DE1464565B1 - Broadband amplifier with two transistors with a common semiconductor body - Google Patents

Broadband amplifier with two transistors with a common semiconductor body

Info

Publication number
DE1464565B1
DE1464565B1 DE19631464565D DE1464565DA DE1464565B1 DE 1464565 B1 DE1464565 B1 DE 1464565B1 DE 19631464565 D DE19631464565 D DE 19631464565D DE 1464565D A DE1464565D A DE 1464565DA DE 1464565 B1 DE1464565 B1 DE 1464565B1
Authority
DE
Germany
Prior art keywords
terminals
transistors
transistor
network
semiconductor body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19631464565D
Other languages
German (de)
Inventor
Jacques Eldin
Marc Savelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAVELLI RENEE
Original Assignee
SAVELLI RENEE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAVELLI RENEE filed Critical SAVELLI RENEE
Publication of DE1464565B1 publication Critical patent/DE1464565B1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34Dc amplifiers in which all stages are dc-coupled
    • H03F3/343Dc amplifiers in which all stages are dc-coupled with semiconductor devices only
    • H03F3/347Dc amplifiers in which all stages are dc-coupled with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0711Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors
    • H01L27/0716Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors in combination with vertical bipolar transistors and diodes, or capacitors, or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • H03F1/48Modifications of amplifiers to extend the bandwidth of aperiodic amplifiers

Description

Die Erfindung betrifft einen Breitbandverstärker, der zwei Transistoren mit einem gemeinsamen Halbleiterkörper aufweist.The invention relates to a broadband amplifier which has two transistors with a common semiconductor body having.

Es ist bekannt, daß ein Transistor auch bei völligem Fehlen äußerer Einflüsse zum Schwingen kommen und dadurch jede Verstärkung unmöglich machen kann. Häufig wird daher insbesondere bei Verstärkern mit hohem Verstärkungsgrad die innere Rückwirkung der Transistoren durch eine äußere Rückwirkung mit Hilfe eines sogenannten Neutrodyn-Kreises kompensiert. Ein Netzwerk mit zwei Klemmenpaaren, das durch einen Transistor und seinen Neutrodyn-Kreis gebildet wird, hat praktisch keine eigene Rückwirkung mehr. Es ist stabil, seine Eingangsimpedanz ist unabhängig von der Belastung und seine Ausgangsimpedanz ist unabhängig von derjenigen des Generators.It is known that a transistor can vibrate even in the absence of any external influences and thereby can make any reinforcement impossible. It is therefore often used, particularly in the case of amplifiers with a high degree of amplification, the internal reaction of the transistors through an external reaction compensated with the help of a so-called neutrodyne circle. A network with two pairs of terminals, that is formed by a transistor and its neutrodyne circle has practically none own retroactive effect more. It is stable, its input impedance is independent of the load and its output impedance is independent of that of the generator.

Es gibt nun Fälle, bei denen derartige Netzwerke nicht mehr ausreichen, beispielsweise zur Bildung von Zwischenfrequenzverstärkern mit sehr breitem Frequenzband.There are now cases in which such networks are no longer sufficient, for example for education of intermediate frequency amplifiers with a very wide frequency band.

Es sind nun ferner verstärkende Netzwerke bekannt, die aus zwei Feldeffekttransistoren mit gemeinsamem Halbleiterkörper bestehen. Auf diese Weise soll die Richtungsgebundenheit, d. h. Fehlen einer Rückwirkung zwischen dem Ausgang der beiden Transistoren und dem entsprechenden Eingang, erhöht werden.There are now also known reinforcing networks, which consist of two field effect transistors with a common Semiconductor bodies exist. In this way, the directionality, i. H. Lack of retroactive effect between the output of the two transistors and the corresponding input, increased will.

Der Erfindung liegt nun die Aufgabe zugrunde, ein Halbleiterbauelement zu schaffen, das eine bessere Richtungsgebundenheit als die bisher bekannten Halbleiterbauelemente aufweist.The invention is now based on the object of creating a semiconductor component that has a better one Has directionality than the previously known semiconductor components.

Gemäß der Erfindung wird dies bei dem eingangs genannten Breitbandverstärker dadurch erreicht, daß der Verstärker aus einem Feldeffekttransistor besteht, wobei die Senkenzone des Feldeffekttransistors und Emitterzone des Flächentransistors durch den gleichen Halbleiterbereich gebildet werden.According to the invention, this is achieved in the broadband amplifier mentioned at the outset in that the amplifier consists of a field effect transistor, the sink zone of the field effect transistor and Emitter zone of the junction transistor are formed by the same semiconductor region.

