DE19517889A1 - Prepn. of N-acetyl-2-amino-2-desoxy-beta-D-glucopyranosides - Google Patents

Prepn. of N-acetyl-2-amino-2-desoxy-beta-D-glucopyranosides

Info

Publication number
DE19517889A1
DE19517889A1 DE19517889A DE19517889A DE19517889A1 DE 19517889 A1 DE19517889 A1 DE 19517889A1 DE 19517889 A DE19517889 A DE 19517889A DE 19517889 A DE19517889 A DE 19517889A DE 19517889 A1 DE19517889 A1 DE 19517889A1
Authority
DE
Germany
Prior art keywords
acetyl
chloride
amino
deoxy
glucopyranosides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19517889A
Other languages
German (de)
Other versions
DE19517889C2 (en
Inventor
Wolfgang Schmidt
Gerhard Dr Kretzschmar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aventis Research and Technologies GmbH and Co KG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to DE19517889A priority Critical patent/DE19517889C2/en
Priority to AT96107500T priority patent/ATE227731T1/en
Priority to EP96107500A priority patent/EP0755939B1/en
Priority to DE59609865T priority patent/DE59609865D1/en
Priority to JP8119828A priority patent/JPH08333381A/en
Priority to CA002176686A priority patent/CA2176686A1/en
Priority to US08/648,717 priority patent/US5696246A/en
Publication of DE19517889A1 publication Critical patent/DE19517889A1/en
Application granted granted Critical
Publication of DE19517889C2 publication Critical patent/DE19517889C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Saccharide Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Prepn. of N-acetyl-2-amino-2-desoxy-beta-D-glucopyranosides comprises reaction of N-acetyl-2-amino-2-desoxy-3,4,6-tri-O-acetyl-alpha-D-glucopyranosyl chloride with a glycosyl acceptor in the presence of zinc chloride (and a 4,4'-dimethoxytriphenylmethyl halide as cocatalyst) in a solvent.

Description

Die Erfindung betrifft ein Verfahren zur gezielten Synthese von β-glycosidisch verknüpften N-Acetyglucosaminderivaten und im besonderen von N-Acetyl-2- amino-2-desoxy-β-D-glucopyranosiden.The invention relates to a method for the targeted synthesis of β-glycosidic linked N-acetyglucosamine derivatives and in particular N-acetyl-2- amino-2-deoxy-β-D-glucopyranosides.

Die Bedeutung der Kohlenhydrate im Rahmen physiologisch relevanter Erkennungsprozesse ist erst in den letzten Jahren näher untersucht und entschlüsselt worden (T. Feizi, Biochem. J. 1987, (245), 1; S. Hakamori, Adv. Cancer Res. 1989, (52), 257; M.P. Bevilacqua et. al., Science 1989, (243), 1160).The importance of carbohydrates in the context of physiologically relevant Recognition processes have only been examined in more detail in recent years have been decrypted (T. Feizi, Biochem. J. 1987, (245), 1; S. Hakamori, Adv. Cancer Res. 1989, (52), 257; M.P. Bevilacqua et. al., Science 1989, (243), 1160).

Man erkannte, daß die Kohlenhydrate, neben den Proteinen und Nucleinsäuren, der dritte wichtige Informationsträger des Lebens sind, da sie in der Regel eine große Anzahl von Stereozentren besitzen und so eine Vielzahl von Informationen beinhalten können. Ihre Anordnung auf der Zelloberfläche in Form von Liganden ermöglicht Ihnen, aufgrund von Rezeptor-Ligandenbindungen eine entscheidende Rolle bei der interzellulären Kommunikation und damit auch bei interzellulären Erkennungsprozessen zu spielen. Infolge dieser besonderen Bedeutung der Kohlenhydrate bei physiologisch relevanten Erkennungsprozessen kommt ihrer Synthese ein gesteigertes Interesse zu.It was recognized that the carbohydrates, in addition to the proteins and nucleic acids, The third important information carrier of life, as they are usually one have a large number of stereo centers and so a lot of information can include. Their arrangement on the cell surface in the form of ligands enables you to make a crucial one based on receptor ligand binding Role in intercellular communication and thus also in intercellular To play recognition processes. As a result of this particular importance of Carbohydrates in physiologically relevant recognition processes come theirs Synthesis increased interest too.

Ein wichtiger Baustein in der Oligosaccaridsynthese stellt das N-Acetyglucosamin (N-Acetyl-2-amino-2-desoxy-D-glucopyranose) 1 dar, das in in vielen physiologisch relevanten Oligosaccharidstrukturen vorkommt (z. B. J.C. Paulson et al., Science 1990, (250), 1130). This is an important building block in oligosaccharide synthesis N-acetyglucosamine (N-acetyl-2-amino-2-deoxy-D-glucopyranose) 1, which in occurs in many physiologically relevant oligosaccharide structures (e.g. J.C. Paulson et al., Science 1990, (250), 1130).  

Bei der Synthese von Oligosacchariden werden Monosaccharidbausteine zusammengefügt, die in der Regel 4 bis 5 Hydroxylgruppen enthalten, welche sich in bezug auf deren Reaktivität nur wenig unterscheiden. Die gezielte Synthese der Oligosaccharide erfordert daher eine komplexe, aufeinander abgestimmte Schutzgruppenstrategie, die eine selektive Einführung und Abspaltung der verschiedenen Schutzgruppen ermöglicht. Bei der Glycosidsynthese ist es wichtig; die C-1-Position des Glycosyldonors zu aktivieren und dabei gleichzeitig die übrigen Hydroxylgruppen zu schützen, so daß diese nicht an der Kupplungsreaktion teilnehmen. Glycosyldonor und Glycosylakzeptor werden in der Regel in Gegenwart eines aktivierenden Katalysators miteinander verknüpft. Hierbei stellt die Kontrolle der Selektivität der glycosidischen Verknüpfung (d. h. α- oder β-Konfiguration des an der erzeugten glycosidischen Bindung beteiligten anomeren Kohlenstoffatoms) ein weiteres Problem dar. Zur Lösung dieses Problems sind die verschiedensten Verfahren entwickelt worden (Übersichten s. z. B. R. R. Schmidt, Pure & Appl. Chem. 1989, (61), 1257).In the synthesis of oligosaccharides, monosaccharide building blocks are used put together, which usually contain 4 to 5 hydroxyl groups, which differ little in their reactivity. The targeted Synthesis of the oligosaccharides therefore requires a complex, one on the other coordinated protection group strategy, which is a selective introduction and The different protective groups can be split off. In the Glycoside synthesis is important; the C-1 position of the glycosyl donor activate while protecting the other hydroxyl groups, so that they do not participate in the coupling reaction. Glycosyl donor and Glycosyl acceptors are usually activated in the presence of an Catalyst linked together. This is the control of selectivity the glycosidic linkage (i.e., α or β configuration of the at the generated glycosidic bond involved anomeric carbon atom) is another problem. To solve this problem are the most varied Processes have been developed (for overviews, see e.g. R. R. Schmidt, Pure & Appl. Chem. 1989, (61), 1257).

Viele Verfahren haben jedoch den Nachteil, daß sie unter Verwendung von teuren oder sehr giftigen Schwermetallen als Katalysatoren geringe Ausbeuten oder schlechte Selektivitäten ergeben.However, many methods have the disadvantage of using expensive or very toxic heavy metals as catalysts low yields or result in poor selectivities.

Zur Darstellung von N-Acetylglucosaminderivaten sind eine Reihe verschiedenster N-Acetylglucosamindonoren eingesetzt worden (z. B. T. Mukaiyama et al., Chem. Lett. 1984, 907; K. Higashi, Chem. Pharm. Bull. 1990, (38), 3280).There are a number of ways to prepare N-acetylglucosamine derivatives various N-acetylglucosamine donors have been used (e.g. T. Mukaiyama et al., Chem. Lett. 1984, 907; K. Higashi, Chem. Pharm. Bull.  1990, (38), 3280).

Für eine effiziente Synthese in größerem Maßstab ist die gute Zugänglichkeit der Startmaterialien von besonderer Bedeutung. Von den verschiedenen N-Acetylglucosamindonoren ist das peracetylierte Chlorid der N-Acetyl-2-amino- 2-desoxy-D-glucopyranose, das N-Acetyl-2-amino-2-desoxy-3,4,6-tri-O-acetyl-α- D-glucopyranosylchlorid 2, aus N-Acetyl-Glucosamin durch Umsetzung mit Acetylchlorid direkt in einer Stufe zugänglich (D. Horton, Org. Synth., Coll. Vol. V, 1973, 1).For an efficient synthesis on a larger scale, the good accessibility is the Starting materials of particular importance. Of the different N-acetylglucosamine donors are the peracetylated chloride of N-acetyl-2-amino 2-deoxy-D-glucopyranose, the N-acetyl-2-amino-2-deoxy-3,4,6-tri-O-acetyl-α- D-glucopyranosyl chloride 2, from N-acetyl-glucosamine by reaction with Acetyl chloride directly accessible in one step (D. Horton, Org. Synth., Coll. Vol. V, 1973, 1).

Als geeigneter Katalysator hat sich Zinkchlorid bewährt, mittels welchem bei der Umsetzung von N-Acetyl-2-amino-2-desoxy-3,4,6-tri-O-acetyl-α-D- glucopyranosylchlorid (2) mit Lactosederivaten a/ß Verhältnisse bezüglich der Konfiguration der Produkte von bis zu 1/5 erreicht werden können (T. Norberg, J. Carbohydr. Chem. 1990, (9), 721).Zinc chloride has proven to be a suitable catalyst, by means of which the Reaction of N-acetyl-2-amino-2-deoxy-3,4,6-tri-O-acetyl-α-D- glucopyranosyl chloride (2) with lactose derivatives a / ß ratios with respect to Configuration of the products of up to 1/5 can be achieved (T. Norberg, J. Carbohydr. Chem. 1990, (9), 721).

In einem kürzlich beschriebenen Verfahren wurde der Glycosyldonor 2 mit verschiedenen Glycosylakzeptoren unter Zinkchlorid-Katalyse in Gegenwart von verschiedenen Cokatalysatoren umgesetzt (R. Bittman, Tetrahedron Lett., 1994, (35), 505). Als Cokatalysator wurde beispielsweise Tritylchlorid (Triphenylmethylchlorid) eingesetzt. Bei Verwendung dieser Katalysatorkombination waren jedoch längere Reaktionszeiten notwendig, und es traten Anomerisierungseffekte auf Kosten der ß-Selektivität auf. Darüber hinaus reagierte eine Vielzahl verschiedener Glycosylakzeptoren unter diesen Bedingungen nicht mit dem Glycosyldonor 2.In a recently described process, the glycosyl donor 2 was used different glycosyl acceptors under zinc chloride catalysis in the presence of various cocatalysts (R. Bittman, Tetrahedron Lett., 1994, (35), 505). Trityl chloride, for example, was used as the cocatalyst (Triphenylmethyl chloride) used. When using this However, longer reaction times were necessary, and anomerization effects occurred at the expense of the β selectivity. About that a large number of different glycosyl acceptors reacted among them Conditions not with the glycosyl donor 2.

Aufgabe der Erfindung ist es, ein Verfahren zur Synthese von β-glycosidisch verknüpften N-Acetylglucosaminderivaten, im besonderen von N-Acetyl-2- amino-2-desoxy-β-D-glucopyranosiden, bereitzustellen, welches bessere Ausbeuten sowie eine höhere β-Selektivität ergibt, keine Anomerisierung der erzeugten glycosidischen Bindung zur Folge hat und auf eine große Zahl von Glycosylakzeptoren, insbesondere Alkoholen, anwendbar ist.The object of the invention is to provide a process for the synthesis of β-glycosidic  linked N-acetylglucosamine derivatives, especially N-acetyl-2- amino-2-deoxy-β-D-glucopyranosiden, which is better Yields and a higher β selectivity results in no anomerization of the generated glycosidic bond and to a large number of Glycosyl acceptors, especially alcohols, is applicable.

Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von N-Acetyl-2-amino-2-desoxy-β-D-glucopyranosiden durch Umsetzung von N- Acetyl-2-amino-2-desoxy-3,4,6-tri-O-acetyl-α-D-glucopyranosylchlorid (Donor 2) mit einem Glycosylakzeptor in Gegenwart von Zinkchlorid und eines Cokatalysators in einem Lösungsmittel, welches Verfahren sich dadurch auszeichnet, daß als Cokatalysator ein 4,4′-Dimethoxytriphenylmethylhalogenid eingesetzt wird.The object is achieved according to the invention by a method for the production of N-acetyl-2-amino-2-deoxy-β-D-glucopyranosides by reacting N- Acetyl-2-amino-2-deoxy-3,4,6-tri-O-acetyl-α-D-glucopyranosyl chloride (donor 2) with a glycosyl acceptor in the presence of zinc chloride and one Cocatalyst in a solvent, which process is characterized distinguishes that as a cocatalyst a 4,4'-dimethoxytriphenylmethyl halide is used.

Vorzugsweise werden bei dem erfindungsgemäßen Verfahren das Zinkchlorid und das 4,4′-Dimethoxytriphenylmethylhalogenid in einem molaren Verhältnis zueinander von 1 : 1 eingesetzt.Zinc chloride is preferred in the process according to the invention and the 4,4'-dimethoxytriphenylmethyl halide in a molar ratio used 1: 1 to each other.

Als Lösungsmittel eignet sich insbesondere Dichlormethan.Dichloromethane is particularly suitable as the solvent.

Bei dem erfindungsgemäßen Verfahren wird vorzugsweise das wohlfeile 4,4′- Dimethoxytriphenylmethylchlorid als Cokatalysator eingesetzt.In the method according to the invention, the cheap 4,4'- Dimethoxytriphenylmethylchloride used as a cocatalyst.

Bei der Variation des Halogenids (Cl, Br, I) der Dimethoxytrityhalogenide (Darstellung siehe: Roedig, A. in Houben Weyl, Bd. V/4, 1960, 595 ff.) kann jedoch kein Unterschied in bezug auf Reaktivität und β-Selektivität beobachtet werden.In the variation of the halide (Cl, Br, I) of the dimethoxytrity halides (For illustration see: Roedig, A. in Houben Weyl, Vol. V / 4, 1960, 595 ff.) however, no difference in reactivity and β selectivity was observed will.

Der Einsatz der erfindungsgemäßen Katalysatorkombination führt zu einer deutlichen Verkürzung der Reaktionszeit im Vergleich zu dem bekannten Verfahren auch bei Einsatz im großen Maßstab. The use of the catalyst combination according to the invention leads to a significant reduction in response time compared to the known Process even when used on a large scale.  

Durch die veränderten Bedingungen kann ferner der Überschuß des Donors 2 gesenkt werden, und sehr unterschiedliche Alkohole können nahezu ohne Einschränkung als Kupplungspartner umgesetzt werden. Die chromatographische Reinigung der Produkte ist durch die veränderten Bedingungen ebenfalls deutlich verbessert. Infolge der kürzeren Reaktionszeit werden Anomerisierungseffekte weitestgehend vermieden, welches die gezielte Synthese von β-glycosidisch verknüpften N-Acetylglucosaminderivaten in guten Ausbeuten ermöglicht.Due to the changed conditions, the excess of donor 2 can be lowered, and very different alcohols can be used almost without Restriction can be implemented as a coupling partner. The chromatographic Cleaning of the products is also clear due to the changed conditions improved. Due to the shorter reaction time there are anomerization effects largely avoided, which the targeted synthesis of β-glycosidic linked N-acetylglucosamine derivatives in good yields.

In den nachfolgenden Beispielen werden die Umsetzungen des N-Acetyl-2- amino-2-desoxy-3,4,6-tri-O-acetyl-α-D-glucopyranosylchlorids 2 mit jeweils unterschiedlichen Glycosylakzeptoren gemäß nachfolgendem Reaktionsschema beschrieben. Die dabei erhaltenen Verbindungen 3a-d sind wertvolle Zwischenstufen beim Aufbau komplexer Oligosaccharide (z. B. W.Stahl et al., Angew. Chem Int. Ed. Engl., 1994, (33), 2096). In the examples below, the reactions of N-acetyl-2- amino-2-deoxy-3,4,6-tri-O-acetyl-α-D-glucopyranosyl chloride 2 with each different glycosyl acceptors according to the following reaction scheme described. The compounds 3a-d obtained are valuable Intermediate stages in the formation of complex oligosaccharides (e.g. W.Stahl et al., Appl. Chem Int. Ed. Engl., 1994, (33), 2096).  

BeispieleExamples

Die ¹H-NMR Spektren wurden mit dem Gerät WT 300 der Fa. Bruker bei 300 MHZ aufgenommen. Zur Dünnschichtchromatographie wurden DC-Fertigplatten der Fa. Merck mit Kieselgel 60 F254 eingesetzt. Zur Säulenchromatograpie wurde Kieselgel 60 (Korngröße 0.040-0.063 mm, 230-400 mesh) der Fa. Merck verwandt.The 1 H-NMR spectra were obtained using the WT 300 from Bruker at 300 MHZ added. Ready-to-use TLC plates were used for thin layer chromatography from Merck with silica gel 60 F254. For column chromatography silica gel 60 (grain size 0.040-0.063 mm, 230-400 mesh) from Fa. Merck related.

Beispiel 1example 1 Darstellung von N-Benzyloxycarbonyl-6-aminohexyl-N-acetyl-2-amino-2-desoxy- 3,4,6-tetra-O-acetyl-β-D-glucopyranosid 3aPreparation of N-benzyloxycarbonyl-6-aminohexyl-N-acetyl-2-amino-2-deoxy- 3,4,6-tetra-O-acetyl-β-D-glucopyranoside 3a

Zu einer Suspension von Zink(II)-chlorid (1 eq., 80 g, 0,595 mol) und 4,4′- Dimethoxytritylchlorid (1 eq., 205 g, 0,595 mol) in trockenem Dichlormethan (3 l) werden das Chlorid 2 (1.3 eq, 282 g, 0,773 mol) und Z-6 Aminohexanol (1 eq. 150 g, 0,595 mol) gegeben. Das Gemisch wird 3 h bei Raumtemperatur gerührt (DC Kontrolle: Methylenchlorid/Methanol 20/1). Nach Zugabe von Methylenchlorid (1 l) wird mit ges. Natriumhydrogencarbonatlösung gewaschen. Nach Entfernen des Lösungsmittels am Rotationsverdampfer wird der Rückstand säulenchromatographisch (Methylenchlorid/Methanol 100/1-20/1) gereinigt. Man erhält das Glycosid 3a in 93% Ausbeute (321 g).
Rf-Wert: 0.35 ( Methylenchlorid/Methanol 20 /1)
¹H-NMR (300 MHZ, CDCl₃): 7,38-7,28 (m, 5H); 6,00 (d, 1H); 5,29 (dd, 1H); 5,12 (dd, 1H); 5.05 (dd, 1H); 4.90 (t, 1H); 4.63 (d, J = 8,0 Hz, 1H); 4.25 (dd, 1H); 4,11 (dd, 1H); 3,90-3,72 (m, 2H); 3,67-3,58 (m, 1H); 3,52-3,43 (m, 1H); 3,26-3,08 (m, 2H); 2,12-1,94 (4 s, 12 H); 160-1,43 (m, 4 H); 1,39-1,28 (m, 4 H) ppm.
The chloride 2 becomes a suspension of zinc (II) chloride (1 eq., 80 g, 0.595 mol) and 4,4′-dimethoxytrityl chloride (1 eq., 205 g, 0.595 mol) in dry dichloromethane (3 l) (1.3 eq, 282 g, 0.773 mol) and Z-6 aminohexanol (1 eq. 150 g, 0.595 mol) were added. The mixture is stirred for 3 h at room temperature (TLC control: methylene chloride / methanol 20/1). After adding methylene chloride (1 l), the mixture is saturated with sat. Washed sodium bicarbonate solution. After removing the solvent on a rotary evaporator, the residue is purified by column chromatography (methylene chloride / methanol 100 / 1-20 / 1). The glycoside 3a is obtained in 93% yield (321 g).
R f value: 0.35 (methylene chloride / methanol 20/1)
1 H-NMR (300 MHz, CDCl₃): 7.38-7.28 (m, 5H); 6.00 (d, 1H); 5.29 (dd, 1H); 5.12 (dd, 1H); 5.05 (dd, 1H); 4.90 (t, 1H); 4.63 (d, J = 8.0 Hz, 1H); 4.25 (dd, 1H); 4.11 (dd, 1H); 3.90-3.72 (m, 2H); 3.67-3.58 (m, 1H); 3.52-3.43 (m, 1H); 3.26-3.08 (m, 2H); 2.12-1.94 (4s, 12H); 160-1.43 (m, 4H); 1.39-1.28 (m, 4H) ppm.

Beispiel 2Example 2 Darstellung von N-Phthaloylamido-2-aminoethyl-N-acetyl-2-amino-2-desoxy- 3,4,6-tetra-O-acetyl-β-D-glucopyranosid 3bPreparation of N-phthaloylamido-2-aminoethyl-N-acetyl-2-amino-2-deoxy- 3,4,6-tetra-O-acetyl-β-D-glucopyranoside 3b

Zu einer Suspension von Zink(II)-chlorid (1 eq., 1,39 g) und 4,4′- Dimethoxytritylchlorid (1 eq., 1,22 g) in trockenem Dichlormethan (40 ml) werden das Chlorid 2 (1.3 eq, 4,97 g) und N-Hydroxyethylphthalimid (1 eq., 2,00 g) gegeben. Das Gemisch wird 1 h bei Raumtemperatur gerührt (DC Kontrolle: Methylenchlorid/Methanol 20/1). Nach Zugabe von Methylenchlorid wird mit ges. Natriumhydrogencarbonatlösung gewaschen. Nach Entfernen des Lösungsmittels am Rotationsverdampfer wird der Rückstand säulenchromatographisch (Methylenchlorid/Methanol 100/1-40/1) gereinigt. Man erhält das Glycosid 3b in 91% Ausbeute (4,94 g).
Rf-Wert: 0.35 ( Methylenchlorid/Methanol 20 /1)
¹H-NMR (300 MHZ, CDCl₃): 7,9 (m, 2 H); 7,7 (m, 2H); 5,95 (d, 1H); 5,30-5,05 (m, 2H); 4,95 (d, J = 8,0 Hz, 1H); 4,20-3,890 (m, 7H); 3,60 (dd, 1H), 2,10-2,00 (4 s, 12 H) pprn.
To a suspension of zinc (II) chloride (1 eq., 1.39 g) and 4,4'-dimethoxytrityl chloride (1 eq., 1.22 g) in dry dichloromethane (40 ml), the chloride 2 (1.3 eq, 4.97 g) and N-hydroxyethylphthalimide (1 eq., 2.00 g). The mixture is stirred at room temperature for 1 h (TLC control: methylene chloride / methanol 20/1). After adding methylene chloride, it is saturated with. Washed sodium bicarbonate solution. After removing the solvent on a rotary evaporator, the residue is purified by column chromatography (methylene chloride / methanol 100 / 1-40 / 1). The glycoside 3b is obtained in 91% yield (4.94 g).
R f value: 0.35 (methylene chloride / methanol 20/1)
1 H-NMR (300 MHz, CDCl₃): 7.9 (m, 2 H); 7.7 (m. 2H); 5.95 (d. 1H); 5.30-5.05 (m, 2H); 4.95 (d, J = 8.0 Hz, 1H); 4.20-3.890 (m, 7H); 3.60 (dd, 1H), 2.10-2.00 (4 s, 12 H) pprn.

Beispiel 3Example 3 Darstellung von Pentyl-N-acetyl-2-amino-2-desoxy-3,4,6-tetra-O-acetyl-β-D- glucopyranosid 3cPreparation of pentyl-N-acetyl-2-amino-2-deoxy-3,4,6-tetra-O-acetyl-β-D- glucopyranoside 3c

Zu einer Suspension von Zink(II)-chlorid (1 eq., 1,55 g) und 4,4′- Dimethoxytritylchlorid (1 eq., 3,84 g) in trockenem Dichlormethan (40 ml) werden das Chlorid 2 (1.3 eq, 5,38 g) und n-Pentanol (1 eq., 2,00 g) gegeben. Das Gemisch wird 1 h bei Raumtemperatur gerührt (DC Kontrolle: Methylenchlorid/Methanol 20/1). Nach Zugabe von Methylenchlorid wird mit ges. Natriumhydrogencarbonatlösung gewaschen. Nach Entfernen des Lösungsmittels am Rotationsverdampfer wird der Rückstand säulenchromatographisch (Methylenchlorid/ Methanol 100/1-40/1) gereinigt. Man erhält das Glycosid 3c in 85% Ausbeute (4,01 g).
Rf-Wert: 0.35 ( Methylenchlorid/Methanol 20 /1)
¹H-NMR (300 MHZ, CDCI₃): 7,38-7,28 (m, 5H); 6,00 (d, 1H); 5,30 (dd, 1H); 5,15 (dd, 1H); 5.05 (dd, 1H); 4.95 (t, 1H); 4.65 (d, J = 8,5 Hz, 1H); 4.20 (dd, 1H); 4,10 (dd, 1H); 3,90-3,70 (m, 2H); 3,67-3,58 (m, 1H); 3,52-,43 (m, 1H); 2,12-,94 (4 s, 12 H); 165-1,30 (m, 8 H) ppm.
To a suspension of zinc (II) chloride (1 eq., 1.55 g) and 4,4'-dimethoxytrityl chloride (1 eq., 3.84 g) in dry dichloromethane (40 ml), the chloride 2 (1.3 eq, 5.38 g) and n-pentanol (1 eq., 2.00 g). The mixture is stirred at room temperature for 1 h (TLC control: methylene chloride / methanol 20/1). After adding methylene chloride, it is saturated with. Washed sodium bicarbonate solution. After removing the solvent on a rotary evaporator, the residue is purified by column chromatography (methylene chloride / methanol 100 / 1-40 / 1). The glycoside 3c is obtained in 85% yield (4.01 g).
R f value: 0.35 (methylene chloride / methanol 20/1)
1 H-NMR (300 MHz, CDCI₃): 7.38-7.28 (m, 5H); 6.00 (d, 1H); 5.30 (dd, 1H); 5.15 (dd, 1H); 5.05 (dd, 1H); 4.95 (t, 1H); 4.65 (d, J = 8.5 Hz, 1H); 4.20 (dd, 1H); 4.10 (dd, 1H); 3.90-3.70 (m, 2H); 3.67-3.58 (m, 1H); 3.52-, 43 (m, 1H); 2.12-.94 (4 s, 12H); 165-1.30 (m, 8H) ppm.

Beispiel 4Example 4 Darstellung von N-Benzyloxycarbonyl-6-aminohexyl-N-acetyl-2-amino-2-desoxy- 3-O-(N-acetyl-2-amino-2-desoxy-3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-4, 6-O- benzyliden-β-D-glucopyranosid 3dPreparation of N-benzyloxycarbonyl-6-aminohexyl-N-acetyl-2-amino-2-deoxy- 3-O- (N-acetyl-2-amino-2-deoxy-3,4,6-tetra-O-acetyl-β-D-glucopyranosyl) -4, 6-O- benzylidene-β-D-glucopyranoside 3d

Zu einer Suspension von Zink(II)-chlorid (1 eq., 0.49 g) und 4,4′- Dimethoxytritylchlorid (1 eq., 1,23 g) in trockenem Dichlormethan (40 ml) werden das Chlorid 2 (1.3 eq, 1 ,72 g) und N-Benzyloxycarbonyl-6-aminohexyl- N-acetyl-2-amino-2-desoxy-4,6-O-benzyliden-β-D-glucopyranosid (1 eq., 2,00 g) gegeben. Das Gemisch wird 1 h bei Raumtemperatur gerührt (DC Kontrolle: Methylenchlorid/Methanol 20/1). Nach Zugabe von Methylenchlorid wird mit ges. Natriumhydrogencarbonatlösung gewaschen. Nach Entfernen des Lösungsmittels am Rotationsverdampfer wird der Rückstand säulenchromatographisch (Methylenchlorid/ Methanol 100/1-40/1) gereinigt. Man erhält das Glycosid 3d in 86% Ausbeute (2,74 g).
Rf-Wert: 0.35 ( Methylenchlorid/Methanol 20 /1)
¹H-NMR (300 MHZ, CDCl₃): 7,50-7,25 (m, 10H); 5,80 (m, 1H); 5,55 (s, 1H); 5,18 (m, 1H); 5,05 (s, 2H); 4,75 (d, 1H); 4,69 (d, J = 8,0 Hz, 1H); 4,60 (d, J = 8.0 Hz, 1H); 4.32-4.00 (m, 5H); 3,80 (m, 3H); 3,50 (m, 1H); 3,17 (m, 2H); 2,15-1,90 (5 s, 15H); 1,60-1,35 (m, 8H) ppm.
To a suspension of zinc (II) chloride (1 eq., 0.49 g) and 4,4′-dimethoxytrityl chloride (1 eq., 1.23 g) in dry dichloromethane (40 ml), the chloride 2 (1.3 eq, 1.72 g) and N-benzyloxycarbonyl-6-aminohexyl-N-acetyl-2-amino-2-deoxy-4,6-O-benzylidene-β-D-glucopyranoside (1 eq., 2.00 g) . The mixture is stirred at room temperature for 1 h (TLC control: methylene chloride / methanol 20/1). After adding methylene chloride, it is saturated with. Washed sodium bicarbonate solution. After removing the solvent on a rotary evaporator, the residue is purified by column chromatography (methylene chloride / methanol 100 / 1-40 / 1). The glycoside 3d is obtained in 86% yield (2.74 g).
R f value: 0.35 (methylene chloride / methanol 20/1)
1 H-NMR (300 MHz, CDCl₃): 7.50-7.25 (m, 10H); 5.80 (m, 1H); 5.55 (s, 1H); 5.18 (m, 1H); 5.05 (s. 2H); 4.75 (d. 1H); 4.69 (d, J = 8.0 Hz, 1H); 4.60 (d, J = 8.0 Hz, 1H); 4.32-4.00 (m, 5H); 3.80 (m, 3H); 3.50 (m, 1H); 3.17 (m. 2H); 2.15-1.90 (5 s, 15H); 1.60-1.35 (m, 8H) ppm.

Claims (4)

1. Verfahren zur Herstellung von N-Acetyl-2-amino-2-desoxy-β-D- glucopyranosiden durch Umsetzung von N-Acetyl-2-amino-2-desoxy- 3,4,6-tri-O-acetyl-α-D-glucopyranosylchlorid mit einem Glycosylakzeptor in Gegenwart von Zinkchlorid und eines Cokatalysators in einem Lösungsmittel, dadurch gekennzeichnet, daß als Cokatalysator ein 4,4′- Dimethoxytriphenylmethylhalogenid eingesetzt wird.1. Process for the preparation of N-acetyl-2-amino-2-deoxy-β-D-glucopyranosides by reacting N-acetyl-2-amino-2-deoxy-3,4,6-tri-O-acetyl- α-D-glucopyranosyl chloride with a glycosyl acceptor in the presence of zinc chloride and a cocatalyst in a solvent, characterized in that a 4,4′-dimethoxytriphenylmethyl halide is used as the cocatalyst. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Zinkchlorid und das 4,4′-Dimethoxytriphenylmethylhalogenid in einem molaren Verhältnis zueinander von 1 : 1 eingesetzt werden.2. The method according to claim 1, characterized in that the zinc chloride and the 4,4'-dimethoxytriphenylmethyl halide in one molar Ratio of 1: 1 can be used. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Lösungsmittel Dichlormethan verwendet wird.3. The method according to claim 1 or 2, characterized in that as Solvent dichloromethane is used. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Cokatalysator 4,4′-Dimethoxytriphenylmethylchlorid eingesetzt wird.4. The method according to any one of claims 1 to 3, characterized in that used as cocatalyst 4,4'-dimethoxytriphenylmethyl chloride becomes.
DE19517889A 1995-05-16 1995-05-16 Process for the targeted synthesis of β-glycosidically linked N-acetylglucosamine derivatives Expired - Fee Related DE19517889C2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE19517889A DE19517889C2 (en) 1995-05-16 1995-05-16 Process for the targeted synthesis of β-glycosidically linked N-acetylglucosamine derivatives
EP96107500A EP0755939B1 (en) 1995-05-16 1996-05-10 Method for the targetted synthesis of beta-glycoside bound N-acetyl glucosamine derivatives
DE59609865T DE59609865D1 (en) 1995-05-16 1996-05-10 Process for the targeted synthesis of beta-glycosidically linked N-acetylglucosamine derivatives
AT96107500T ATE227731T1 (en) 1995-05-16 1996-05-10 METHOD FOR THE TARGETED SYNTHESIS OF BETA-GLYCOSIDIC LINKED N-ACETYL GLUCOSAMINE DERIVATIVES
JP8119828A JPH08333381A (en) 1995-05-16 1996-05-15 Specific synthesizing method for beta-glycoside-bonded n-acetylglucosamine derivative
CA002176686A CA2176686A1 (en) 1995-05-16 1996-05-15 Process for the specific synthesis of .beta.-glycosidically linked n-acetylglucosamine derivatives
US08/648,717 US5696246A (en) 1995-05-16 1996-05-16 Process for the specific synthesis of β-glycosidically linked N-acetylpyranoside derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19517889A DE19517889C2 (en) 1995-05-16 1995-05-16 Process for the targeted synthesis of β-glycosidically linked N-acetylglucosamine derivatives

Publications (2)

Publication Number Publication Date
DE19517889A1 true DE19517889A1 (en) 1996-11-21
DE19517889C2 DE19517889C2 (en) 1998-12-03

Family

ID=7762015

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19517889A Expired - Fee Related DE19517889C2 (en) 1995-05-16 1995-05-16 Process for the targeted synthesis of β-glycosidically linked N-acetylglucosamine derivatives
DE59609865T Expired - Fee Related DE59609865D1 (en) 1995-05-16 1996-05-10 Process for the targeted synthesis of beta-glycosidically linked N-acetylglucosamine derivatives

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59609865T Expired - Fee Related DE59609865D1 (en) 1995-05-16 1996-05-10 Process for the targeted synthesis of beta-glycosidically linked N-acetylglucosamine derivatives

Country Status (6)

Country Link
US (1) US5696246A (en)
EP (1) EP0755939B1 (en)
JP (1) JPH08333381A (en)
AT (1) ATE227731T1 (en)
CA (1) CA2176686A1 (en)
DE (2) DE19517889C2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19617019A1 (en) * 1996-04-27 1997-11-06 Beiersdorf Ag Alkyl-2-acetamino-2-deoxy-glucopyranoside-uronic acids and derivatives, their preparation and their use as surfactants in cosmetic and pharmaceutical preparations
PT1001961E (en) * 1997-08-08 2005-04-29 Aventis Pharma Gmbh SUBSTITUTED TETRAHYDROPYRANE DERIVATIVES AS A PROCESS FOR THEIR PREPARATION
EP1247819A1 (en) * 2001-04-04 2002-10-09 Dainichiseika Color & Chemicals Mfg. Co. Ltd. Purified chitins and production process thereof
KR100714936B1 (en) * 2002-10-09 2007-05-10 카오 가부시키가이샤 ?-acetylglucosamine Derivatives and Use Thereof
CN100358911C (en) * 2002-10-09 2008-01-02 花王株式会社 N-acetylglucosamine derivatives and use thereof
CN102241710A (en) * 2011-04-21 2011-11-16 南通大学 Salidroside analogues as well as preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994019360A1 (en) * 1993-02-23 1994-09-01 The Trustees Of Princeton University Solution and solid-phase formation of glycosidic linkages

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243035A (en) * 1990-02-27 1993-09-07 Drug Delivery System Institute, Ltd. Sialic acid-containing glycolipid derivatives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994019360A1 (en) * 1993-02-23 1994-09-01 The Trustees Of Princeton University Solution and solid-phase formation of glycosidic linkages

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Chem. Pharm. Bull, 1990, 38(12), 3280-3282 *
Chemical Reviews, 1977, 77, 189 *
Chemistry letters, 1984, 907-910 *
J. Carbchydr. Chem., 1990, 9, 721 *
Pure & Appl. Chem., 1989, 61(7), 1257-1270 *
Tetrahedron letters, 1980, 21, 2683-2686 *
Tetrahedron letters, 36(4), 505-508 *

Also Published As

Publication number Publication date
EP0755939A2 (en) 1997-01-29
DE59609865D1 (en) 2002-12-19
CA2176686A1 (en) 1996-11-17
JPH08333381A (en) 1996-12-17
DE19517889C2 (en) 1998-12-03
EP0755939B1 (en) 2002-11-13
ATE227731T1 (en) 2002-11-15
EP0755939A3 (en) 1998-11-04
US5696246A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
CH655728A5 (en) ERYTHROMYCIN A COMPOUNDS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE.
EP0369182B1 (en) Antitumour saccharide conjugates
EP0048967B1 (en) Process for the production of 4'-deoxydaunorubicin and 4'-deoxydoxorubicin, and 4'-epi-4'-trifluoromethyl-sulphonyloxy-n-trifluoroacetyl daunorubicin
CH622529A5 (en) Process for the preparation of anthracycline glycosides and optically active anthracyclinones
DE3444051C2 (en) New retinoids, their preparation and use
DE2555479A1 (en) PROCESS FOR THE PREPARATION OF 3 ', 4'-ALPHA-EPOXYNEAMINE AND RELATED AMINOGLYCOSIDIC ANTIBIOTICS AND THE COMPOUNDS SO PREPARED
EP0755939B1 (en) Method for the targetted synthesis of beta-glycoside bound N-acetyl glucosamine derivatives
DD141836A5 (en) PROCESS FOR THE PRODUCTION OF POLYNUCLEOTIDES WITH A SPECIFIC SEQUENCE
EP0212400A2 (en) Method for the preparation of sphingosin derivatives
EP0130327B1 (en) Moenomycin-a derivatives, their preparation and their use as antibiotics
EP0946578B1 (en) Phosphanes, their method of production and use in metal complexes
DE3028339A1 (en) NEW INTERMEDIATE PRODUCTS FOR THE PRODUCTION OF SPECTINOMYCIN AND ITS ANALOG AND METHOD FOR THE PRODUCTION OF THE INTERIM PRODUCTS CONCERNED
DE3719377C2 (en) Anthracycline glycosides, processes for their preparation and medicaments containing them
Knoben et al. Synthesis of N-unsubstituted, mono-and disubstituted carbohydrate-1-O-carbamates and their behaviour in glycoside syntheses
EP0440078B1 (en) Process for the preparation of retinylglycosides and intermediates for this process
DE3106463C2 (en) Process for the preparation of derivatives of Kanamycin A.
DE69727680T2 (en) Stereospecific mannosylation with high yield
Shing et al. Synthesis of benzyl 2-azido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranoside and 1, 6-anhydro-2-azido-2-deoxy-4-O-β-D-glucopyranosyl-β-D-glucopyranose
DE19517890C2 (en) Process for the mild regioselective ring opening of 4,6-0-benzylidene acetals from hexopyranoses
DE3913326A1 (en) METHOD FOR PRODUCING ETOPOSIDES
EP0365973B1 (en) Process for preparing 4-0-alkyl-rhodomycins
EP0394908A1 (en) Process for producing glucosaminyl-epi-podophyllotoxin derivatives
EP0997471A2 (en) Process for the preparation of glycosides
DE3837755A1 (en) 4-DEMETHOXY-ANTHRACYCLINE DERIVATIVES, METHOD FOR THE PRODUCTION AND USE THEREOF
DE3528654A1 (en) METHOD FOR PRODUCING ALKYLATED HYDROXYL GROUP-FREE GLYCOSYL FLUORIDES

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO KG, 6592

8339 Ceased/non-payment of the annual fee