DE1296229B - Use of beryllium as an electrical conductor - Google Patents

Use of beryllium as an electrical conductor

Info

Publication number
DE1296229B
DE1296229B DES94075A DES0094075A DE1296229B DE 1296229 B DE1296229 B DE 1296229B DE S94075 A DES94075 A DE S94075A DE S0094075 A DES0094075 A DE S0094075A DE 1296229 B DE1296229 B DE 1296229B
Authority
DE
Germany
Prior art keywords
beryllium
temperature
electrical
conductor
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DES94075A
Other languages
German (de)
Inventor
Bonmarin Jacques
Burnier Pierre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cegelec SA
Original Assignee
Cegelec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cegelec SA filed Critical Cegelec SA
Publication of DE1296229B publication Critical patent/DE1296229B/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F36/00Transformers with superconductive windings or with windings operating at cryogenic temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/202Electromagnets for high magnetic field strength
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/02Windings characterised by the conductor material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/22Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of hollow conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/884Conductor
    • Y10S505/885Cooling, or feeding, circulating, or distributing fluid; in superconductive apparatus
    • Y10S505/886Cable

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Particle Accelerators (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

Die Erfindung ist gekennzeichnet durch die Verwendung von Beryllium, das auf eine Temperatur unter 150° K abgekühlt ist, in Wicklungen, Leitungen und Verbindungen elektrischer Maschinen oder Geräte, die zum Erzeugen elektrischer, magnetischer oder mechanischer Energie oder zum Umformen elektrischer Energie bestimmt sind.The invention is characterized by the use of beryllium, that has cooled to a temperature below 150 ° K, in windings, cables and Connections of electrical machines or devices that are used to generate electrical, magnetic or mechanical energy or intended for converting electrical energy are.

Es ist bekannt, daß Gewicht und Raumbedarf elektrischer Maschinen oder Geräte bei gleichzeitiger Erhöhung des Wirkungsgrades durch Verwendung von Leitern, die auf sehr niedriger Temperatur gehalten werden, beträchtlich verringert werden können. Diese Verbesserungen ergeben sich aus der starken Abnahme des spezifischen Leitungswiderstandes bei tiefen Temperaturen.It is known that the weight and space requirements of electrical machines or devices with a simultaneous increase in efficiency by using Ladders kept at a very low temperature are considerably reduced can be. These improvements result from the sharp decrease in the specific Line resistance at low temperatures.

Der spezifische Leitungswiderstand eines Metalls ist die Summe zweier Werte: des idealen Leitungswiderstandes, der dem Zusammenwirken der Elektronen mit den Wärmeschwingungen des Kristallgitters entspricht, und des restlichen Widerstandes, der auf Verunreinigungen und auf Fehlerstellen der Kristallgitterstruktur zurückzuführen ist. Der ideale Leitungswiderstand nimmt mit sinkender Temperatur ab, während der restliche Widerstand grundsätzlich unabhängig von der Temperatur ist.The specific line resistance of a metal is the sum of two Values: the ideal line resistance, which is the interaction of the electrons with corresponds to the thermal oscillations of the crystal lattice, and the remaining resistance, which can be attributed to impurities and defects in the crystal lattice structure is. The ideal line resistance decreases with decreasing temperature, during the remaining resistance is basically independent of temperature.

Bei den bisher vorgeschlagenen Anordnungen müssen folgende Voraussetzungen berücksichtigt werden: Um einerseits einen ausreichend niedrigen idealen Leitungswiderstand zu erreichen, sind sehr niedrige Temperaturen erforderlich; man muß praktisch mit den Temperaturen des flüssigen Wasserstoffes, der bei 20,4° K siedet, oder denen des flüssigen Neons, das bei 27,3° K siedet, arbeiten.In the arrangements proposed so far, the following requirements must be met must be taken into account: On the one hand, a sufficiently low ideal line resistance very low temperatures are required to achieve this; you practically have to go with it the temperatures of liquid hydrogen, which boils at 20.4 ° K, or those of liquid neon, which boils at 27.3 ° K, work.

