DE1097499B - Process for the production of porous electrode bodies serving as carriers of the active material for alkaline batteries - Google Patents

Process for the production of porous electrode bodies serving as carriers of the active material for alkaline batteries

Info

Publication number
DE1097499B
DE1097499B DER25121A DER0025121A DE1097499B DE 1097499 B DE1097499 B DE 1097499B DE R25121 A DER25121 A DE R25121A DE R0025121 A DER0025121 A DE R0025121A DE 1097499 B DE1097499 B DE 1097499B
Authority
DE
Germany
Prior art keywords
metal
electrode body
porous electrode
graphite
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DER25121A
Other languages
German (de)
Inventor
Friedrich Reiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DER25121A priority Critical patent/DE1097499B/en
Priority to GB7334/60A priority patent/GB914352A/en
Priority to FR820664A priority patent/FR1250312A/en
Publication of DE1097499B publication Critical patent/DE1097499B/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

DEUTSCHESGERMAN

Die Elektroden alkalischer Akkumulatoren sollen folgende Eigenschaften haben: geringes Gewicht bei hoher Kapazität, chemische Beständigkeit gegen den Elektrolyten, sehr gute elektrische Leitfähigkeit. Dies hat man bisher mit folgenden Mitteln zu erreichen versucht:The electrodes of alkaline batteries should have the following properties: low weight at high capacity, chemical resistance to the electrolyte, very good electrical conductivity. this so far one has tried to achieve with the following means:

Zur Aufnahme der aktiven Masse wurden poröse Elektrodenkörper aus Kohle hergestellt; Nachteil: unbeständig gegen anodisehe Oxydation (s. Kurt Arndt, Künstl. Kohlen, 1922, S. 169 bis 172); poröse Elektrodenkörper aus Kunstharzen oder anderen Isolatoren, die durch Metallisieren oder bzw. und durch Zusatz von leitenden Stoffen elektrisch leitend gemacht wurden; Nachteile: Leitfähigkeit zu gering, dünne Metallschichten werden anodisch ganz durchoxydiert, dickere Metallschichten schließen die Poren; Sinterelektroden aus reinen Metallpulvern; Nachteil: relativschwer und teuer.To accommodate the active material, porous electrode bodies were made from carbon; Disadvantage: not resistant to anodic oxidation (see Kurt Arndt, Künstl. Kohlen, 1922, pp. 169 to 172); porous Electrode bodies made of synthetic resins or other insulators, which are metallized or or and through Addition of conductive substances made electrically conductive; Disadvantages: conductivity too low, thin Metal layers are completely oxidized anodically, thicker metal layers close the pores; Sintered electrodes made of pure metal powder; Disadvantage: relatively heavy and expensive.

Der Gegenstand der Erfindung ist eine Minderung dieser Nachteile auf Grund folgender Erkenntnisse. Es ist beobachtet worden, daß Graphitpulver durch anodisehe Oxydation nicht angegriffen wird, wenn man genügend Nickel in den Graphit eindiffundieren läßt. Es bildet sich eine Nickelschicht, die so dick ist, daß sie nicht ganz durchoxydiert wird. Zur Erzielung einer hohen Kapazität sind sehr feine Poren (etwa 10 μ Durchmesser) nötig, weil nur so ein inniger Kontakt zwischen Elektrodengerüst und aktiver Masse hergestellt wird. Bei der bekannten Herstellung poröser Elektrodenkörper durch Sintern von Metallpulver ohne Graphitzusatz erzielt man die Poren durch Beimischen nachträglich entfernbarer Füllstoffe; wegen der Billigkeit und chemischen Indifferenz wird gewöhnlich Natriumchlorid verwendet. Bei der Herstellung von graphithaltigen Elektrodenkörpern sind aber höhere Temperaturen anzuwenden, bei denen sich das Füllmittel, z. B. Natriumchlorid, bereits stark verflüchtigt und dabei die innige Verbindung zwischen Metallpulver und Graphitpulver verhindert. Diese Erkenntnisse wurden wie folgt erfindungsgemäß ausgewertet.The object of the invention is to reduce these disadvantages on the basis of the following findings. It has been observed that graphite powder is not attacked by anodic oxidation when enough nickel is allowed to diffuse into the graphite. A nickel layer forms that is so thick that it is not completely oxidized. Very fine pores (approx 10 μ diameter) is necessary because this is the only way of intimate contact between the electrode framework and the active mass will be produced. In the known production of porous electrode bodies by sintering metal powder without With the addition of graphite, the pores are created by adding fillers that can be subsequently removed; because of the cheapness and chemical indifference, sodium chloride is commonly used. In the production of graphite-containing electrode bodies, however, higher temperatures are to be used at which the filler, z. B. sodium chloride, already strongly volatilized and thereby the intimate connection between metal powder and graphite powder prevented. These findings were evaluated according to the invention as follows.

