DE1126998B - Process for manufacturing a tunnel diode - Google Patents
Process for manufacturing a tunnel diodeInfo
- Publication number
- DE1126998B DE1126998B DEST16520A DEST016520A DE1126998B DE 1126998 B DE1126998 B DE 1126998B DE ST16520 A DEST16520 A DE ST16520A DE ST016520 A DEST016520 A DE ST016520A DE 1126998 B DE1126998 B DE 1126998B
- Authority
- DE
- Germany
- Prior art keywords
- highly doped
- alloyed
- layer
- pill
- redoping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000006187 pill Substances 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 6
- 230000000903 blocking effect Effects 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 description 8
- 239000002019 doping agent Substances 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- YOHSSIYDFWBWEQ-UHFFFAOYSA-N lambda2-arsanylidenetin Chemical compound [As].[Sn] YOHSSIYDFWBWEQ-UHFFFAOYSA-N 0.000 description 2
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/36—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/24—Alloying of impurity materials, e.g. doping materials, electrode materials, with a semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/167—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/88—Tunnel-effect diodes
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
- Bipolar Transistors (AREA)
- Recrystallisation Techniques (AREA)
Description
DEUTSCHESGERMAN
PATENTAMTPATENT OFFICE
INTERNAT.KL. H Ol 1INTERNAT.KL. H Ol 1
St 16520 Vfflc/21gSt 16520 Vfflc / 21g
BEKANNTMACHUNG DER ANMELDUNG UNDAUSGABE DER AUSLEGESCHRIFT:NOTICE THE REGISTRATION AND ISSUE OF EDITORIAL:
5. A P RIL 19625. A P RIL 1962
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Tunneldiode, insbesondere für sehr hohe Frequenzen, bei dem in eine hochdotierte Schicht ein Umdotierungsstoff einlegiert wird. Unter dem Begriff »sehr hohe Frequenzen« wird hier der Frequenzbereich oberhalb von etwa 100 MHz verstanden. The invention relates to a method for manufacturing a tunnel diode, especially for very high frequencies at which a redoping substance is alloyed into a highly doped layer. Under the term "very high frequencies" means the frequency range above about 100 MHz.
Die übliche Tunneldiode wird wie folgt aufgebaut: In einen Halbleiterkörper, ζ. B. aus Germanium, wird eine Pille aus einem geeigneten Dotierungsstoff, z. B. einer Legierung aus Indium—Aluminium oder Indium—Gallium, einlegiert und damit eine Schicht mit geringem spezifischem Widerstand und gleichmäßiger Dotierung als Trägerschicht für den eigentlichen Aufbau der Diode hergestellt. Nach dem Einlegieren wird der Rest der Pille entfernt und eine kleinere Pille aus einem anderen Dotierungsstoff, z. B. einer Legierung von Zinn—Arsen, aufgesetzt und einlegiert, und in der zuvor erzeugten niederohmigen Halbleiterschicht ein p-n-Übergang gebildet. Bei diesem Verfahren kommt ein Aufbau gemäß Fig. 1 zustande. In dieser Figur ist 1 der Halbleiterkörper, ζ. Β. aus Germanium, 2 die hochdotierte Schicht, 3 die zur Erzeugung des p-n-Uberganges einlegierte Pille (Umdotierungspille) und 4 der auf der hochdotierten Schicht angebrachte sperrfreie Kontakt. Die Figur zeigt, daß die Fläche des p-n-Überganges 5 sehr groß ist, weil dieser in die hochdotierte Schicht 2 eingebettet ist.The usual tunnel diode is constructed as follows: In a semiconductor body, ζ. B. from germanium is a pill of a suitable dopant, e.g. B. an alloy of indium-aluminum or indium-gallium, alloyed and thus a layer with low specific resistance and more uniform Doping produced as a carrier layer for the actual structure of the diode. After being alloyed the remainder of the pill is removed and a smaller pill of another dopant, e.g. B. an alloy of tin-arsenic, mounted and alloyed, and in the previously produced low-resistance semiconductor layer formed a p-n junction. In this procedure a structure according to FIG. 1 comes about. In this figure, 1 is the semiconductor body, ζ. Β. from germanium, 2 the highly doped layer, 3 the pill alloyed in to generate the p-n junction (redoping pill) and 4 the non-blocking contact applied to the highly doped layer. The figure shows that the The area of the p-n junction 5 is very large because it is embedded in the highly doped layer 2.