Das Ersatzschaltbild des Breitbandverstärkers nach der Erfindung besteht aus an zwei Klemmenpaaren aktiven Schaltungen, wobei die Ausgangsklemmen eines Feldeffekttransistors mit den Eingangsklemmen eines Flächentransistors verbunden sind.The equivalent circuit diagram of the broadband amplifier according to the invention consists of two pairs of terminals active circuits, the output terminals of a field effect transistor with the input terminals a junction transistor are connected.

Ein Ausführungsbeispiel der Erfindung wird nachfolgend an Hand der Zeichnung erläutert, in derAn embodiment of the invention is explained below with reference to the drawing, in which

F i g. 1 das Ersatzschaltbild eines nach der Erfindung ausgebildeten Breitbandverstärkers zeigt;F i g. 1 shows the equivalent circuit diagram of a broadband amplifier designed according to the invention;

Fig. 2, 3, 4 und 5 zeigen die bauliche Ausführung von Breitbandverstärkern nach der Erfindung. 2, 3, 4 and 5 show the structural design of broadband amplifiers according to the invention.

Die F i g. 1 zeigt zwei in Reihe geschaltete Netzwerke 1O1, 1O2 mit je zwei Paar Klemmen. Eine Wechselspannungsquelle 2 mit dem inneren Widerstand 3 ist zwischen die Eingangsklemmen H1, H2 des Netzwerkes 1O1 geschaltet, dessen Ausgangsklemmen 2I1, 22j mit dem Eingangsklemmen H2, 122 des Netzwerkes 1O2 verbunden sind. Die Ausgangsklemmen 2I2, 222 des Netzwerkes 1O2 sind mit den Klemmen eines Verbraucherwiderstandes 4 verbunden.The F i g. 1 shows two networks 1O 1 , 1O 2 connected in series, each with two pairs of terminals. An AC voltage source 2 with the internal resistor 3 is connected between the input terminals H 1 , H 2 of the network 1O 1 , whose output terminals 2I 1 , 22j are connected to the input terminals H 2 , 12 2 of the network 1O 2 . The output terminals 2I 2 , 22 2 of the network 1O 2 are connected to the terminals of a consumer resistor 4.

Das Netzwerk 1O1 wird von einem Feldeffekttransistor 30 in Quellenelektrodenschaltung (d. h. mit der den Ein- und Ausgangskreisen gemeinsamen Quellenelektrode) mit einem umleitenden Halbleiterkörper gebildet, dessen Steuerelektrode 31 mittels einer Gleichspannungsquelle 34 über die Wechselspannungsquelle 2 und ihren inneren Widerstand 3 negativ in bezug auf die Quellenelektrode 32 vorgespannt ist. Die Senkenelektrode 33 ist mit der Ausgangsklemme 2I1 verbunden, die ihrerseits mit der Eingangsklemme H2 des Netzwerkes 1O2 verbunden ist, und die Quellenelektrode 32 ist mit der Ausgangsklemme 22t verbunden, die wiederum an Erde und an die Eingangsklemme 122 des Netzwerkes 1O2 gelegt ist.The network 1O 1 is formed by a field effect transistor 30 in the source electrode circuit (ie with the source electrode common to the input and output circuits) with a diverting semiconductor body, the control electrode 31 of which is negative with respect to the AC voltage source 2 and its internal resistance 3 by means of a DC voltage source 34 via the AC voltage source 2 Source electrode 32 is biased. The sink electrode 33 is connected to the output terminal 2I 1 , which in turn is connected to the input terminal H 2 of the network 1O 2 , and the source electrode 32 is connected to the output terminal 22 t , which in turn is connected to ground and to the input terminal 12 2 of the network 1O 2 is placed.