Um andererseits einen ausreichend niedrigen Restwiderstand zu erzielen, werden Leiter hoher Reinheit benötigt; der Anteil der Verunreinigungen muß im allgemeinen zwischen 100 und 1 Teilen je Million (ppm) liegen.On the other hand, in order to achieve a sufficiently low residual resistance, high purity conductors are required; the proportion of impurities must in general between 100 and 1 parts per million (ppm).

Man hat bisher die Maßnahme des Kühlens von Leitern aus sehr reinem Natrium, Kupfer oder Aluminium auf rund 20° K angewandt, um die außerordentlich hohe Leitfähigkeit dieser Metalle bei sehr niedrigen Temperaturen auszunutzen.So far, the measure of cooling conductors from very pure has been used Sodium, copper or aluminum applied to around 20 ° K to make the extraordinarily to take advantage of the high conductivity of these metals at very low temperatures.

Zweck der vorliegenden Erfindung ist es, auf Grund wirtschaftlicher und technischer Erwägungen ein Metall auszuwählen, das eine Verbesserung der Technik der tiefgekühlten Leiter ermöglicht. Es handelt sich dabei um Beryllium, das gegenüber den bisher verwendeten Metallen große Vorteile für die ; Konstruktion elektrischer Maschinen oder Geräte mit tiefgekühlten Leitern aufweist, da es im Zustand industrieller Reinheit bei nicht ganz so niedrigen Temperaturen wie denen des flüssigen Wasserstoffs oder des flüssigen Neons verwendet werden kann. Diese Tatsache ist völlig überraschend, da das zur industriellen Verarbeitung bestimmte Beryllium bis jetzt kein besonders reines Metall darstellt und da aus F i g. 1 zu ersehen ist, daß der Wert des spezifischen Leitungswiderstandes des Berylliums bei sehr niedrigen Temperaturen beträchtlich höher ist als der von Kupfer oder Aluminium.The purpose of the present invention is to be more economical and technical considerations to select a metal that is an improvement in technology the frozen ladder enables. It is beryllium, the opposite the metals used so far have great advantages for the; Construction electrical Machines or devices with frozen ladders, as it is in the state of industrial Purity at temperatures not quite as low as those of liquid hydrogen or liquid neon can be used. This fact is completely surprising since beryllium, which is intended for industrial processing, has not yet been a special one represents pure metal and since FIG. 1 it can be seen that the value of the specific The line resistance of beryllium is considerable at very low temperatures higher than that of copper or aluminum.

Die in F i g. 1 dargestellten Kurven wurden auf Grund von Versuchen bestimmt und zeigen den spezifischen Leitungswiderstand o in Mikroohm-Zentimeter als Funktion der absoluten Temperatur für verschiedene Metalle. Man ersieht daraus, daß der spezifische Leitungswiderstand von besonders reinem Aluminium, Kupfer und Natrium jeweils beträchtlich sinkt, wenn die Temperatur vom Normalwert auf beispielsweise 20° K, den Siedepunkt von Wasserstoff bei atmosphärischem Druck, gesenkt wird.The in F i g. 1 curves shown were based on experiments determined and show the specific line resistance o in microohm centimeters as a function of the absolute temperature for various metals. One can see from this that the specific line resistance of particularly pure aluminum, copper and Sodium each drops considerably when the temperature goes from normal to for example 20 ° K, the boiling point of hydrogen at atmospheric pressure, is lowered.

