DE19500136A1 - Opto-electronic component with axial grating period modulation for e.g. semiconductor laser - Google Patents
Opto-electronic component with axial grating period modulation for e.g. semiconductor laserInfo
- Publication number
- DE19500136A1 DE19500136A1 DE1995100136 DE19500136A DE19500136A1 DE 19500136 A1 DE19500136 A1 DE 19500136A1 DE 1995100136 DE1995100136 DE 1995100136 DE 19500136 A DE19500136 A DE 19500136A DE 19500136 A1 DE19500136 A1 DE 19500136A1
- Authority
- DE
- Germany
- Prior art keywords
- grating
- optoelectronic component
- component according
- waveguide
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/124—Geodesic lenses or integrated gratings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0005—Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
- G03F7/001—Phase modulating patterns, e.g. refractive index patterns
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12107—Grating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12145—Switch
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12152—Mode converter
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12164—Multiplexing; Demultiplexing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
Die vorliegende erfindungsgemäße Lösung ermöglicht die Realisierung von optischen Rückstreugittern mit axial variierbarer Gitterperiode und kann in verschiedenartigen photonischen Komponenten angewendet werden, welche auf der Basis von DFB (engl. = distributed feedback) Gittern, DBR (engl. = distributed Bragg reflector) Gittern oder axial mehrfach unterbrochenen Gitterstrukturen (engl. "sampled grating") arbeiten. Für folgende photonische Komponenten ist die Erfindung von Bedeutung: z. B. Laser, Laser- Verstärker, Filter, Koppler, Schalter, Wellenlängen- Konverter, Multiplexer, Wellenleiter-Verzweigungen (engl. splitter), Wellenleiter-Zusammenführungen (engl. combiner), Demultiplexer und Detektoren.The present solution according to the invention enables Realization of optical backscatter grids with axial variable grating period and can be of various types photonic components are applied, which on the Basis of DFB (distributed feedback) grids, DBR (English = distributed Bragg reflector) grating or axial multiple interrupted lattice structures grating "). For the following photonic components the invention is important: z. B. laser, laser Amplifiers, filters, couplers, switches, wavelengths Converter, multiplexer, waveguide branches splitter), waveguide mergers (English combiner), Demultiplexers and detectors.
Zum Stand der Technik gehören folgende Arbeiten, welche thematisch mit der vorliegenden Erfindung zusammenhängen:The following works belong to the prior art, which thematically related to the present invention:
- 1. Aus der Literatur sind Lösungen bekannt, die abrupte Änderungen der Korrugationsperiode in longitudinaler Bauelementerichtung bewirken. Dabei wird z. B. in der zentral gelegenen Sektion des Laser-Resonators mit der Methode der Selbstinterferenz eine größere Korrugationsperiode realisiert als in den Seitensektionen [M. Okai et. al., IEEE J. Quantum Electron 27, 1767 (1991)]. Mit dieser Struktur wurden zwar abrupte Korrugationsperioden-Änderungen erzeugt, aber nicht alle Vorteile, welche eine kontinuierliche Variation der Korrugationsperiode bietet, ausgeschöpft. Der Wellenleiter verläuft in diesem Fall gerade und senkrecht zu den Gitterstrichen.1. Solutions are known from the literature that are abrupt Changes in the corrugation period in longitudinal Effect device direction. Here, for. B. in the centrally located section of the laser resonator with the Method of self-interference a larger Corrugation period realized than in the side sections [M. Okai et. al., IEEE J. Quantum Electron 27, 1767 (1991)]. With this structure, abrupt Corrugation period changes generated, but not all Advantages, which a continuous variation of the Corrugation period offers, exhausted. The waveguide in this case runs straight and perpendicular to the Dashes.