Das Netzwerk 1O2 besteht aus einem in Basisschaltung geschalteten npn-Transistor 40, dessen Emitter mit der Eingangsklemme H2 und dessen Kollektor mit der Ausgangsklemme 2I2 verbunden ' ist, und dessen Basis durch eine Spannungsquelle 44 positiv vorgespannt ist, deren Minuspol mit der Eingangsklemme 122 und der Erde verbunden ist. Eine Gleichspannungsquelle 46, deren negativer Pol ebenfalls über die Klemme 122 an Erde gelegt ist, spannt den Kollektor des Transistors 40 über die Ausgangsklemme 222, den Belastungswiderstand 4 und die Ausgangsklemme 2I2 positiv vor.The network 1O 2 consists of a base-connected npn transistor 40, the emitter of which is connected to the input terminal H 2 and the collector of which is connected to the output terminal 2I 2 , and the base of which is positively biased by a voltage source 44, the negative of which is connected to the input terminal 12 2 and connected to the earth. A DC voltage source 46 whose negative pole is connected to earth also through the terminal 12 2, biases the collector of the transistor 40 through the output terminal 22 2, the load resistor 4 and output terminal 2I 2 positive.

Die F i g. 2 zeigt ein Netzwerk 10 mit zwei Paar Klemmen H1, 12, und 2I2, 222, das der Serienschaltung der beiden Netzwerke 1O1, 1O2 in Fig. 1 entspricht. The F i g. 2 shows a network 10 with two pairs of terminals H 1 , 12 and 2I 2 , 22 2 , which corresponds to the series connection of the two networks 1O 1 , 1O 2 in FIG.

In dem Netzwerk 10 mit zwei Paar Klemmen werden die beiden Transistoren 30 und 40 der F i g. 1 durch ein einziges Halbleiterelement gebildet. Es hat einen ersten η-leitenden Bereich mit einer Anschlußquellenelektrode 32 mit ohmschem Kontakt und einer durch einen p-leitenden Bereich gebildeten Steuerelektrode 31. Dieser p-leitende Bereich bildet einen pn-übergang mit dem ersten η-leitenden Bereich und bestimmt dort einen Kanalbereich. An diesen ersten Bereich schließen sich hintereinander ein p-leitender Bereich 41, der der Basis des Transistors 40 entspricht, und ein zweiter η-leitender Bereich 45 mit einer Anschlußkollektorelektrode 42 mit ohmschem Kontakt, die mit der Ausgangsklemme 2I2 verbunden ist, an. Dieses Bauelement ist also mit einer Pentodenröhre vergleichbar, weil zwischen der Kathode, die von der Quellenelektrode 32 gebildet wird, und der Anode, die von der Kollektorelektrode 42 gebildet wird, eine Steuerelektrode 31 und ein Schirm, dessen Rolle durch den Basisbereich 41 erfüllt wird, vorhanden sind.In the network 10 with two pairs of terminals, the two transistors 30 and 40 of FIG. 1 formed by a single semiconductor element. It has a first η-conductive area with a connection source electrode 32 with ohmic contact and a control electrode 31 formed by a p-conductive area. This p-conductive area forms a pn-junction with the first η-conductive area and defines a channel area there. A p-conducting area 41, which corresponds to the base of the transistor 40, and a second η-conducting area 45 with a connection collector electrode 42 with an ohmic contact, which is connected to the output terminal 2I 2, are connected in series to this first area. This component is thus comparable to a pentode tube, because between the cathode, which is formed by the source electrode 32, and the anode, which is formed by the collector electrode 42, a control electrode 31 and a screen, the role of which is fulfilled by the base region 41, available.

Dieses Bauelement kann verschiedene geometrische Formen haben: es kann ein Parallelepiped bilden und rechtwinklige ohmsche Kontakte haben, oder zylindrisch sein und ringförmige ohmsche Kontakte haben. Die F i g. 3 stellt ein besonderes Ausführungsbeispiel eines Halbleiterelementes mit einem Aufbau nach F i g. 2 dar, in dem die Steuerelektrode und demzufolge der Kanalbereich geteilt sind, um die elektrische Leistung zu erhöhen.This building element can have different geometrical shapes: it can form a parallelepiped and have right-angled ohmic contacts, or be cylindrical and have annular ohmic contacts. The F i g. 3 illustrates a particular embodiment of a semiconductor element having a structure according to FIG. 2, in which the control electrode and consequently the channel area are divided in order to achieve the to increase electrical output.

Ein Siliziumplättchen, dessen unterer Teil 45 mit η-Leitung einen ohmschen Kontakt 42 als Kollektorelektrode trägt, umfaßt in seinem zentralen Teil eine dünne p-leitende Siliziumzone, die die Basis 41 bildet. Diese Zone ist an ihren Enden umgebogen, um an die Oberfläche des Plättchens zu treten, wo an sie über die ohmschen Kontakte 4I1, 4I2 die äußeren elektrischen Schaltungskreise angeschlossen werden können.A silicon wafer, the lower part 45 of which carries an ohmic contact 42 as a collector electrode with η-line, comprises in its central part a thin p-conductive silicon zone which forms the base 41. This zone is bent over at its ends in order to come to the surface of the plate, where the external electrical circuits can be connected to it via the ohmic contacts 4I 1 , 4I 2.

Der zentrale Teil der Basis 41 ist von einer n-leitenden Siliziumzone bedeckt, in der parallele Rinnen 3O1, 362, 363, 364 mit ungefähr kreisförmigem Schnitt ausgespart sind.The central part of the base 41 is covered by an n-conductive silicon zone in which parallel grooves 3O 1 , 36 2 , 36 3 , 36 4 with an approximately circular section are recessed.

Diese Rinnen sind genügend nahe beieinander, so daß ihre Trennwände Zähne bilden, deren obere, die ohmschen Quellenelektrodenkontakte 32,, 322, 323 These grooves are sufficiently close to one another that their partitions form teeth, the upper, the ohmic source electrode contacts 32, 32 2 , 32 3

tragenden Teile einen breiteren Querschnitt als die Mittelteile dieser Zähne aufweisen. Der Boden der Rinnen 36:, 362, 363, 364, die an ihren Enden durch zwei transversale Rinnen wie 365 miteinander verbunden sind, ist mit einem Metallniederschlag 3I1, 3I2, 3I3, 3I4. bedeckt, der durch eine geeignete Behandlung einen pn-übergang bildet und die Steuerelektrode des Bauelementes darstellt. Diese Steuerelektrode grenzt auf der Höhe der Zähne drei Bereiche 35^ 352, 353 ab, die die Kanalzonen bilden.bearing parts have a wider cross-section than the central parts of these teeth. The bottom of the gutters 36:, 36 2, 36 3, 36 4, the transverse grooves at their ends by two such as 36 5 are connected with each other is with a metal precipitate 3I 1, 3I 2, 3 3I, 3I. 4 covered, which forms a pn junction through a suitable treatment and represents the control electrode of the component. This control electrode delimits three areas 35 ^ 35 2 , 35 3 at the level of the teeth, which form the channel zones.

Die F i g. 4 stellt wie die F i g. 3 ein Bauelement dar, bei dem die p-leitende Basis 41 teilweise von der den ohmschen Kollektorkontakt 42 tragenden Zone 45 befreit ist.The F i g. 4 represents like FIG. 3 shows a component in which the p-type base 41 is partially supported by the the zone 45 carrying the ohmic collector contact 42 is freed.

In der Ausführungsform nach F i g. 5 sind die Wände der Zähne von Bauelementen gemäß den F i g. 3 und 4 von den Kanalzonen durch Isolationsschichten 7O1 bis 7O4. getrennt. Auf diese Weise spielt die Steuerelektrode des abgewandelten Bauelementes nur noch eine rein elektrostatische Rolle, d. h., daß diese Elektrode keinen pn-übergang aufweist und daß sein Polarisationsstrom praktisch Null ist.In the embodiment according to FIG. 5 are the walls of the teeth of components according to FIGS. 3 and 4 from the channel zones through insulation layers 7O 1 to 7O 4 . separated. In this way, the control electrode of the modified component only plays a purely electrostatic role, ie that this electrode has no pn junction and that its polarization current is practically zero.

Anschließend soll nun gezeigt werden, daß ein Bauelement, das aus der Kombination eines Feldeffekttransistors mit einem bipolaren Flächentransistor besteht, im Hinblick auf seine Richtungsgebundenheit vorteilhafte Eigenschaften besitzt.Subsequently, it will now be shown that a component that consists of the combination of a field effect transistor with a bipolar junction transistor, with regard to its directionality has advantageous properties.

Es ist bekannt, daßIt is known that

A BAWAY C DC D

die charakteristische Matrix für ein Netzwerk 1O1 mit zwei Klemmpaaren ist, dessen Eingangsklemmen die Klemmen H1, H1 und dessen Ausgangsklemmen die Klemmen 2I1, 2I1 sind, und daß, wenn man an ein Klemmenpaar 1I1, U1 einen Generator 2 mit der elektromotorischen Kraft eg Volt, dessen innerer Widerstand 3 den Wert rg hat, und an das andere Klemmenpaar 2I1, H1 einen Belastungswiderstand 4 mit dem Wert T1 anlegt, der Leistungszuwachs in Richtung vom ersten Klemmenpaar H1, Yl1 zum zweiten Klemmenpaar 2I1, H1 durch folgende Gleichung gegeben ist: is the characteristic matrix for a network 1O 1 with two pairs of terminals, whose input terminals are terminals H 1 , H 1 and whose output terminals are terminals 2I 1 , 2I 1 , and that if you connect a pair of terminals 1I 1 , U 1 to a generator 2 with the electromotive force e g volts, the internal resistance 3 of which has the value r g , and a load resistor 4 with the value T 1 is applied to the other pair of clamps 2I 1 , H 1 , the increase in power in the direction of the first pair of clamps H 1 , Yl 1 for the second pair of terminals 2I 1 , H 1 is given by the following equation:

Die Gleichung (1) zeigt, daß ein aktives Netzwerk mit zwei Klemmenpaaren um so stärker richtungsgebunden ist, je kleiner der Modul der Determinante J ist und je kleiner er gegenüber Eins ist.Equation (1) shows that an active network with two pairs of terminals is all the more directional is, the smaller the modulus of the determinant J and the smaller it is compared to one.

Es ist andererseits wohlbekannt, daß die für zwei hintereinandergeschaltete Netzwerke mit zwei Klemmenpaaren charakteristische Matrix gleich dem Produkt der charakteristischen Matrizen der einzelnen Netzwerke ist. Daraus ergibt sich, daß der Zuwachs an Leistungsgewinn in umgekehrter Richtung und in der Durchlaßrichtung durch die in Reihe geschalteten Netzwerke mit zwei Klemmenpaaren 1O1 und 1O2, deren charakteristische Matrizen als Determinante J1 bzw. J2 haben, ist:On the other hand, it is well known that the matrix characteristic of two series-connected networks with two pairs of terminals is equal to the product of the characteristic matrices of the individual networks. It follows that the increase in power gain in the opposite direction and in the forward direction through the series-connected networks with two pairs of terminals 1O 1 and 1O 2 , whose characteristic matrices have J 1 and J 2 as determinants, is:

Tr1 Tr 1 vv Vr1 J Vr 1 y

G„ =G "=

Wenn man den Generator in Reihe mit dem Widerstand 4 legt, ohne die Widerstände 3 und 4 zu ändern, wird das so gebildete neue Netzwerk mit zwei Klemmenpaaren durch eine Matrix charakterisiert, die eine Umkehr der Matrix des ersten Netzwerkes darstellt: If you put the generator in series with resistor 4 without changing resistors 3 and 4, the new network thus formed with two pairs of terminals is characterized by a matrix which represents a reversal of the matrix of the first network:

D BD B CACA

τ' — ι2 · ι2 τ '- ι 2 ι 2

— — Jl h ·- - Jl h

An Stelle einer Definition der Netzwerke mit zwei Klemmenpaaren durch ihre charakteristischen Matrizen definiert man den Feldeffekttransistor 1O1 durch seine LeitwertmatrixInstead of defining the networks with two pairs of terminals by their characteristic matrices, the field effect transistor 10 1 is defined by its conductance matrix

wobei die Beziehung zwischen der Leitwertmatrix und der charakteristischen Matrix lautet:where the relationship between the conductance matrix and the characteristic matrix is:

A BAWAY C DC D

y2l y 2l

woraus sich ergibt:from which results:

, _ yn , _ yn

-J1 — ,-J 1 -,

und man definiert den Ubergangstransistor 1O2 durchand the transition transistor 1O 2 is defined by

seine sogenannte hybride Matrix \h\. its so-called hybrid matrix \ h \.

Die Anwendung der Hybriden-Matrix \h\ ist dem Fachmann wohlbekannt und kann beispielsweise in dem Buch »Reference Data for Radio Engineers«, 4. Auflage, S. 504, nachgelesen werden.The use of the hybrid matrix \ h \ is well known to the person skilled in the art and can be read, for example, in the book "Reference Data for Radio Engineers", 4th edition, p. 504.