Der Begriff des geringsten spezifischen Leitungswiderstandes eines Leiters vermittelt aber nur eine unzureichende Vorstellung von dem Leistungsgewinn bei elektrischen Geräten mit tiefgekühlten Leitern. Dieser Leistungsgewinn wird teilweise durch den für den Betrieb der Kühlanlage erforderlichen Energieaufwand aufgezehrt, und der Wirkungsgrad dieser Kühlanlage ist um so geringer, je tiefer die Betriebstemperatur ist. Die Kühlanlage nimmt die durch Joule-Effekt in der Wicklung erzeugte Wärme bei einer Temperatur von T° K auf und gibt diese bei einer etwa der Umgebungstemperatur entsprechenden Temperatur ab, also bei etwa 300° K.The concept of the lowest specific line resistance of a However, Leiters only gives an inadequate idea of the gain in performance for electrical devices with frozen conductors. This gain in performance will partly due to the energy required to operate the cooling system used up, and the efficiency of this cooling system is lower, the lower is the operating temperature. The cooling system takes the joule effect in the winding generated heat at a temperature of T ° K and releases it at about the Ambient temperature, i.e. at around 300 ° K.

Ein unter diesen Bedingungen arbeitendes ideales Kühlgerät hätte nach den Gesetzen der Thermodynamik einen maximalen Energiewirkungsgrad von In der Praxis ist dieser Wirkungsgrad natürlich geringer als der Wirkungsgrad des idealen Geräts. Der maximale energetische Wirkungsgrad beträgt hier wobei M ein Faktor ist, der um so größer wird, je niedriger der Faktor T ist. Bei Kühltemperaturen zwischen 100 und 4° K ergibt sich der Wert von M praktisch aus folgender Gleichung: Auf Grund vorstehend genannter Formeln beträgt der effektive Wirkungsgrad einer mit flüssigem Stickstoff bei 77° K arbeitenden Kühlanlage zu 0,135, einer mit flüssigem Wasserstoff bei 20° K arbeitenden Kühlanlage zu 0,02 und einer mit flüssigem Helium bei 4° K arbeitenden Kühlanlage zu nur 0,0015.According to the laws of thermodynamics, an ideal cooling device working under these conditions would have a maximum energy efficiency of In practice, of course, this efficiency is less than the efficiency of the ideal device. The maximum energetic efficiency is here where M is a factor which becomes larger the lower the factor T is. At cooling temperatures between 100 and 4 ° K, the value of M results practically from the following equation: Based on the above formulas, the effective efficiency of a cooling system working with liquid nitrogen at 77 ° K is 0.135, a cooling system working with liquid hydrogen at 20 ° K is 0.02 and a cooling system working with liquid helium at 4 ° K is only 0 , 0015.

Somit läßt sich die aufzuwendende Gesamtleistung als Funktion der Temperatur T des abgekühlten Leiters bestimmen, wobei die aufzuwendende Gesamtleistung einerseits durch den Joule-Effekt, anderseits durch den Leistungsverbrauch der Kühlanlage gegeben ist, die die freigesetzte Wärmeenergie an die Umgebungsatmosphäre abführt. Es gilt die Gleichung wobei P die aufgewendete Gesamtleistung, A einen von den Abmessungen des Leiters abhängigen Beiwert und t) den spezifischen Leitungswiderstand des Metalls darstellt, der eine Funktion der Temperatur ist (s. F i g. 1).Thus, the total power to be expended can be determined as a function of the temperature T of the cooled conductor, the total power to be expended being given on the one hand by the Joule effect and on the other hand by the power consumption of the cooling system which dissipates the released thermal energy to the surrounding atmosphere. The equation applies where P is the total power expended, A is a coefficient dependent on the dimensions of the conductor and t) is the specific line resistance of the metal, which is a function of temperature (see FIG. 1).

Anstatt den absoluten Wert P zu betrachten, empfiehlt es sich, diesen Gesamtverlust an Leistung mit dem Leistungsverlust Po durch Joule-Effekt in einem Kupferleiter gleicher Abmessungen zu vergleichen, der von einem Strom gleicher Stärke bei einer Temperatur von 70° C (= 343° K) durchflossen wird, die der für elektrische Maschinen üblichen Betriebstemperatur entspricht.Instead of looking at the absolute value P, it is advisable to use this Total loss of power with the power loss Po due to the Joule effect in one Compare copper conductors of the same dimensions to that of a current of the same strength at a temperature of 70 ° C (= 343 ° K), the same as for electrical Machine corresponds to normal operating temperature.