Zur Herstellung eines Elektrodenkörpers aus Graphit- und Metallpulver, z. B. Nickel, Cobalt u. a., wird feines, metallisiertes oder nichtmetallisiertes Graphitpulver mit dem Metallpulver und dem später entfernbaren Füllstoff, z. B. Natriumchlorid, innig vermengt und mit einem Druck von einigen t/cm2 zu Elektrodenkörpern gepreßt. Der Preßdruck muß um so höher sein, je geringer der Metallpulvergehalt ist. Die gepreßten Elektrodenkörper können zum Zweck der Verbindung von Graphit und Metall bis dicht unter den Schmelzpunkt des Metalls erhitzt werden, wenn im Heizraum eine gleichmäßige Temperatur, d. h. kein Temperaturgefälle, vorhanden ist. Um dabei ein Heraustreten der Füllstoffe aus dem gepreßten Körper Verfahren zur HerstellungTo produce an electrode body from graphite and metal powder, e.g. B. nickel, cobalt, among others, is fine, metallized or non-metallized graphite powder with the metal powder and the later removable filler, z. B. sodium chloride, intimately mixed and pressed with a pressure of a few t / cm 2 to form electrode bodies. The lower the metal powder content, the higher the pressing pressure. For the purpose of connecting graphite and metal, the pressed electrode bodies can be heated to just below the melting point of the metal if there is a uniform temperature, ie no temperature gradient, in the heating room. In order to prevent the fillers from escaping from the pressed body

von als Träger der aktiven Masseof as a carrier of the active mass

dienenden porösen Elektrodenkörpernserving porous electrode bodies

für alkalische Akkumulatorenfor alkaline batteries

Anmelder:Applicant:

ίο Friedrich Reiber,ίο Friedrich Reiber,

Oberndorf bei EbersbergOberndorf near Ebersberg

Friedrich Reiber, Oberndorf bei Ebersberg,
ist als Erfinder genannt worden
Friedrich Reiber, Oberndorf near Ebersberg,
has been named as the inventor

zu verhindern, wird in den Heizraum unter Druck bis zu einigen Atmosphären ein Schutzgas eingeleitet, z. B. reiner Stickstoff oder handelsüblicher Stickstoff mit etwas Wasserstoff gemischt; besonders geeignet sind an Stelle von Stickstoff inerte Gase mit hohem Atom- bzw. Molekulargewicht. Bei größerer Glühtemperatur muß der Schutzgas druck erhöht werden. Wenn sich ein Temperaturgefälle praktisch nicht völlig vermeiden läßt, werden die Elektrodenkörper in einen Behälter mit kleinen Öffnungen gebracht, den man im Heizraum unterbringt. In diesen Behälter bzw. Heizraum gibt man zusätzlich eine gewisse Menge von den im Elektrodenkörper enthaltenen Füllstoffen. Diese Menge muß bei hoher Temperatur größer sein als bei geringer. Dadurch wird erreicht, daß der Heizraum mit deren Dämpfen gesättigt ist und so das Verflüchtigen- der Füllstoffe aus dem Elektrodenkörper verhindert wird.To prevent this, a protective gas is introduced into the boiler room under pressure of up to a few atmospheres, z. B. pure nitrogen or commercial nitrogen mixed with a little hydrogen; particularly suitable are inert gases with a high atomic or molecular weight instead of nitrogen. At higher annealing temperatures the protective gas pressure must be increased. If there is a temperature gradient practically no can be avoided completely, the electrode bodies are placed in a container with small openings, the placed in the boiler room. A certain amount is also added to this container or boiler room of the fillers contained in the electrode body. This amount must be larger at a high temperature than at lower. This ensures that the boiler room is saturated with their vapors and so that Volatile fillers from the electrode body are prevented.