An diesen Stand der Technik knüpft die Erfindung an, die ein Verfahren der eingangs beschriebenen Art betrifft und dadurch gekennzeichnet ist, daß der Umdotierungsstoff durch die hochdotierte Schicht hindurchlegiert wird, so daß der p-n-Übergang an den Durchbrechungsflächen des Umdotierungsstoffes durch die hochdotierte Schicht entsteht.The invention is based on this prior art, which uses a method of the type described at the beginning relates and is characterized in that the redoping substance alloyed through the highly doped layer so that the p-n junction at the opening areas of the redoping substance through the highly doped layer is created.
Die Fig. 2 zeigt ein Ausführungsbeispiel des Verfahrens nach der Erfindung. Mit 1 ist wieder der Halbleiterkörper und mit 2 die hochdotierte Schicht, z. B. eine p*-Schicht bezeichnet. Die Pille 3, die auch hier z. B. aus einer Legierung von Zinn—Arsen bestehen kann, ist nun durch die hochdotierte Schicht 2 hindurchlegiert. Der p-n-Ubergang entsteht auf diese Weise an dem in der Zeichnung hervorgehobenen Bereich 5.Fig. 2 shows an embodiment of the method according to the invention. With 1 is that again Semiconductor body and with 2 the highly doped layer, z. B. denotes a p * layer. The pill 3 that also here z. B. from an alloy of tin-arsenic can exist is now alloyed through the highly doped layer 2. The p-n junction arises in this way at the area 5 highlighted in the drawing.
An der unteren im Halbleitermaterial 1 verlaufenden Fläche der einlegierten Pille 3 kann ein p-n-Übergang leicht vermieden werden, indem man als Grundmaterial ein Halbleitermaterial wählt, das vom selben Leitungstyp ist wie die rekristallisierte Zone der einlegierten Umdotierungspille 3.A p-n junction can be formed on the lower surface of the alloyed pill 3 running in the semiconductor material 1 can easily be avoided by choosing a semiconductor material as the base material that is of the same The conductivity type is like the recrystallized zone of the alloyed redoping pill 3.
Wie die Fig. 2 zeigt, kann mit Hilfe des Verfahrens nach der Erfindung nunmehr auf Grund einfacher Verfahren zur Herstellung einer TunneldiodeAs shown in FIG. 2, with the aid of the method according to the invention can now be made easier Process for the manufacture of a tunnel diode
Anmelder:Applicant:
Standard Elektrik Lorenz Aktiengesellschaft, Stuttgart-Zuffenhausen,
Hellmuth-Hirth-Str. 42Standard electrical system Lorenz Aktiengesellschaft, Stuttgart-Zuffenhausen,
Hellmuth-Hirth-Str. 42
Dipl.-Phys. Dr. Michael Michelitsch,Dipl.-Phys. Dr. Michael Michelitsch,
Stuttgart-Vaihingen,
ist als Erfinder genannt wordenStuttgart-Vaihingen,
has been named as the inventor
Überlegungen die Kapazität des p-n-Überganges niedrig gehalten werden. Die Kapazität C des p-n-Überganges ist proportional der Fläche F des p-n-Überganges, die ihrerseits durch 1ητ·α gegeben ist. worin r den Durchmesser der Pille und a die Tiefe der hochdotierten rekristallisierten Schicht 3 bedeutet. Wählt man r und α möglichst klein, so wird auch F klein und damit die Kapazität C. Die erreichbare Grenzfrequenz ergibt sich dann aus der FormelConsiderations the capacity of the pn junction can be kept low. The capacitance C of the pn junction is proportional to the area F of the pn junction, which in turn is given by 1ητ · α . where r is the diameter of the pill and a is the depth of the highly doped recrystallized layer 3. If r and α are chosen to be as small as possible, then F is also small and thus the capacitance C. The limit frequency that can be achieved then results from the formula
