DE19520457A1 - Sensing element for probe used to measure topography of sample surface in raster scan microscope - Google Patents

Sensing element for probe used to measure topography of sample surface in raster scan microscope

Info

Publication number
DE19520457A1
DE19520457A1 DE19520457A DE19520457A DE19520457A1 DE 19520457 A1 DE19520457 A1 DE 19520457A1 DE 19520457 A DE19520457 A DE 19520457A DE 19520457 A DE19520457 A DE 19520457A DE 19520457 A1 DE19520457 A1 DE 19520457A1
Authority
DE
Germany
Prior art keywords
sample surface
lever arm
sensing element
raster scan
probe used
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19520457A
Other languages
German (de)
Other versions
DE19520457C2 (en
Inventor
Uwe Prof Dr Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to DE19520457A priority Critical patent/DE19520457C2/en
Publication of DE19520457A1 publication Critical patent/DE19520457A1/en
Application granted granted Critical
Publication of DE19520457C2 publication Critical patent/DE19520457C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • G01Q60/16Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/04Self-detecting probes, i.e. wherein the probe itself generates a signal representative of its position, e.g. piezoelectric gauge

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The sensor element involves a lever arm whose deflections effect deformation of the tunnel connection. With an electronic unit connected to the electrodes (3), alterations of the tunnel current are recorded and reevaluated as a measurement of the deflection. A measurement carried out in the non-contact mode, vibrates the lever arm with a resonant frequency. Damping of the vibration amplitude with approach to the sample surface due to the probe-sample reactions, then effect the amplitude alteration of the oscillating tunnel current.

Description

Die Erfindung betrifft einen Meßfühler einer Sonde zur Messung der Topographie einer Probenoberfläche. Ein derartiger Meßfühler wird beispielsweise in Rasterkraftmikrosko­ pen eingesetzt.The invention relates to a probe of a probe for measuring the topography of a Sample surface. Such a sensor is used, for example, in atomic force microscopes pen used.

Seit zehn Jahren gibt es die von Binnig et al. (G. Binnig, C. F. Quate and C. Gerber, Phys. Rev. Lett. 56 (1986) 930) entwickelte Rasterkraft-Mikroskopie. Sie hat universa­ le Bedeutung erlangt, weil mit ihr Metall-Halbleiter- und Isolator-Oberflächen im Kontaktmodus mit fast atomarer lateraler Auflösung und im Nicht-Kontaktmodus mit geringerer lateraler Auflösung untersucht werden können. Ein Übersichtsartikel über die Methode der Rasterkraftmikroskopie und die Kräfte zwischen Sonde und Probe die damit gemessen werden können findet sich in E. Meyer and H. Heinzelmann, Springer- Series in Surface Sciences 28 (1992) 99.Binnig et al. (G. Binnig, C. F. Quate and C. Gerber, Phys. Rev. Lett. 56 (1986) 930) developed atomic force microscopy. It has universa le gaining importance because with it metal-semiconductor and insulator surfaces in Contact mode with almost atomic lateral resolution and in non-contact mode with lower lateral resolution can be examined. An overview article about the Atomic force microscopy method and the forces between probe and sample this can be measured in E. Meyer and H. Heinzelmann, Springer- Series in Surface Sciences 28 (1992) 99.

Inzwischen sind Sonden, die aus Siliziumnitrid, aus Siliziumdioxid oder aus n-dotier­ tem, einkristallinem Silizium bestehen, kommerziell erhältlich (Nanosensors GmbH, Aid­ lingen, BRD, Park Scientific Instruments Sunnyvale, CA USA). Die beiden wesentli­ chen Komponenten solcher Sonden sind ein biegsamer Hebelarm und zum Ende hin eine exponierte Spitze. Hebelarm und Spitze stellen den Meßfühler dar. Ein solcher Fühler ist typischerweise 300 µm lang und 10 µm breit. Die Federkonstante beträgt typischerweise 0,01-1 N/m. In the meantime, probes are made of silicon nitride, silicon dioxide or n-doped single-crystalline silicon, commercially available (Nanosensors GmbH, Aid lingen, Germany, Park Scientific Instruments Sunnyvale, CA USA). The two essential Chen components of such probes are a flexible lever arm and one towards the end exposed tip. Lever arm and tip represent the sensor. Such a sensor is typically 300 µm long and 10 µm wide. The spring constant is typically 0.01-1 N / m.  

Es ist zwecks Ermittlung von Oberflächentopographien von Interesse, extrem kleine Be­ wegungen oder Auslenkungen des Meßfühlers, insbesondere Bewegungen bzw. Auslen­ kungen kleiner als 1 Å, registrieren zu können.It is of interest for the purpose of determining surface topographies, extremely small loading movements or deflections of the sensor, especially movements or deflections kungen less than 1 Å, to be able to register.