Nach dem Glühen erfolgt das Entfernen der Füllstoffe in bekannter Weise. Dieses Verfahren gibt nun auch die Möglichkeit, an Stelle entfernbarer Zusatzstoffe Metalloxyde, z. B. Nickeloxyd bei Elektroden aus Nickel und Graphit, zu verwenden. Beim Glühen bildet das Metallpulver mit dem Graphit zusammen ein festes Gerüst, während das Metalloxydpulver ganz oder teilweise zu schwammigem porösem Metall reduziert wird, das in die Poren des Elektrodenkörpers eingebettet ist. Es kann dann zur Herstellung der aktiven Masse verwendet werden, indem man es auf bekannte Weise in Oxyd verwandelt. Dieses Verfahren erspart das zeitraubende und kostspielige Einbringen der aktiven Masse durch Tränken mit den entsprechenden Metallsalzlösungen und anschließendes Formieren. Wenn zur Herstellung der positiven aktiven Masse durch Tränken mit einer Nickelsalzlösung dieser nochAfter the annealing, the fillers are removed in a known manner. This procedure is now there also the possibility of replacing removable additives with metal oxides, e.g. B. Nickel oxide in electrodes made of nickel and graphite. During the annealing process, the metal powder forms together with the graphite a solid framework, while the metal oxide powder is wholly or partially reduced to spongy porous metal which is embedded in the pores of the electrode body. It can then be used to manufacture the active mass can be used by converting it into oxide in a known manner. This method saves the time-consuming and costly introduction of the active material by soaking it with the appropriate Metal salt solutions and subsequent forming. When to produce the positive active mass by soaking this with a nickel salt solution

009 699/101009 699/101

Silbersalze zugefügt werden, so werden letztere bei normaler Behandlung durch feinverteiltes Nickel in der Elektrode zersetzt, und das Silber fällt als Metall in schwammiger Form aus. Um dies zu verhindern, werden die Oberflächen und die Porenwände der Elektroden mit einer Nickeloxydschicht überzogen, die entweder direkt aus dem Nickel der Elektrode durch Oxydieren erzeugt oder nach Tränken der Elektrode mit einem Nickelsalz aus diesem hergestellt wird.Silver salts are added, the latter are in normal treatment by finely divided nickel in the electrode decomposes, and the silver precipitates as a metal in a spongy form. To prevent this, become the surfaces and the pore walls of the electrodes coated with a nickel oxide layer, either directly from the nickel of the electrode Oxidation is produced or produced from this after impregnating the electrode with a nickel salt.

IOIO

Claims (5)

Patentansprüche:Patent claims: 1. Verfahren zur Herstellung von als Träger der aktiven Masse dienenden porösen Elektrodenkörpern für alkalische Akkumulatoren, in welchem Graphitpulver und mindestens 10% feingepulverter Metallstaub, z. B. Nickelstaub, innig vermischt werden, die Mischung zum Körper gepreßt und dieser z. B. bis nahe unter dem Schmelzpunkt des Metallstaubes erhitzt wird, dadurch gekennzeichnet, daß man in den Heizraum ein Schutzgas unter Druck bis zu einigen Atmosphären einleitet, wobei der Gasdruck bei höherer Glühtemperatur größer gehalten wird als bei niedrigerer Glühtemperatur.1. Process for the production of porous electrode bodies serving as carriers for the active material for alkaline batteries in which graphite powder and at least 10% finely powdered Metal dust, e.g. B. nickel dust, are intimately mixed, the mixture is pressed to the body and this z. B. is heated to almost below the melting point of the metal dust, characterized in that that one introduces a protective gas under pressure up to a few atmospheres into the boiler room, with the gas pressure is kept higher at a higher annealing temperature than at a lower annealing temperature. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zum Graphit-Metallpulver-Gemisch Metalloxydpulver beigegeben wird, das nach dem Glühen in an sich bekannter Weise zur Bildung der aktiven Masse dient, z. B. Nickeloxydpulver.2. The method according to claim 1, characterized in that the graphite-metal powder mixture Metal oxide powder is added, which is formed after annealing in a manner known per se serves the active mass, e.g. B. nickel oxide powder. 3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der Heizraum so erhitzt wird, daß die Temperatur im Heizraum beim Glühen der gepreßten Elektrodenkörper gleichmäßig verteilt ist, d. h. kein Temperaturgefälle vorhanden ist.3. Process according to claims 1 and 2, characterized in that the heating room is heated in this way that the temperature in the heating room is uniform when the pressed electrode body is glowing is distributed, d. H. there is no temperature gradient. 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß in den Heizraum, in dem die Elektrodenkörper geglüht werden, zusätzlich eine gewisse Menge der dem Elektrodenkörper in an sich bekannter Weise zugefügten entfernbaren Füllstoffe oder Metalloxyde gegeben wird.4. Process according to claims 1 to 3, characterized in that in the boiler room in which the electrode body are annealed, in addition a certain amount of the the electrode body in Removable fillers or metal oxides added in a known manner is given. 5. Verfahren nach den Ansprüchen 1 bis 4 bei Verwendung von positiven aktiven Massen mit Zusätzen von Silberverbindungen, dadurch gekennzeichnet, daß vor dem Einbringen der aktiven Masse auf der Oberfläche und an den Porenwänden der porösen Elektrodenkörper eine Metalloxydschicht erzeugt wird.5. The method according to claims 1 to 4 when using positive active masses with Additions of silver compounds, characterized in that before the introduction of the active A metal oxide layer on the surface and on the pore walls of the porous electrode body is produced. In Betracht gezogene Druckschriften:
Deutsche Patentschrift Nr. 920 082;
französische Patentschrift Nr. 1 097 994.
Considered publications:
German Patent No. 920 082;
French patent specification No. 1 097 994.
© 009 699/101 1.61© 009 699/101 1.61
DER25121A 1959-03-09 1959-03-09 Process for the production of porous electrode bodies serving as carriers of the active material for alkaline batteries Pending DE1097499B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DER25121A DE1097499B (en) 1959-03-09 1959-03-09 Process for the production of porous electrode bodies serving as carriers of the active material for alkaline batteries
GB7334/60A GB914352A (en) 1959-03-09 1960-03-02 Method of making porous electrode bodies serving as carriers for the active material of alkali type storage batteries
FR820664A FR1250312A (en) 1959-03-09 1960-03-08 Process for manufacturing porous electrode bodies, serving as supports for the active material, for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DER25121A DE1097499B (en) 1959-03-09 1959-03-09 Process for the production of porous electrode bodies serving as carriers of the active material for alkaline batteries