-
2. In gewissem Rahmen ermöglicht auch die Elektronenstrahl-
Litografie (EL) die Variation der Korrugationsperiode in
longitudinaler Richtung. Allerdings ist bei diesem
Verfahren die Differenz zwischen benachbarten
Gitterperioden auf größere Werte begrenzt. Dadurch können
mit EL lediglich DFB-Gitter hergestellt werden, welche eine
kleine Anzahl verschiedener Sektionen aufweisen. Innerhalb
dieser Sektionen ist die effektive Gitterperiode zwar
konstant, sie unterscheidet sich jedoch von Sektion zu
Sektion. [C. Kaden et. al. J. Vac. Sci. Technol. B 10 (6),
Nov./Dez. (1992).]
Es können keine quasi-kontinuierlichen Variationen der Gitterperiode mit dem Ort erreicht werden. Ferner ist EL ein kompliziertes Verfahren und die EL-Schreibzeit ist sehr teuer.2. To a certain extent, electron beam lithography (EL) enables the corrugation period to be varied in the longitudinal direction. In this method, however, the difference between adjacent lattice periods is limited to larger values. As a result, only DFB gratings can be produced with EL that have a small number of different sections. The effective grating period is constant within these sections, but differs from section to section. [C. Kaden et. al. J. Vac. Sci. Technol. B 10 (6), Nov./Dec. (1992).]
No quasi-continuous variations of the grating period with the location can be achieved. Furthermore, EL is a complicated process and the EL write time is very expensive. - 3. Eine weitere bekannte Lösung beinhaltet auf homogenen DFB-Gittern gekippt verlaufende Wellenleiter, welche eine Abweichung der Korrugationsperiode im Wellenleiter von derjenigen des ursprünglichen DFB Gitters ermöglichen. [Hirato Shoji, DE 36 43 361 A1, H 01 S 3/098-C (1987) sowie W. T. Tsang et al. IEEE Phot. Technol. Lett. 5, 978 (1993)].3. Another known solution involves on homogeneous DFB gratings tilted waveguides, which one Deviation of the corrugation period in the waveguide from enable that of the original DFB grid. [Hirato Shoji, DE 36 43 361 A1, H 01 S 3/098-C (1987) as well W. T. Tsang et al. IEEE Phot. Technol. Lett. 5, 978 (1993)].
- 4. Des weiteren ist es bekannt, gekrümmte Wellenleiter auf homogenen DFB-Gitterfeldern zur Definition von Gittern mit axial variierter Gitterperiode zu nutzen [DE-42 33 500.0) sowie H. Hillmer et al. IEEE Photon. Technol. Lett. 5, 10 (1993)].4. Furthermore, it is known to have curved waveguides homogeneous DFB grid fields for the definition of grids with to use axially varied grating period [DE-42 33 500.0) and H. Hillmer et al. IEEE photon. Technol. Lett. 5, 10 (1993)].
Das Ziel der Erfindung ist es, optoelektronische Bauele mente mit individuell zugeschnittenen Eigenschaften für spezielle Anwendungsfälle zu ermöglichen. Dabei wird die Realisierung von optischen Rückkopplungsgittern mit - innerhalb eines Gitterfeldes - kontinuierlich variierbarer Korrugationsperiode angewendet.The aim of the invention is to optoelectronic devices elements with individually tailored properties for to enable special applications. The Realization of optical feedback grids with - within a grid field - continuously variable Corrugation period applied.