Solange das Verhältnis P : Po größer als 1 oder annähernd gleich 1 bleibt, ist es nicht wirtschaftlich, tiefgekühlte Leiter zu verwenden, mit denen kein wirklicher Leistungsgewinn in bezug auf eine Maschine üblicher Bauart mit Kupferwicklung zu erzielen wäre.As long as the ratio P: Po is greater than 1 or approximately equal to 1 remains, it is not economical to use frozen conductors with which no real power gain in relation to a machine more common Design with copper winding would be achieved.

F i g. 2 zeigt den Kurvenverlauf für das Verhältnis P : Po als Funktion der absoluten Temperatur bei Metallen, mit denen für P : Po ein Wert unter 1 erzielt werden kann.F i g. 2 shows the curve for the ratio P: Po as a function the absolute temperature for metals with which P: Po achieves a value below 1 can be.

Man sieht daraus, daß sich bei der erfindungsgemäßen Verwendung von Beryllium industrieller Reinheit für P : Po ein Wert von 0,5 bereits bei der Temperatur von 150° K ergibt und ein Wert von 0,15 zwischen 60 und 80° K, während beispielsweise Aluminium, das nur 40 Teile pro Million Unreinheiten enthält, erst bei 25° K einen Wert gleicher Größenordnung erzielt und bei annähernd 80° K uninteressant ist.It can be seen that in the use according to the invention of Industrial grade beryllium for P: Po a value of 0.5 already at temperature of 150 ° K and a value of 0.15 between 60 and 80 ° K, while for example Aluminum, which contains only 40 parts per million impurities, does not form until 25 ° K A value of the same order of magnitude is achieved and is uninteresting at approximately 80 ° K.

Das zur experimentellen Ermittlung der in F i g.1 dargestellten Kurve und zur Bestimmung der in F i g. 2 dargestellten, entsprechenden Kurve verwendete Beryllium ist ein Industrieerzeugnis, dessen Gehalt an Verunreinigungen über 0,1% liegt. Es enthält annähernd 1000 Teile pro Million (ppm) Berylliumoxyd, 90 ppm Eisen, 25 ppm Aluminium, 20 ppm Silizium,. 10 ppm Nickel, 10 ppm Chrom und 5 ppm Magnesium.That for the experimental determination of the curve shown in F i g.1 and for the determination of the in F i g. The beryllium used in the corresponding curve shown in FIG. 2 is an industrial product with an impurity content of more than 0.1%. It contains approximately 1000 parts per million (ppm) beryllium oxide, 90 ppm iron, 25 ppm aluminum, 20 ppm silicon. 10 ppm nickel, 10 ppm chromium and 5 ppm magnesium.

Eine der wesentlichen Vorteile der erfindungsgemäßen Verwendung von Beryllium als Leiter liegt darin, daß dieser Leiter nicht mehr auf so niedrige Temperaturen abgekühlt werden muß, wie sie flüssigem Wasserstoff oder flüssigem Neon entsprechen. Man kommt schon etwa beim Siedepunkt von flüssigem Stickstoff an das Minimum des Leistungsverlustes heran.One of the main advantages of the use of the invention Beryllium as a conductor is due to the fact that this conductor is no longer at such low temperatures must be cooled, as they correspond to liquid hydrogen or liquid neon. You already come to the minimum of at the boiling point of liquid nitrogen Loss of performance.