Es ist Aufgabe der Erfindung, einen Meßfühler zur Registrierung derartiger Bewegungen oder Auslenkungen zu schaffen.It is an object of the invention to provide a sensor for registering such movements or create excursions.

Die Aufgabe wird mit einem Meßfühler gemäß Anspruch gelöst. Vorzugsweise bestehen die Elektroden aus Metallen und der Tunnelkontakt aus dem entsprechenden Metalloxid. Der Hebelarm ist mit einem Tunnel-Kontakt versehen, welcher vorzugsweise am Ende des Hebelarms angebracht ist.The object is achieved with a sensor according to claim. Preferably exist the electrodes made of metals and the tunnel contact made of the corresponding metal oxide. The lever arm is provided with a tunnel contact, which is preferably at the end the lever arm is attached.

Kleine Auslenkungen des Hebelarms bewirken Deformationen einer geeignet angebrach­ ten Tunnelverbindung. Mittels einer hieran angeschlossenen Elektronik werden Ände­ rungen des Tunnelstromes registriert und als Maß für die Auslenkung ausgewertet. Auf diese Weise können bei der Rasterkraftmikroskopie Messungen im Kontaktmodus durchgeführt werden.Small deflections of the lever arm cause deformation of a suitably attached one tunnel connection. Changes are made using electronics connected to it of the tunnel current and evaluated as a measure of the deflection. On In this way, measurements in contact mode can be carried out in atomic force microscopy be performed.

Wird eine Messung im dynamischen Nicht-Kontaktmodus durchgeführt, so schwingt der Hebelarm mit seiner Resonanzfrequenz. Dämpfungen der Schwingungsamplitude bei Annäherung an die Probenoberfläche aufgrund von Sonden - Proben - Wechselwirkun­ gen bewirken dann Amplitudenänderungen des oszillierenden Tunnelstroms.If a measurement is carried out in dynamic non-contact mode, the oscillates Lever arm with its resonance frequency. Damping the vibration amplitude at Approach to the sample surface due to probe - sample interaction gen then cause changes in the amplitude of the oscillating tunnel current.

Der Meßfühler ist unter Extrembedingungen einsetzbar und zwar insbesondere bei tiefen Temperaturen und/oder Ultrahochvakuumbedingungen. Konventionelle Meßfühler sind für einen derartigen Einsatz kaum oder wenig geeignet.The sensor can be used under extreme conditions, especially at low ones Temperatures and / or ultra high vacuum conditions. Conventional sensors are hardly or little suitable for such an application.

Bei entsprechend tiefen Temperaturen läßt sich der Tunnelkontakt auch als Josephson- Tunnelkontakt ausführen. Die Elektroden bestehen dann aus supraleitendem Material (Hoch- oder Tieftemperatursupraleiter).At correspondingly low temperatures, the tunnel contact can also be used as a Josephson Execute tunnel contact. The electrodes then consist of superconducting material (High or low temperature superconductors).

Es zeigen: Show it:  

Fig. 1 Meßfühler mit vertikal angebrachtem Josephson-Kontakt Fig. 1 sensor with vertically attached Josephson contact

Fig. 2 Meßfühler mit horizontal angebrachtem Josephson-Kontakt. Fig. 2 probe with horizontally attached Josephson contact.

Fig. 1, a) zeigt eine Aufsicht auf den Meßfühler 1. Auf ihm befinden sich zwei aus Alu­ minium bestehende Elektroden 3, die im Bereich 4 überlappen. Im Überlappungsbereich 4 befindet sich zwischen den Elektroden 3 die Tunnelbarriere 2 (siehe Seitenansicht ge­ mäß Fig. 1, b)), bestehend aus Aluminiumoxyd. Fig. 1 a) shows a plan view of the probe 1. On it there are two electrodes 3 made of aluminum, which overlap in area 4 . In the overlap area 4 is between the electrodes 3, the tunnel barrier 2 (see side view ge according to Fig. 1, b)), consisting of aluminum oxide.

Fig. 2 zeigt einen zweiten möglichen Aufbau des Meßfühlers. Fig. 2 shows a second possible structure of the sensor.

Bei einem weiteren, hier nicht dargestellten Aufbau bildet der Meßfühler 1 unmittelbar eine der beiden Elektroden 3. Es können auch andere, geeignet gewählte Materialien zur Realisierung des Meßfühlers verwendet werden.In another construction, not shown here, the sensor 1 directly forms one of the two electrodes 3 . Other, suitably selected materials can also be used to implement the sensor.