Die axiale Variation der Korrugationsperiode innerhalb eines Gitterfeldes wird mittels eines gekrümmt verlaufenden optischen Lichtwellenleiters realisiert, welcher im Bereich eines optischen Rückkopplungs-Gitters liegt. Dabei weist das Rückkopplungs-Gitter in longitudinaler Richtung (z- Richtung) eine Anzahl (n + 1) von Teilbereichen mit unterschiedlicher Korrugationsperiode auf. Die longitudinale Richtung und axiale Richtung (entlang des Wellenleiters d. h. in Richtung des geführten Lichtes) sind bei der vorliegenden Lösung nicht identisch. Die axiale Richtung verläuft entlang der Wellenleiter-Krümmung und beschreibt näherungsweise die gekrümmt verlaufende optische Achse des im Wellenleiter geführten Lichtes. Die Erzeugung der axial variierbaren Korrugationsperiode resultiert aus zwei Effekten: 1. einer Grobabstimmung über den Sprung der Gitterperiode zwischen zwei benachbarten Gitterfeldern und 2. einer kontinuierlichen Feinabstimmung über eine axial variable lokale Kippung des optischen Wellenleiters relativ zu den Gitterstrichen. Der Winkel zwischen dem optischen Wellenleiter und den Gitterlinien variiert in longitudinaler Richtung. Die effektive, lokale Korrugationsperiode, welche aus der lokalen Lichtwellenleiter-Krümmung resultiert, ist aus dem Winkel ϑ(z) berechenbar, wobei ϑ(z) der Winkel zwischen der Senkrechten auf die der Stelle z benachbarte Gitterlinie und der Tangente an den Lichtwellenleiter an der Stelle z ist. Die effektive, lokale Korrugationsperiode an einer Stelle z, welche im Gitterfeld der Ordnungszahl i liegt, berechnet sich nach: Λ(z) = Λi/cos [ϑ(z)]. Dabei ist Λi die Korrugationsperiode des Gitterfeldes der Ordnungszahl i. The axial variation of the corrugation period within a grating field is realized by means of a curved optical fiber, which lies in the area of an optical feedback grating. The feedback grating has a number (n + 1) of partial areas with different corrugation periods in the longitudinal direction (z direction). The longitudinal direction and the axial direction (along the waveguide, ie in the direction of the guided light) are not identical in the present solution. The axial direction runs along the waveguide curvature and describes approximately the curved optical axis of the light guided in the waveguide. The generation of the axially variable corrugation period results from two effects: 1. a rough adjustment via the jump of the grating period between two adjacent grating fields and 2. a continuous fine adjustment via an axially variable local tilt of the optical waveguide relative to the grating lines. The angle between the optical waveguide and the grating lines varies in the longitudinal direction. The effective, local corrugation period, which results from the local optical waveguide curvature, can be calculated from the angle ϑ (z), where ϑ (z) is the angle between the perpendicular to the grating line adjacent to the point z and the tangent to the optical waveguide at the Digit z is. The effective, local corrugation period at a point z, which lies in the grid field of the ordinal number i, is calculated according to: Λ (z) = Λ i / cos [ϑ (z)]. Here Λ i is the corrugation period of the lattice field of atomic number i.
Die Grobabstimmung der Gitterperiode ergibt sich aus der sprungartigen Änderung der Gitterperiode von Gitterfeld zu Gitterfeld. Innerhalb eines Gitterfeldes der Ordnungszahl i ist die Gitterkonstante Λi unverändert. Die sprunghafte Änderung drückt sich im Nichtverschwinden der Differenz Λi - Λi+1 aus. Dabei ist n die Gesamtzahl der individuellen Gitterfelder und i verläuft ganzzahlig im Bereich 1 i n. Λi kann beliebig variiert werden, wobei z. B. alle Λi voneinander verschieden gewählt werden können oder auch die Gitterperioden nichtbenachbarter Gitterfelder wieder übereinstimmen können. Die Länge der individuellen Gitterfelder Li kann ebenfalls beliebig gewählt werden, wobei sich die Gesamtgitterlänge L aus L = L₁ + L₂ + . . . + Ln ergibt. Li kann auch die Länge von gitterfreien Teilab schnitten darstellen. Im Fall eines Laserbauelements oder eines Laserverstärkerbauelements wird Λi sinnvollerweise im Bereich Λmin Λi Λmax gewählt, wobei die korrespondierenden Wellenlängen λi = 2Neff · Λi innerhalb der spektralen Breite des optischen Verstärkungsprofils liegen.The coarse adjustment of the grid period results from the sudden change in the grid period from grid field to grid field. The lattice constant Λ i is unchanged within a lattice field of atomic number i. The sudden change is expressed in the non-disappearance of the difference Λ i - Λ i + 1 . Here n is the total number of individual grid fields and i is an integer in the range 1 i n. Λ i can be varied as desired, z. B. all Λ i can be selected differently from one another or the lattice periods of non-adjacent lattice fields can match again. The length of the individual grid fields L i can also be chosen arbitrarily, the total grid length L being L = L₁ + L₂ +. . . + L n results. L i can also represent the length of grid-free sections. In the case of a laser component or a laser amplifier component, Λ i is expediently chosen in the range Λ min Λ i Λ max , the corresponding wavelengths λ i = 2N eff · Λ i being within the spectral width of the optical amplification profile.