Rn-CRn-C
R0 R 0
in der Rn der negative differentielle Widerstand der Tunneldiodenkennlinie ist, R0 der positive Serienwiderstand der Tunneldiode und C die Kapazität des p-n-Überganges. Die vorstehende Formel zeigt, daß die Kapazität C möglichst klein sein muß, um eine hohe Grenzfrequenz o> zu erreichen, was mit Hilfe des oben beschriebenen Verfahrens möglich ist. Außerdem spielt aber in der Formel, wie ersichtlich, bei gegebenem Rn der Serienwiderstand R0 eine Rolle, der ebenfalls möglichst klein gemacht werden muß, um eine hohe Grenzfrequenz oj zu erhalten. Dieses Ziel ist dadurch erreichbar, daß die Ohmschen Kontakte für die hochdotierte rekristallisierte Schicht 2 möglichst nahe an die Umdotierungspille 3 hergebracht werden.in which R n is the negative differential resistance of the tunnel diode characteristic, R 0 is the positive series resistance of the tunnel diode and C is the capacitance of the pn junction. The above formula shows that the capacitance C must be as small as possible in order to achieve a high cut-off frequency o>, which is possible with the aid of the method described above. In addition, as can be seen, the series resistance R 0 plays a role in the formula for a given R n , which must also be made as small as possible in order to obtain a high cut-off frequency oj. This goal can be achieved by bringing the ohmic contacts for the highly doped recrystallized layer 2 as close as possible to the redoping pill 3.
Die Fig. 3 soll diesen Sachverhalt veranschaulichen. Mit 1 ist wieder der Halbleiterkörper, mit 2 die hochdotierte rekristallisierte Schicht und mit 3 die durch die Schicht 2 hindurchlegierte Umdotierungspille bezeichnet. Es ist nun zwischen dem ringförmigen sperrschichtfreien Kontakt 4 und der Umdotierungspille 33 is intended to illustrate this fact. With 1 is the semiconductor body again, with 2 the highly doped recrystallized layer and 3 denotes the redoping pill alloyed through layer 2. It is now between the ring-shaped contact 4 without a barrier layer and the redoping pill 3
209 558/358209 558/358
ein äußerst schmaler Ring von jeder Einwirkung freigehalten, was durch die eingezeichneten Pfeile besonders betont werden soll. Die Anschlußleitungen sind mit 6 bezeichnet.an extremely narrow ring kept free from any influence, which is particularly evident by the arrows drawn should be emphasized. The connecting lines are denoted by 6.
An Stelle der genannten Dotierungsstoffe oder Halbleiter ist es natürlich möglich, andere Grund- und Dotierungsstoffe zu verwenden. Auch kann ein anderer Aufbau in Frage kommen. Zweckmäßig wird die Tunneldiode nach der Erfindung zwischen die Stirnseiten von induktivitätsarmen Zuleitungen in Form von Stäben, Bechern, Bändern od. dgl. eingebaut, z. B. eingelötet, wie dies schon vorgeschlagen wurde. Besonders vorteilhaft ist es, die Tunneldiode bzw. -dioden zwischen zwei ringförmig gestaltete Zuleitungen einzubauen, auf denen sie in geeigneter Weise verteilt angeordnet werden.Instead of the dopants or semiconductors mentioned, it is of course possible to use other basic and to use dopants. Another structure can also be considered. Will be expedient the tunnel diode according to the invention between the end faces of low-inductance leads in Form of rods, cups, ribbons or the like. Installed, z. B. soldered, as already suggested became. It is particularly advantageous to place the tunnel diode or diodes between two ring-shaped supply lines built in, on which they are arranged in a suitable manner.