Die Beziehung zwischen der Hybriden-Matrix | h \ und der charakteristischen Matrix lautet:The relationship between the hybrid matrix | h \ and the characteristic matrix is:

A BAWAY C DC D

wobei J die Determinante AD-BC ist.where J is the determinant AD-BC .

In den nachstehend aufgeführten Rechnungen wirdIn the invoices listed below,

angenommen, daß die Größe J den Modul der 60 woraus sich ergibt: Determinante der Matrizen bezeichnet. Der Leistungsgewinn in umgekehrter Richtung ist also:Assuming that the size J is the module of 60 from which results: Designates the determinant of the matrices. The gain in performance in the opposite direction is:

J*J * AnAt A21A21 h2l h 2l *22_* 22_ 1
Tz2V
1
Item 2 V.

G1 = 4J^-
woraus sich ergibt:
G 1 = 4J ^ -
from which results:

J, =J, =

H21 H 21

= J2.= J 2 .

(1) Typische Werte für eine Admittanz-Matrix | y \ eines Feldeffekttransistors mit einer gemeinsamen Senkenelektrode und der Hybriden-Matrix | h | eines Flächen-(1) Typical values for an admittance matrix | y \ of a field effect transistor with a common drain electrode and the hybrid matrix | h | of a surface

transistors in Basisschaltung gemessen bei niederen Frequenzen (1000 Hz) sind:Common base transistors measured at low frequencies (1000 Hz) are:

Gemeinsamer Kollektor:Common collector:

y I= y I =

A1 =A 1 =

h\ = h \ =

10"7 -2-10-2-10"3 10"6 10 " 7 -2-10-2-10" 3 10 " 6

h I = h I =

2000
- 51
2000
- 51

25 ·10"6 25 x 10 " 6

-5-5

Acc = 1,96 · 10" A cc = 1.96 x 10 "

39 360 · 10"6
- 0,98 0,49 · 10~6
39 360 10 " 6
- 0.98 0.49 x 10 ~ 6

A2 = 3,877 · IO"4. A 2 = 3.877 x IO " 4 .

Aus der Gleichung (2) ergibt sich für den numerischen Wert der Richtungsgebundenheit:Equation (2) gives the numerical value of the directionality:

Zl1 2 · Al = 15 · KT8.Zl 1 2 · Al = 15 · KT 8 .

Zum Vergleich kann man eine analoge Rechnung für ein Bauelement aufstellen, das aus einer Kombination aus zwei Flächentransistoren besteht, von denen einer in Kollektorschaltung und der andere in Emitterschaltung arbeitet, die als »Darlingtonschaltung« bekannt ist. Eine solche Schaltung ist z. B. von John M. Carrol in der amerikanischen Zeitschrift »Electronics« am 29.9.61, S. 115 und 116, Fig. Ib, beschrieben worden. In diesem Fall erhält man für die Richtungsgebundenheit einen rechnerischen Wert von etwa 5 · 10 ~14.For comparison, an analog calculation can be made for a component that consists of a combination of two junction transistors, one of which works in a collector circuit and the other in an emitter circuit, known as the "Darlington circuit". Such a circuit is z. B. by John M. Carrol in the American magazine "Electronics" on 9/29/61, pp. 115 and 116, Fig. Ib. In this case, a calculated value of about 5 · 10 ~ 14 is obtained for the directionality.

Der Transistor 1O1 ist mit einem gemeinsamen Kollektor aufgebaut und der Transistor 1O2 mit einem gemeinsamen Emitter. Die typischen Werte der Hybriden-Matrix dieser Ausführungsform, gemessen bei 1000 Hz sind:The transistor 1O 1 is constructed with a common collector and the transistor 1O 2 with a common emitter. The typical values of the hybrid matrix of this embodiment, measured at 1000 Hz are:

Gemeinsamer Emitter:
W
Common emitter:
W.

2000
50
2000
50

600 · 10"6
25 · 10~6
600 x 10 " 6
25 · 10 ~ 6

Aec = 1,20· 10" 5. A ec = 1.20 x 10 "5.

Die Determinante der Hybriden-Matrix der Kombination dieser beiden Ubergangstransistoren hat also einen Modul Acc ■ Aec = 2,352 · 10~7, woraus ersichtlich ist, daß die Einweg-Ausrichtung wesentlich schlechter ist als diejenige bei der Kombination gemäß der Erfindung.The determinant of the hybrid matrix of the combination of these two transition transistors therefore has a modulus A cc ■ A ec = 2.352 · 10 -7, from which it is seen that the one-way orientation is substantially worse than that in the combination according to the invention.