Das Gesamt-Gitterfeld wird entweder abschnittweise holographisch hergestellt, mit Elektronenstrahl-Litographie EL definiert oder mit Ionenstrahl-Lithographie realisiert. In Fig. 1 ist der gekrümmt verlaufende optische Wellenleiter zusammen mit diesem Gesamt-Gitterfeld dargestellt. Dabei kann der gekrümmte optische Wellenleiter in vertikaler Richtung (y-Richtung, senkrecht zur Bildebene) oberhalb oder unterhalb bzw. innerhalb des Gitterfeldes verlaufen. Der optische Wellenleiter schneidet auf Grund seiner Krümmung die in z-Richtung hintereinanderfolgenden Gitterstriche unter verschiedenen Winkeln. Die Änderung dieses Winkels erfolgt zwischen benachbarten Gitterstrichen in derart kleinen Schritten, daß von einer kontinuierlichen Änderung des Winkels und damit einer kontinuierlichen Änderung der axialen Korrugationsperiode innerhalb eines individuellen Gitterfeldes gesprochen werden kann. Entlang der Krümmung (= axiale Richtung) durchläuft das im optischen Wellenleiter geführte Licht ein lokal verschiedenartig gedehntes und teilweise auch ungedehntes Abbild der Gitterstruktur in z-Richtung. Das Gitter kann andererseits auch DBR-artig sein oder eine Übergitterstruktur aufweisen (sampled grating), wobei in z-Richtung zusätzlich eine bestimmte Anzahl gitterfreier Bereiche integriert sind. Die mathematische Funktion, welche die Krümmung des optischen Wellenleiters in der xz-Ebene beschreibt, ist stetig und wenn es zu keinen zusätzlichen Streuverlusten kommen soll, differenzierbar. Die Krümmungen dem Wellenleiters sind gemäßigt, wobei in Fig. 1 die Krümmungen zur Verdeutlichung stark übertrieben sind. Starke Wellenleiterkrümmungen (kleine Krümmungsradien), wie in den Abbildungen übertrieben dargestellt, würden in realen Bauelementen zu größeren Streuverlusten führen. Dies ist z. B. in Halbleiterlasern und Halbleiterlaser- Verstärkern jedoch unerwünscht.The entire grid field is either produced holographically in sections, defined with EL electron beam lithography or realized with ion beam lithography. In Fig. 1 the curved optical waveguide is shown together with this total grating field. The curved optical waveguide can run in the vertical direction (y direction, perpendicular to the image plane) above or below or within the grating field. Due to its curvature, the optical waveguide cuts the grating lines which follow one another in the z direction at different angles. The change of this angle takes place between adjacent grid lines in such small steps that one can speak of a continuous change of the angle and thus a continuous change of the axial corrugation period within an individual grid field. Along the curvature (= axial direction), the light guided in the optical waveguide passes through a locally differently expanded and in some cases also unexpanded image of the grating structure in the z direction. On the other hand, the grid can also be DBR-like or have a superlattice structure (sampled grating), a certain number of grid-free regions being additionally integrated in the z direction. The mathematical function, which describes the curvature of the optical waveguide in the xz plane, is continuous and can be differentiated if no additional scattering losses are to occur. The curvatures of the waveguide are moderate, the curvatures in FIG. 1 being greatly exaggerated for clarification. Strong waveguide curvatures (small radii of curvature), as exaggerated in the figures, would lead to greater scattering losses in real components. This is e.g. B. in semiconductor lasers and semiconductor laser amplifiers undesirable.