Claims (3)
USA.-Patentschrift Nr. 2 821 493;
österreichische Patentschrift Nr. 193 944.Considered publications:
U.S. Patent No. 2,821,493;
Austrian patent specification No. 193 944.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL265169D NL265169A (en) | 1960-05-25 | ||
DEST16520A DE1126998B (en) | 1960-05-25 | 1960-05-25 | Process for manufacturing a tunnel diode |
GB1846461A GB972839A (en) | 1960-05-25 | 1961-05-19 | Tunnel diode for very high frequencies |
FR862830A FR1289987A (en) | 1960-05-25 | 1961-05-25 | Improvements to tunnel diodes and their manufacture |
BE609329A BE609329A (en) | 1960-05-25 | 1961-10-19 | Improvements to tunnel diodes and their manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEST16520A DE1126998B (en) | 1960-05-25 | 1960-05-25 | Process for manufacturing a tunnel diode |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1126998B true DE1126998B (en) | 1962-04-05 |
Family
ID=7457109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEST16520A Pending DE1126998B (en) | 1960-05-25 | 1960-05-25 | Process for manufacturing a tunnel diode |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE1126998B (en) |
GB (1) | GB972839A (en) |
NL (1) | NL265169A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT193944B (en) * | 1955-06-20 | 1957-12-10 | Western Electric Co | A method of manufacturing a semiconductor device |
US2821493A (en) * | 1954-03-18 | 1958-01-28 | Hughes Aircraft Co | Fused junction transistors with regrown base regions |
-
0
- NL NL265169D patent/NL265169A/xx unknown
-
1960
- 1960-05-25 DE DEST16520A patent/DE1126998B/en active Pending
-
1961
- 1961-05-19 GB GB1846461A patent/GB972839A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2821493A (en) * | 1954-03-18 | 1958-01-28 | Hughes Aircraft Co | Fused junction transistors with regrown base regions |
AT193944B (en) * | 1955-06-20 | 1957-12-10 | Western Electric Co | A method of manufacturing a semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
GB972839A (en) | 1964-10-21 |
NL265169A (en) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2142146C3 (en) | Method for the simultaneous production of several semiconductor components | |
DE1246890B (en) | Diffusion process for manufacturing a semiconductor component | |
DE1116321B (en) | Method for alloying the emitter electrode of a transistor | |
DE1293905B (en) | Method of making an npn gallium arsenide transistor | |
DE1115837B (en) | Flat transistor with a plaque-shaped semiconductor body | |
DE1086347B (en) | Semiconductor arrangement with a semiconductor crystal | |
DE1229650B (en) | Process for the production of a semiconductor component with a pn transition using the planar diffusion technique | |
DE1964837B2 (en) | Method for manufacturing a light emitting semiconductor diode | |
DE1126998B (en) | Process for manufacturing a tunnel diode | |
DE1188209B (en) | Semiconductor component | |
DE1439674C3 (en) | Controllable and switchable pn semiconductor component for high electrical power | |
DE1130525B (en) | Flat transistor with a disk-shaped semiconductor body of a certain conductivity type | |
DE1589696C3 (en) | Semiconductor component, in particular a flat transistor | |
DE2822911C2 (en) | Semiconductor arrangement with at least one pn junction and method for its production | |
DE1295237B (en) | Pressure sensitive semiconductor devices and methods of making them | |
DE1175797B (en) | Process for the production of electrical semiconductor components | |
DE1264618C2 (en) | TIP DIODE WITH A SPRING MOLYBDAEN OR TUNGSTEN WIRE AND PROCESS FOR THEIR PRODUCTION | |
DE1914563A1 (en) | Process for the manufacture of an electroluminescent element | |
DE1163975C2 (en) | Process for improving the electrical properties of semiconductor devices | |
AT253023B (en) | Semiconductor devices, in particular pressure-sensitive semiconductor devices, and methods of manufacturing the same | |
DE1957390C (en) | Semiconductor component and method for its manufacture | |
DE2349544C3 (en) | Method for producing a semiconductor light-emitting diode | |
DE1273700B (en) | Semiconductor component | |
AT218570B (en) | Method for large-area contacting of a monocrystalline silicon body | |
AT254268B (en) | Method for the simultaneous production of at least two semiconductor components from a disk-shaped semiconductor crystal |