Claims (1)

Patentanspruch:Claim: Breitbandverstärker, der zwei Transistoren mit einem gemeinsamen Halbleiterkörper aufweist, dadurch gekennzeichnet, daß der Verstärker aus einem Feldeffekttransistor und einem nachgeschalteten bipolaren Flächentransistor besteht, wobei die Senkenzone des Feldeffekttransistors und die Emitterzone des Ubergangstransistors durch den gleichen Halbleiterbereich gebildet werden.Broadband amplifier, which has two transistors with a common semiconductor body, characterized in that the amplifier consists of a field effect transistor and a downstream bipolar junction transistor consists, the sink zone of the field effect transistor and the emitter zone of the transition transistor be formed by the same semiconductor region. Hierzu 1 Blatt Zeichnungen1 sheet of drawings
DE19631464565D 1962-03-22 1963-03-21 Broadband amplifier with two transistors with a common semiconductor body Pending DE1464565B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR891922A FR1325810A (en) 1962-03-22 1962-03-22 Very low inverted gain semiconductor structures and method of manufacturing

Publications (1)

Publication Number Publication Date
DE1464565B1 true DE1464565B1 (en) 1971-05-27

Family

ID=8775111

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19631464565D Pending DE1464565B1 (en) 1962-03-22 1963-03-21 Broadband amplifier with two transistors with a common semiconductor body

Country Status (3)

Country Link
DE (1) DE1464565B1 (en)
FR (1) FR1325810A (en)
GB (1) GB1033602A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1039915A (en) * 1964-05-25 1966-08-24 Standard Telephones Cables Ltd Improvements in or relating to semiconductor devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE966849C (en) * 1952-12-01 1957-09-12 Philips Nv Transistor element and transistor circuit
US2993998A (en) * 1955-06-09 1961-07-25 Sprague Electric Co Transistor combinations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE966849C (en) * 1952-12-01 1957-09-12 Philips Nv Transistor element and transistor circuit
US2993998A (en) * 1955-06-09 1961-07-25 Sprague Electric Co Transistor combinations

Also Published As

Publication number Publication date
FR1325810A (en) 1963-05-03
GB1033602A (en) 1966-06-22

Similar Documents

Publication Publication Date Title
DE2154904C3 (en) Temperature compensated DC reference voltage source
DE1260029B (en) Method for manufacturing semiconductor components on a semiconductor single crystal base plate
DE2309154B2 (en) POWER AMPLIFIER
DE1614144A1 (en) Field effect transistor with isolated gates
DE943964C (en) Semiconductor signal transmission device
DE1564221A1 (en) Semiconductor component of the field effect type, in particular for the implementation of logic functions
DE2061943C3 (en) Differential amplifier
DE2462423B2 (en) Operational amplifier
DE2054863A1 (en) Voltage amplifier
DE2513893C2 (en) Transistor amplifier
DE1489193C3 (en) Method for manufacturing a semiconductor device
DE1464565B1 (en) Broadband amplifier with two transistors with a common semiconductor body
DE1541488A1 (en) Semiconductor cascode amplifier in an integrated circuit
DE1464565C3 (en)
DE1464565C2 (en) Broadband amplifier with two transistors with a common semiconductor body
DE2101279C2 (en) Integrated, lateral transistor
DE1439268B1 (en) Integrated semiconductor circuit arrangement
DE2541887C3 (en) Monolithically integrated semiconductor circuit with an I2 L configuration
DE2560093C3 (en) Symmetrical, controllable alternating current resistance
DE1762009B2 (en) CIRCUIT ARRANGEMENT WITH A FIRST AND A SECOND TRANSISTOR
DE1464829C3 (en) Circuit arrangement with a plurality of circuit elements formed in a semiconductor wafer
DE2263091C2 (en) FET comprising small units in rectangular or hexagonal matrix - with each unit formed of epitaxial, alloy and aluminium layers with source, drain and gate electrode groups
DE958393C (en) Signal transmission arrangement with a transistor with four zones of different conductivity types
DE1278525B (en) Transistor amplifier in which a first and a second transistor of one conduction type are connected together to form a bridge with a first and a second transistor of complementary conduction type
DE2321426A1 (en) BIPOLAR TRANSISTOR IN THIN-FILM TECHNOLOGY