Erzielt werden kann eine äußerst präzise Variation der Korrugationsperiode sowie eine gezielte axiale Verteilung der Gesamtphasenverschiebung. Das Verfahren ist ungeachtet der speziellen Bauformen verschiedener photonischer Bauelemente anwendbar, wenn diese auf optischen Rückkopplungsgittern basieren.An extremely precise variation of the can be achieved Corrugation period and a targeted axial distribution the total phase shift. The procedure is irrelevant the special designs of various photonic Components applicable when these are optical Feedback grids are based.
Mittels der erfindungsgemäßen Lösung ist es möglich, die auftretenden geometrischen und kompositionellen Parameter so zu optimieren, daß die Kenngrößen des photonischen Bauelements wesentlich verbessert werden. Für einen Halbleiterlaser können beispielsweise Verbesserungen in Bezug auf folgende Eigenschaften und Parameter erzielt werden:By means of the solution according to the invention it is possible to occurring geometric and compositional parameters to optimize so that the parameters of the photonic Component can be significantly improved. For one Semiconductor lasers can, for example, improvements in Achieved in relation to the following properties and parameters will:
- - kleinere Linienbreiten der optischen Emission, - smaller line widths of the optical emission,
- - maßgeschneidertes räumliches Lochbrennen,- customized spatial hole burning,
- - gezielte Beeinflussung der Stabilität der Oszillation einzelner spektraler Moden,- targeted influence on the stability of the oscillation single spectral modes,
-
- gezielte Veränderung der Hochfrequenzeigenschaften:
- - reduzierter Frequenz-Chirp,
- - höhere Grenzfrequenzen unter hochfrequenter Modu lation,
- - Realisierung flacher Frequenz-Modulations- Charakteristiken,
- - reduced frequency chirp,
- - higher cut-off frequencies under high-frequency modulation,
- - implementation of flat frequency modulation characteristics,
- - Realisierung stabilerer axialer Einwelligkeit auch bei hohen Ausgangsleistungen,- Realization of more stable axial single-shaft also high output power,
- - mögliche Schwellenstrom-Erniedrigung der Hauptmode und mögliche Schwellenstrom-Erhöhung der Seitenmoden,- possible lowering of the main current threshold current and possible increase in threshold current of the side modes,
- - Linearisierung der Licht-Strom Kennlinie,- linearization of the light-current characteristic,
- - Erhöhung der Ausbeute an photonischen Bauelementen bestimmter Spezifikationen,- Increasing the yield of photonic components certain specifications,
- - Erhöhung der abgestrahlten optischen Leistung,- increasing the emitted optical power,
- - Erweiterte Wellenlängen-Durchstimmbarkeit.- Extended wavelength tunability.
BezugszeichenlisteReference list
i Ordnungszahl der individuellen Gitterfelder
n Gesamtzahl der individuellen Gitterfelder
L₁ |
Li | Länge der individuellen Gitterfelder
Ln |
L Gesamtgitterlänge
Λi Gitterperiode des Gitterfeldes der Ordnungszahl i
λi Bragg-Wellenlänge im Gitterfeld der Ordnungszahl i
Neff effektiver Brechungsindex des Wellenleiters
z longitudinale Richtung
ϑ(z) Winkel zwischen der Senkrechten auf die der Stelle z
benachbarte Gitterlinie und der Tangente an den
Lichtwellenleiter an der Stelle z
Λmin kleinste Gitterperiode aller individuellen
Gitterfelder
Λmax größte Gitterperiode aller individuellen
Gitterfelder
$λv spektrale Breite des optischen Verstärkungsprofilsi Ordinal number of the individual grid fields
n Total number of individual grid fields
L₁ |
L i | Length of the individual grid fields
L n |
L total grid length