Allerdings ist für wirtschaftliche Erwägungen bei dem erfindungsgemäßen Verfahren nicht allein der geringste Leistungsverlust von Bedeutung. Es gilt auch, die für den Bau und die Wartung der Kühlanlagen erforderlichen Investitionen zu berücksichtigen. Die Geräte zum Verflüssigen von Neon, Wasserstoff oder Helium sind außerordentlich kostspielig. Im Gegensatz dazu werden die Anlagen zum Verflüssigen von Stickstoff industriell hergestellt, wobei die Beschaffungskosten weit unter denen der vorerwähnten Geräte liegen. Außerdem bietet Stickstoff gegenüber den anderen Kühlmitteln eine Vielzahl von Vorteilen: er ist billig, nicht giftig und bedeutet für die Leiter keine Korrosionsgefahr. Ferner gilt Stickstoff als ausgezeichnetes Mittel zur elektrischen Isolierung und läßt sich mit geringem Kostenaufwand verflüssigen. Außerdem ist das Problem der Wärmeisolierung beim Überführen in den flüssigen Zustand für Stickstoff sehr viel leichter zu lösen als für Neon oder Wasserstoff.However, for economic considerations in the invention Procedure does not just matter the slightest loss of performance. It also applies the investments required for the construction and maintenance of the cooling systems consider. The devices for liquefying neon, hydrogen or helium are extremely expensive. In contrast, the plants are used for liquefaction of nitrogen produced industrially, the procurement costs being well below those of the aforementioned devices. It also offers nitrogen over the others Coolants have a variety of advantages: it is cheap, non-toxic and means no risk of corrosion for the ladder. Furthermore, nitrogen is considered excellent Means for electrical insulation and can be liquefied at low cost. In addition, there is the problem of thermal insulation when transferring to the liquid state Much easier to solve for nitrogen than for neon or hydrogen.

Die gemeinsame Verwendung von Beryllium industrieller Reinheit als Leiter und von flüssigem Stickstoff als Kühlmittel für Elektrogeräte bei niedriger Temperatur stellt eine Kombination dar, der in bezug auf technische und wirtschaftliche Gegebenheiten kein anderes Paar aus Metall und Kältestömungsmedium gleichkommt. Diese gemeinsame Vewendung stellt eine vorteilhafte Weiterbildung der vorliegenden Erfindung dar. Dabei kann der flüssige Stickstoff bei einem Druck von 0,2 bis 10 Atmosphären verwendet werden, wobei der Leiter auf eine Temperatur zwischen 65 und 80° K, vorzugsweise zwischen 40 und 150° K, abgekühlt wird.The common use of beryllium as industrial grade Head and of liquid nitrogen as a coolant for electrical appliances at low Temperature is a combination that is technical and economic Realities no other pair of metal and cold flow medium is equal. This common use represents an advantageous further development of the present invention Invention. The liquid nitrogen can at a pressure of 0.2 to 10 Atmospheres are used, with the conductor at a temperature between 65 and 80 ° K, preferably between 40 and 150 ° K, is cooled.

Mit Beryllium größerer Reinheit, das beispielsweise 100 ppm Berylliumoxyd und 100 ppm sonstiger Unreinheiten aufweist, fällt der Leistungsverlust bei 77° K auf rund 811/o des Leistungsverlustes, der in einer bei 70° C arbeitenden Kupferwicklung zu beobachten ist. Es lassen sich noch bessere Resultate erzielen, wenn bei 40° K und einem Verhältnis P : Po von annähernd 0,015 gearbeitet wird.With beryllium of greater purity, for example 100 ppm beryllium oxide and has 100 ppm of other impurities, the power loss drops at 77 ° K to around 811 / o of the power loss in a copper winding working at 70 ° C is to be observed. Even better results can be achieved if at 40 ° K and a ratio P: Po of approximately 0.015 is worked.

In den folgenden Beispielen werden verschiedene Maschinenanordnungen mit Wicklungen, Leitungen oder Anschlüssen aus mit flüssigem Stickstoff tiefgekühlten Leitern beschrieben, für die jedoch kein selbständiger Schutz begehrt wird. Beispiel 1 F i g. 3 zeigt einen Querschnitt durch einen Leiter 1 aus Beryllium in seiner Wärmeisolierung. Dieser Leiter ist zur kontinuierlichen Erzeugung magnetischer Energie bestimmt, die eine große Synchronmaschine erregen soll. Der von Gleichstrom durchflossene Leiter 1 kann massiv ausgebildet sein. Er ist von einem längsgerichteten Kanal 2 durchzogen, in dem flüssiger Stickstoff unter einem ausgewählten Druck zwischen 0,2 und 10 ata strömt. Eine aus reflektierenden Abschirmungen aus aluminiertem Polyäthylen-terep'hthalat bestehende Wärmeisolierung 3 ist zwischen zwei dichten Hülsen 5 und 6 angeordnet, zwischen denen man ein Vakuum von 10-5 Torr hält. Die Hülse 5 ist in die Nut 4 der Maschine eingesetzt. Beispiel 2 F i g. 4 zeigt einen Querschnitt durch die Nut 4 eines erfindungsgemäßen Stators für eine Wechselstrommaschine. Der Leiter 1 wird von Wechselstrom durchflossen und ist in einem magnetischen Wechselfeld angeordnet. Dieser Leiter besteht aus aufeinanderliegenden dünnen Berylliumbändern, um den ungünstigen Einfluß Foucaultscher Ströme und den Hauteffekt auszuschalten. Der Leiter könnte auch aus einem Seil bestehen, das in an sich bekannter Weise aus feinen, gegeneinander isolierten Drähten gebildet wird. Der zur Kühlung flüssige Stickstoff strömt in Leitungen 2, die außerhalb des Leiters vorgesehen sind. Diese Anordnung kann in einer Hülle 6 aus schlecht leitendem oder isolierendem Werkstoff eingebaut sein, welche die Anordnung so dicht abschließt, daß kein flüssiger Stickstoff entweichen kann. Zwischen dieser Hülle 6 und einer aus gleichem Werkstoff gefertigten äußeren Hülle 5 ist eine aus reflektierenden Abschirmungen bestehende Wärmeisolation 3 angeordnet. Außerdem wird in dem Raum zwischen den beiden Hüllen ein sehr hohes Vakuum aufrechterhalten. Beispiel 3 F i g. 5 zeigt eine Wicklung 1, die aus dünnen Beryllium-Bändern oder feinen Drähten besteht, die gegeneinander isoliert und allseitig in flüssigem Stickstoff 2 umgeben sind. Diese Wicklung dient beispielsweise zur Erzeugung eines Magnetfeldes (Spulen eines Leistungsschalters) oder zum Umformen elektrischen Wechselstroms (Spulen eines Transformators). Der flüssige Stickstoff 2 stellt dabei gleichzeitig das Kühlmittel und auch das dielektrische Isolationsmedium dar, da er die für eine derartige Anwendung erforderlichen dielektrischen Eigenschaften besitzt. Die gesamte Anordnung befindet sich in einem doppelten Behälter, zwischen dessen Wandungen 5 und 6 eine Wärmeisolation 3 unter sehr hohem Vakuum angeordnet ist. Beispiel 4 F i g. 6 zeigt eine Gesamtanordnung. Eine Kühlanordnung 7 speist das Elektrogerät 8 mit flüssigem Stickstoff über wärmeisolierte Leitungen 9. Der durch den elektrischen Leistungsverlust in dem Gerät 8 erhitzte flüssige Stickstoff oder viehnehr der durch die Verlustwärme gebildete Stickstoffdampf, wird in der Leitungsanlage 10 gesammelt und zum Einlaß der Kühlanlage 7 zurückgeleitet. Eine Pumpe 11 hält das gewünschte Vakuum in der Wärmeisolierung der Kühlanlage 7, des Elektrogerätes 8 und der Leitungen 9 und 10 aufrecht.The following examples describe various machine arrangements with windings, lines or connections made of conductors frozen with liquid nitrogen, for which, however, no independent protection is sought. Example 1 Fig. 3 shows a cross section through a conductor 1 made of beryllium in its thermal insulation. This conductor is intended for the continuous generation of magnetic energy that is intended to excite a large synchronous machine. The conductor 1 through which direct current flows can be solid. It is traversed by a longitudinal channel 2 in which liquid nitrogen flows under a selected pressure between 0.2 and 10 ata. A thermal insulation 3 consisting of reflective shields made of aluminized polyethylene terep'hthalate is arranged between two tight sleeves 5 and 6, between which a vacuum of 10-5 Torr is maintained. The sleeve 5 is inserted into the groove 4 of the machine. Example 2 Fig. 4 shows a cross section through the slot 4 of a stator according to the invention for an alternating current machine. The conductor 1 has alternating current flowing through it and is arranged in an alternating magnetic field. This conductor consists of thin beryllium strips lying on top of one another in order to eliminate the unfavorable influence of Foucault currents and the skin effect. The conductor could also consist of a rope which is formed in a manner known per se from fine wires insulated from one another. The nitrogen, which is liquid for cooling, flows into lines 2 which are provided outside the conductor. This arrangement can be installed in a sheath 6 made of poorly conductive or insulating material, which closes the arrangement so tightly that no liquid nitrogen can escape. Between this shell 6 and an outer shell 5 made of the same material, a thermal insulation 3 consisting of reflective shields is arranged. In addition, a very high vacuum is maintained in the space between the two envelopes. Example 3 Fig. 5 shows a winding 1 which consists of thin beryllium strips or fine wires which are insulated from one another and surrounded on all sides in liquid nitrogen 2. This winding is used, for example, to generate a magnetic field (coils of a circuit breaker) or to convert electrical alternating current (coils of a transformer). The liquid nitrogen 2 simultaneously represents the coolant and also the dielectric insulation medium, since it has the dielectric properties required for such an application. The entire arrangement is located in a double container, between the walls 5 and 6 of which a thermal insulation 3 is arranged under a very high vacuum. Example 4 Fig. 6 shows an overall arrangement. A cooling arrangement 7 feeds the electrical device 8 with liquid nitrogen via heat-insulated lines 9. The liquid nitrogen heated by the loss of electrical power in the device 8, or rather the nitrogen vapor formed by the heat loss, is collected in the line system 10 and fed back to the inlet of the cooling system 7. A pump 11 maintains the desired vacuum in the thermal insulation of the cooling system 7, the electrical device 8 and the lines 9 and 10.

Claims (3)

Patentansprüche: 1. Verwendung von auf eine Temperatur unterhalb 150° K abgekühltem Beryllium als Strom-Leiter in Wicklungen, Leitungen und Verbindungen elektrischer Geräte, die zum Erzeugen elektrischer, magnetischer oder mechanischer Energie oder zum Umformen elektrischer Energie bestimmt sind. Claims: 1. Use of to a temperature below 150 ° K cooled beryllium as a current conductor in windings, cables and connections electrical devices used to generate electrical, magnetic or mechanical Energy or for converting electrical energy are intended. 2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß als elektrischer Leiter Beryllium industrieller Reinheit verwendet wird, das mit Hilfe eines Strömungsmittels auf eine Temperatur zwischen 65 und 80° K abgekühlt wird, und daß als Strömungsmittel flüssiger Stickstoff zwischen 0,2 und 10 Atmosphären Druck benutzt wird. 2. Use after Claim 1, characterized in that beryllium industrial as the electrical conductor Purity is used, which is achieved by means of a fluid at a temperature between 65 and 80 ° K is cooled, and that liquid nitrogen is used as the fluid between 0.2 and 10 atmospheres pressure is used. 3. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß als elektrischer Leiter Beryllium industrieller Reinheit verwendet wird, das mit Hilfe eines Strömungsmittels auf eine Temperatur zwischen 40 und 150° K abgekühlt wird, und daß als Strömungsmittel flüssiger Stickstoff zwischen 0,2 und 10 Atmosphären Druck benutzt wird.3. Use according to claim 1, characterized in that industrial grade beryllium as the electrical conductor is used, which with the aid of a fluid to a temperature between 40 and 150 ° K is cooled, and that liquid nitrogen as a fluid between 0.2 and 10 atmospheres pressure is used.
DES94075A 1963-11-08 1964-11-06 Use of beryllium as an electrical conductor Withdrawn DE1296229B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR953119A FR1382328A (en) 1963-11-08 1963-11-08 Use of beryllium as an electrical conductor