Publications (1)

Publication Number Publication Date
DE1097499B true DE1097499B (en) 1961-01-19

Family

ID=7401833

Family Applications (1)

Application Number Title Priority Date Filing Date
DER25121A Pending DE1097499B (en) 1959-03-09 1959-03-09 Process for the production of porous electrode bodies serving as carriers of the active material for alkaline batteries

Country Status (2)

Country Link
DE (1) DE1097499B (en)
GB (1) GB914352A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE920082C (en) * 1948-10-20 1954-11-11 Lucien Paul Basset Molded bodies made of graphite from carrier for the active mass of accumulators and process for their production
FR1097994A (en) * 1953-04-18 1955-07-13 Basf Ag Process for the production of electrode frames

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE920082C (en) * 1948-10-20 1954-11-11 Lucien Paul Basset Molded bodies made of graphite from carrier for the active mass of accumulators and process for their production
FR1097994A (en) * 1953-04-18 1955-07-13 Basf Ag Process for the production of electrode frames

Also Published As

Publication number Publication date
GB914352A (en) 1963-01-02

Similar Documents

Publication Publication Date Title
DE1233834B (en) Electrode for electrolysers and fuel elements with a superficial double skeleton catalyst structure
US3258363A (en) Carbonized polyvinylidenechloride fuel cell electrode
DE2607510C2 (en) Process for the production of an electrode suitable for the production of hydrogen peroxide
AT206867B (en) Metallic moldings with a superficial double skeleton catalyst structure
DE1183149B (en) Electrodes with storage capacity for hydrogen and processes for their production
DE1092215B (en) Cathode and cell for the production of aluminum from aluminum oxide by fused-salt electrolysis
DE1290612B (en) Process for the manufacture of electrodes for fuel elements
US3337336A (en) Addition agents for sintering purposes
DE1097499B (en) Process for the production of porous electrode bodies serving as carriers of the active material for alkaline batteries
DE1217469B (en) Process for the formation of a protective oxide on the active surface of a positive nickel electrode in a fuel element
DE1237193B (en) Accumulator with positive silver and negative cadmium electrode
US3796565A (en) Production of porous nickel plates
DE1250791B (en) Two-layer oxygen diffusion electrode
AT225010B (en) Process for the production of porous electrode bodies serving as carriers of the active material for alkaline accumulators
DE1471765A1 (en) Process for the production of frameworks for gas-impermeable fuel cell cathodes
DE1671710A1 (en) Process for the production of electrodes with Raney catalysts for fuel cells
DE1421613C3 (en) Method for producing a porous electrode for current-supplying elements, in particular for fuel elements
DE1116287B (en) Gas diffusion electrodes for fuel elements and processes for their manufacture
DE1496186A1 (en) Process for the production of electrodes for fuel cells
DE1227756B (en) Boron nitride coatings
DE1086768B (en) Fuel element for generating electrical energy through direct conversion of gaseous fuels with oxidizing gases
GB800551A (en) Improvements in or relating to electrical contact elements
DE4142712A1 (en) Pressed and sintered electrodes for fuel cells - made from a mixt. of metal powder, ceramic powder and polymer powder rendered ion and electron conductive by ion beam treatment
DE1571998A1 (en) Process for the production of oxygen electrodes for fuel cells
US3833423A (en) Fuel cell with wc catalyst-material protection