Λ i lattice period of the lattice field of atomic number i
λ i Bragg wavelength in the lattice field of atomic number i
N eff effective refractive index of the waveguide
z longitudinal direction
ϑ (z) Angle between the perpendicular to the grid line adjacent to point z and the tangent to the optical waveguide at point z
Λ min smallest grid period of all individual grid fields
Λ max largest grid period of all individual grid fields
$ λ v spectral width of the optical gain profile
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1995100136 DE19500136A1 (en) | 1995-01-04 | 1995-01-04 | Opto-electronic component with axial grating period modulation for e.g. semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1995100136 DE19500136A1 (en) | 1995-01-04 | 1995-01-04 | Opto-electronic component with axial grating period modulation for e.g. semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19500136A1 true DE19500136A1 (en) | 1996-07-11 |
Family
ID=7750996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1995100136 Withdrawn DE19500136A1 (en) | 1995-01-04 | 1995-01-04 | Opto-electronic component with axial grating period modulation for e.g. semiconductor laser |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19500136A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2775355A1 (en) * | 1998-02-26 | 1999-08-27 | Alsthom Cge Alcatel | SEMICONDUCTOR OPTICAL REFLECTOR AND MANUFACTURING METHOD |
DE19809167A1 (en) * | 1998-02-26 | 1999-09-09 | Forschungsverbund Berlin Ev | Optoelectronic semiconducting component for generating and amplifying coherent radiation for laser material processing and other applications of high energy laser radiation |
DE19827824A1 (en) * | 1998-02-26 | 1999-12-23 | Forschungsverbund Berlin Ev | Optoelectronic semiconductor component for generation and amplification of coherent light |
FR2780795A1 (en) * | 1998-07-01 | 2000-01-07 | France Telecom | NETWORK OPTICAL FILTER HAVING AN APODIZED SPECTRAL RESPONSE |
US6091755A (en) * | 1997-11-21 | 2000-07-18 | Sdl, Inc. | Optically amplifying semiconductor diodes with curved waveguides for external cavities |
US20160368742A1 (en) * | 2015-06-19 | 2016-12-22 | Albert Handtmann Maschinenfabrik Gmbh & Co. Kg | Receiving basket for a lifting device as well as method for feeding a food processing machine |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4223977A (en) * | 1978-04-25 | 1980-09-23 | Thomson-Csf | Integrated optical demultiplexing circuit |
DE3643361A1 (en) * | 1985-12-18 | 1987-06-19 | Sony Corp | SEMICONDUCTOR LASER |
DE3801764A1 (en) * | 1988-01-22 | 1989-08-03 | Ant Nachrichtentech | WAVELENGTH MULTIPLEXER OR DEMULTIPLEXER, AND METHOD FOR PRODUCING THE WAVELENGTH MULTIPLEXER OR DEMULTIPLEXER |
DE3831345A1 (en) * | 1988-09-15 | 1990-03-29 | Zeiss Carl Fa | METHOD FOR PRODUCING IMAGING OPTICAL ELEMENTS IN PLANAR WAVE GUIDES |
DE4000445A1 (en) * | 1990-01-09 | 1991-07-11 | Siemens Ag | Film or stripe waveguide structure - with optical grating formed at waveguide edge face |
US5052015A (en) * | 1990-09-13 | 1991-09-24 | At&T Bell Laboratories | Phase shifted distributed feedback laser |
DE4208278A1 (en) * | 1992-03-13 | 1993-09-16 | Bosch Gmbh Robert | Integrated optical component eg modulator or switch - provides polymer optical conductor running on polymer material filling positioning slanted trench at connection with glass fibre |
DE4233500A1 (en) * | 1992-10-06 | 1994-04-07 | Ant Nachrichtentech | Optical waveguide for the continuous phase shift of the DFB grating period for optoelectronic components based on DFB grating fields with a constant grating period |