Claims (1)

Meßfühler (1) einer Sonde zur Messung der Topographie einer Probenoberfläche, gekennzeichnet durch einen als Meßinstrument vorgesehenen Tunnelkontakt (2, 3).Sensor ( 1 ) of a probe for measuring the topography of a sample surface, characterized by a tunnel contact ( 2 , 3 ) provided as a measuring instrument.
DE19520457A 1995-06-03 1995-06-03 Sensor probe for measuring the topography of a sample surface Expired - Fee Related DE19520457C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19520457A DE19520457C2 (en) 1995-06-03 1995-06-03 Sensor probe for measuring the topography of a sample surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19520457A DE19520457C2 (en) 1995-06-03 1995-06-03 Sensor probe for measuring the topography of a sample surface

Publications (2)

Publication Number Publication Date
DE19520457A1 true DE19520457A1 (en) 1996-12-05
DE19520457C2 DE19520457C2 (en) 1997-07-31

Family

ID=7763636

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19520457A Expired - Fee Related DE19520457C2 (en) 1995-06-03 1995-06-03 Sensor probe for measuring the topography of a sample surface

Country Status (1)

Country Link
DE (1) DE19520457C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919212B2 (en) 2010-07-16 2014-12-30 Forschungszentrum Juelich Gmbh Infrared sensor comprising tunnel junction for measuring the deformation of a membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0290647A1 (en) * 1987-05-12 1988-11-17 International Business Machines Corporation Oscillating quartz atomic force microscope
DE3922589A1 (en) * 1989-07-10 1991-01-24 Forschungszentrum Juelich Gmbh RASTERKRAFTMIKROSKOP
GB2238161A (en) * 1989-08-18 1991-05-22 Rosser Roy J Attractive atomic force microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0290647A1 (en) * 1987-05-12 1988-11-17 International Business Machines Corporation Oscillating quartz atomic force microscope
DE3922589A1 (en) * 1989-07-10 1991-01-24 Forschungszentrum Juelich Gmbh RASTERKRAFTMIKROSKOP
GB2238161A (en) * 1989-08-18 1991-05-22 Rosser Roy J Attractive atomic force microscope

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HANSMA, P.K.: Squeezable Tunneling Junctions, IBM J.Res.Develop., Vol. 30, No. 4, July 1986, S. 370-373 *
ITOH, T. et al.: Scanning force microscope using a piezoelectric microcantilever,J.Vac.Sci.Technol.B 12 (3), May/June 1994, S. 1581-1585 *
TORTONESE, M. et al.: Atomic resolution with an atomic force microscope using piezoresistive detection, Appl.Phys.Lett. 62 (8), 22. Febr. 1993, S. 834-836 *
US Reissue 33 387 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919212B2 (en) 2010-07-16 2014-12-30 Forschungszentrum Juelich Gmbh Infrared sensor comprising tunnel junction for measuring the deformation of a membrane

Also Published As

Publication number Publication date
DE19520457C2 (en) 1997-07-31

Similar Documents

Publication Publication Date Title
DE19900114B4 (en) Method and device for the simultaneous determination of at least two material properties of a sample surface, including the adhesion, the friction, the surface topography and the elasticity and rigidity
US7617719B2 (en) Method and apparatus for obtaining material property information of a heterogeneous sample using harmonic resonance imaging
DE4324983C2 (en) Acoustic microscope
CH686906A5 (en) Scanning probe microscope with coupled oscillator arrangement
DE10237627A1 (en) A method for determining tribological properties of a sample surface using an atomic force microscope (RKM) and a related RKM
Wandass et al. Magnetic field sensing with magnetostrictive materials using a tunneling tip detector
DE10007617B4 (en) Characterization of magnetic fields
DE19520457A1 (en) Sensing element for probe used to measure topography of sample surface in raster scan microscope
DE102007031112A1 (en) Apparatus and method for investigating surface properties of various materials
Klein et al. Friction force studies on layered materials using an atomic force microscope
DE19519480C2 (en) Magnetic flux sensor with high spatial resolution
Volodin et al. AFM detection of the mechanical resonances of coiled carbon nanotubes
DE2845847A1 (en) TOUCH PROBE
EP0611945B1 (en) Force microscope and method for measuring atomic forces in several directions
Hayashi et al. The fine magnetic image of a high TC SQUID probe microscope
DE102017202455B4 (en) MEMS- or NEMS-based sensor and method for operating such
WO1999058926A1 (en) Scanning force microscope with high-frequency cantilever
Oulevey et al. Mechanical properties studied at the nanoscale using Scanning Local-Acceleration Microscopy (SLAM)
WO2004102583A1 (en) Method and device for the contactless excitation of torsional oscillations in a sprung cantilever, fixed on one side, of an atomic force microscope
Okayama et al. Piezoelectric actuator for scanning tunneling microscopy
Miller et al. Tip reconstruction for the atomic force microscope
DE4443025C2 (en) Method and device for scanning magnetic microscopy
DE3922589C2 (en) Atomic force microscope
El Melegy et al. Large range self-sensing atomic force microscope (LR-SAFM) for surface topography
DE4412383C2 (en) Atomic force microscope with a scanning probe designed as a lever arm clamped on one side

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee