voltage measurement system using same
US10365333B2 (en) 2015-06-16 2019-07-30 Lg Chem, Ltd. Transformation relay and battery voltage measurement system using same
WO2017055031A1 (en) 2015-10-02 2017-04-06 BSH Hausgeräte GmbH Household appliance
DE102015219145A1 (en) 2015-10-02 2017-04-06 BSH Hausgeräte GmbH household appliance

Similar Documents

Publication Publication Date Title
DE3741734A1 (en) DEVICE FOR MEASURING THE ELECTROMAGNETIC VALUES OF A COIL, ESPECIALLY FOR MEASURING THE ANCHOR POSITION OF A COIL / ANCHOR MAGNETIC SYSTEM
DE102011083007A1 (en) Method and drive device for driving an electromagnetic actuator
DE102011002630A1 (en) Determining a change in the activation state of an electromagnetic actuator
DE1293873B (en) Circuit arrangement for evaluating the loop status and for differentiating between loop resistances of a telecommunication line, in particular a telephone line
DE3714002C2 (en) Residual current circuit breaker
DE10340213A1 (en) Electromagnetic brake used to hold e.g. x-ray apparatus in selected position, includes unit supplying decreasing alternating current when brake is switched off
DE3723568C2 (en) Residual current circuit breaker
DE19524755A1 (en) Switch magnets stroke-monitoring device for electromagnetically operated switch - delivers binary signal denoting travel of armature on basis of derivative of coil current drawn through low-impedance transformer winding.
DE3016287A1 (en) INTERFACE CIRCUIT FOR USE IN ELECTRONIC CONTROL DEVICES
DE3008561C2 (en) Contactless switch
DE2447363B2 (en) ELECTRICAL SWITCHING ARRANGEMENT FOR A DEVICE FOR MAGNETIZING AND DEMAGNETIZING PERMANENT MAGNETS
DE1170476B (en) Circuit arrangement for testing lines in telecommunications, in particular telephone systems
DE102007041183B4 (en) Method for detecting the switching state
DE3704177A1 (en) Circuit arrangement for telephonically remote-controlled actuation of equipment
DE4408709C2 (en) Short-circuit indicator with reset generator
DE4003179C2 (en)
DE2246312C3 (en) Logical storage
DE3718183A1 (en) Residual current device (differential-current protection circuit breaker)
DE956240C (en) Magnetic counting circuit, consisting of a choke coil which suppresses several pulses and which is connected to the secondary winding of a saturated converter via a rectifier and a consumer
DE3108906A1 (en) &#34;METHOD FOR MONITORING LADDER CURRENTS AND ARRANGEMENT FOR IMPLEMENTING THE METHOD&#34;
DE3045848A1 (en) Inductive proximity switch - has two or more detecting coils coupled to evaluator to increase versatility
DE4221306A1 (en) Sensor control circuit for electronic routing of telephone signals - comprises in=line coil which couples electrical signal with magnetic sensor e.g. Hall element to provide electrical isolation
AT250451B (en) Circuit arrangement for testing lines in telecommunication systems, in particular telephone systems
DE2009282A1 (en) System for controlling a duration
DE4335415C2 (en) Circuit arrangement and method for controlling a consumer, preferably a relay device, with a two-wire switch

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8122 Nonbinding interest in granting licenses declared
8139 Disposal/non-payment of the annual fee