DE4240266A1 (en) * | 1992-12-01 | 1994-06-09 | Bosch Gmbh Robert | Process for the production of optical polymer components with integrated vertical coupling structures |
GB2275347A (en) * | 1993-02-19 | 1994-08-24 | Univ Southampton | Optical waveguide grating formed by transverse optical exposure |
DE4334525A1 (en) * | 1993-10-09 | 1995-04-13 | Deutsche Bundespost Telekom | Optoelectronic component with distributed feedback and variable coupling coefficient |
-
1995
- 1995-01-04 DE DE1995100136 patent/DE19500136A1/en not_active Withdrawn
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4223977A (en) * | 1978-04-25 | 1980-09-23 | Thomson-Csf | Integrated optical demultiplexing circuit |
DE3643361A1 (en) * | 1985-12-18 | 1987-06-19 | Sony Corp | SEMICONDUCTOR LASER |
DE3801764A1 (en) * | 1988-01-22 | 1989-08-03 | Ant Nachrichtentech | WAVELENGTH MULTIPLEXER OR DEMULTIPLEXER, AND METHOD FOR PRODUCING THE WAVELENGTH MULTIPLEXER OR DEMULTIPLEXER |
DE3831345A1 (en) * | 1988-09-15 | 1990-03-29 | Zeiss Carl Fa | METHOD FOR PRODUCING IMAGING OPTICAL ELEMENTS IN PLANAR WAVE GUIDES |
DE4000445A1 (en) * | 1990-01-09 | 1991-07-11 | Siemens Ag | Film or stripe waveguide structure - with optical grating formed at waveguide edge face |
US5052015A (en) * | 1990-09-13 | 1991-09-24 | At&T Bell Laboratories | Phase shifted distributed feedback laser |
DE4208278A1 (en) * | 1992-03-13 | 1993-09-16 | Bosch Gmbh Robert | Integrated optical component eg modulator or switch - provides polymer optical conductor running on polymer material filling positioning slanted trench at connection with glass fibre |
DE4233500A1 (en) * | 1992-10-06 | 1994-04-07 | Ant Nachrichtentech | Optical waveguide for the continuous phase shift of the DFB grating period for optoelectronic components based on DFB grating fields with a constant grating period |
DE4240266A1 (en) * | 1992-12-01 | 1994-06-09 | Bosch Gmbh Robert | Process for the production of optical polymer components with integrated vertical coupling structures |
GB2275347A (en) * | 1993-02-19 | 1994-08-24 | Univ Southampton | Optical waveguide grating formed by transverse optical exposure |
DE4334525A1 (en) * | 1993-10-09 | 1995-04-13 | Deutsche Bundespost Telekom | Optoelectronic component with distributed feedback and variable coupling coefficient |
Non-Patent Citations (4)
Title |
---|
HILLMER,H., et.al.: Continuously distributed phase shifts in chirped DFB lasers using bent waveguides. In: Electronics Letters, 1st Sept. 1994, Vol.30, No.18, S.1483,1484 * |
HILLMER,H., et.al.: Novel tunable semiconductor lasers using continuously chirped distributed feedback gratings with ultrahigh spatial precision. In: Appl. Phys. Lett. 65 (17), 24. Oct. 1994, S.2130-2132 * |
HIROYUKI, ISHII, et.al.: Super Structure Grating (SSG) for Broadly Tunable DBR Lasers. In: IEEE Photonics Technology Letters, Vol.4, No.4, April 1993, S.393-395 * |
TSANG,W.T., et.al.: Control of Lasing Wavelength in Distributed Feedback Lasers by Angling the Active Stripe with Respect to the Grating. In: IEEE Photonics Technology Letters, Vol.5, No.9, Sept. 1993, S.978-980 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6091755A (en) * | 1997-11-21 | 2000-07-18 | Sdl, Inc. | Optically amplifying semiconductor diodes with curved waveguides for external cavities |
US6118803A (en) * | 1997-11-21 | 2000-09-12 | Sdl, Inc. | Optically amplifying semiconductor diodes with curved waveguides for external cavities |
US6118802A (en) * | 1997-11-21 | 2000-09-12 | Sdl, Inc. | Optically amplifying semiconductor diodes with curved waveguides for external cavities |
FR2775355A1 (en) * | 1998-02-26 | 1999-08-27 | Alsthom Cge Alcatel | SEMICONDUCTOR OPTICAL REFLECTOR AND MANUFACTURING METHOD |