Publications (1)

Publication Number Publication Date
DE1296229B true DE1296229B (en) 1969-05-29

Family

ID=8816111

Family Applications (1)

Application Number Title Priority Date Filing Date
DES94075A Withdrawn DE1296229B (en) 1963-11-08 1964-11-06 Use of beryllium as an electrical conductor

Country Status (7)

Country Link
US (1) US3301937A (en)
BE (1) BE655372A (en)
CH (1) CH421268A (en)
DE (1) DE1296229B (en)
FR (1) FR1382328A (en)
GB (1) GB1034165A (en)
SE (1) SE323119B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1513457A (en) * 1966-12-29 1968-02-16 Comp Generale Electricite Polyphase cryogenic cable
GB1210192A (en) * 1968-02-07 1970-10-28 Gulf General Atomic Inc Apparatus for power transmission
FR2233685B1 (en) * 1973-06-12 1977-05-06 Josse Bernard
SU748918A1 (en) * 1977-12-26 1980-07-15 Московский Ордена Ленина Энергетический Институт Induction heating apparatus
US4528609A (en) * 1982-08-23 1985-07-09 Ga Technologies Inc. Method and apparatus for protecting superconducting magnetic energy storage systems during rapid energy dissipation
JPH0756763B2 (en) * 1988-04-01 1995-06-14 株式会社潤工社 Superconducting cable
US4947007A (en) * 1988-11-08 1990-08-07 General Atomics Superconducting transmission line system
US6262375B1 (en) * 1992-09-24 2001-07-17 Electric Power Research Institute, Inc. Room temperature dielectric HTSC cable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CH421268A (en) 1966-09-30
BE655372A (en) 1965-05-06
SE323119B (en) 1970-04-27
US3301937A (en) 1967-01-31
FR1382328A (en) 1964-12-18
GB1034165A (en) 1966-06-29

Similar Documents

Publication Publication Date Title
EP2202762B1 (en) Arrangement with a superconducting cable
DE3304624A1 (en) ELECTROMAGNETIC PUMP
EP2698794A1 (en) Assembly with at least one superconducting cable
EP2685469B1 (en) Assembly with at least one superconducting cable
DE1296229B (en) Use of beryllium as an electrical conductor
EP2551859A1 (en) Assembly with a superconducting electric direct current cable system
CH406388A (en) Magnetohydrodynamic generator
DE2242154A1 (en) UNITED ELECTRODE HOLDER AND ARM FOR ELECTRODES IN ELECTRIC ARC FURNACE OR THE LIKE
DE1665599B2 (en) Cryogenic cables for power transmission
DE2516369A1 (en) ELECTRIC MACHINE WITH LOW TEMPERATURE EXCITING DEVELOPMENT
DE1805250A1 (en) Electrical feed-through for containers used in refrigeration technology
DE1265891B (en) Manufacturing process for a heavy current cryotron
DE248684C (en)
CH343509A (en) Stator winding with direct conductor cooling
DE6925352U (en) SUPRAL CONDUCTING CABLE FOR THREE-PHASE CURRENT
DE682207C (en) Single or multi-phase frequency-dependent resistance
DE913438C (en) Switching arrangement for converting devices
DE541234C (en) Electric circuit breakers, in particular switches and fuses
DE509182C (en) High-temperature furnace for three-phase connection
DE532679C (en) Double cage runner for asynchronous motors
DE1054159B (en) Stand winding for AC machines with direct conductor cooling
AT160351B (en) Electric cable with heat and moisture sensitive insulation.
DE2116651A1 (en) Process for the cooling and insulation of superconducting electrotechnical equipment, devices and apparatus
DE1093055B (en) Multiple metal-glass-metal sealing
DE972221C (en) Device for producing a preferred magnetic direction in curved permanent magnets

Legal Events

Date Code Title Description
E77 Valid patent as to the heymanns-index 1977
8339 Ceased/non-payment of the annual fee