EP0939324A1 (en) * | 1998-02-26 | 1999-09-01 | Alcatel | Optical semiconductor reflector und fabrication process thereof |
DE19809167A1 (en) * | 1998-02-26 | 1999-09-09 | Forschungsverbund Berlin Ev | Optoelectronic semiconducting component for generating and amplifying coherent radiation for laser material processing and other applications of high energy laser radiation |
DE19827824A1 (en) * | 1998-02-26 | 1999-12-23 | Forschungsverbund Berlin Ev | Optoelectronic semiconductor component for generation and amplification of coherent light |
US6064685A (en) * | 1998-02-26 | 2000-05-16 | Alcatel | Semiconductor optical reflector and a method of manufacturing the same |
FR2780795A1 (en) * | 1998-07-01 | 2000-01-07 | France Telecom | NETWORK OPTICAL FILTER HAVING AN APODIZED SPECTRAL RESPONSE |
WO2000002078A1 (en) * | 1998-07-01 | 2000-01-13 | France Telecom | Optical filter with apodized spectral response system |
US6549707B1 (en) | 1998-07-01 | 2003-04-15 | France Telecom | Grating-type optical filter with apodised spectral response |
US20160368742A1 (en) * | 2015-06-19 | 2016-12-22 | Albert Handtmann Maschinenfabrik Gmbh & Co. Kg | Receiving basket for a lifting device as well as method for feeding a food processing machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69407312T2 (en) | Integrated semiconductor optical device and manufacturing method | |
DE69607493T2 (en) | Polarization mode selective semiconductor laser, modulation method and optical communication system using this laser | |
DE102009028823B4 (en) | Diode laser and laser resonator for a diode laser with improved lateral beam quality | |
DE3851874T2 (en) | Laser coupled via a grid and radiating from its surface and method for its modulation. | |
DE60026071T2 (en) | TUNABLE LASER SOURCE WITH INTEGRATED OPTICAL AMPLIFIER | |
DE69612104T2 (en) | OPTICAL FILTER | |
EP0890204B1 (en) | Q-switched semiconductor laser | |
DE69805434T2 (en) | FIBER OPTICAL GRIDS | |
DE69603015T2 (en) | LASER | |
DE69532083T2 (en) | OPTICAL DEVICE | |
DE69609547T2 (en) | Semiconductor optical device, drive method and optical communication system | |
DE69101693T2 (en) | Semiconductor wavelength converter. | |
DE69606596T2 (en) | Semiconductor emission device with fast wavelength modulation | |
DE60019658T2 (en) | Multi-wavelength optical multiplexing device, multi-wavelength light source with such a device and optical amplifier | |
DE60011277T2 (en) | LIGHT WAVE GUIDE AND MANUFACTURING METHOD | |
EP0671640A2 (en) | Method for fabricating a grating for an opto-electronic device | |
DE69331426T2 (en) | Optical receiver, semiconductor optical device, and optical communication system using the same | |
DE60202683T2 (en) | TUNABLE LASER | |
DE69301420T2 (en) | Distributed feedback laser | |
EP0704946B1 (en) | Optoelectronic multiwavelength element | |
DE19500136A1 (en) | Opto-electronic component with axial grating period modulation for e.g. semiconductor laser | |
DE69730872T2 (en) | LASER DEVICE | |
DE60220369T2 (en) | Cascade Raman fiber laser and optical system with such a laser | |
EP0216212A2 (en) | External optical resonator for a semiconductor laser | |
DE3889423T2 (en) | Tunable wavelength filter. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8110 | Request for examination paragraph 44 | ||
8127 | New person/name/address of the applicant |
Owner name: ADC TELECOMMUNICATIONS, INC., EDEN PRAIRIE, MINN., |
|
8128 | New person/name/address of the agent |
Representative=s name: EISENFUEHR, SPEISER & PARTNER, 28195 BREMEN |
|
8139 | Disposal/non-payment of the annual fee |