DE1082923B - Process for the decomposition of a gas mixture - Google Patents

Process for the decomposition of a gas mixture

Info

Publication number
DE1082923B
DE1082923B DEZ7055A DEZ0007055A DE1082923B DE 1082923 B DE1082923 B DE 1082923B DE Z7055 A DEZ7055 A DE Z7055A DE Z0007055 A DEZ0007055 A DE Z0007055A DE 1082923 B DE1082923 B DE 1082923B
Authority
DE
Germany
Prior art keywords
ethylene
nitrogen
column
fraction
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DEZ7055A
Other languages
German (de)
Inventor
Dipl-Ing Vins Ludek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zavody Vitezneho Unora Narodni Podnik
Original Assignee
Zavody Vitezneho Unora Narodni Podnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zavody Vitezneho Unora Narodni Podnik filed Critical Zavody Vitezneho Unora Narodni Podnik
Publication of DE1082923B publication Critical patent/DE1082923B/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0276Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/N2 mixtures, i.e. of ammonia synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/506Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification at low temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/14Coke-ovens gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/20H2/N2 mixture, i.e. synthesis gas for or purge gas from ammonia synthesis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

DEUTSCHESGERMAN

Die Erfindung betrifft ein Verfahren zur Zerlegung eines Gasgemisches, welches Wasserstoff als Hauptbestandteil und Methan, Äthan, Äthylen und Kohlenoxyd als Nebenbestandteile enthält, bei tiefen Temperaturen zwecks Gewinnung eines reinen Wasserstoff-Stickstoff-Gemisches oder von reinem Wasserstoff und gegebenenfalls anderer Bestandteile des Gasgemisches im reinen Zustand in einer gemeinsamen Anlage. The invention relates to a method for decomposing a gas mixture which has hydrogen as the main component and contains methane, ethane, ethylene and carbon oxide as minor components, at low temperatures for the purpose of obtaining a pure hydrogen-nitrogen mixture or pure hydrogen and possibly other components of the gas mixture in the pure state in a common system.

Das Gasgemisch wird durch Anwendung tiefer Temperaturen zerlegt, wobei mit fortschreitender Abkühlung des Gasgemisches alle seine Bestandteile mit Ausnahme des auf diese Weise gewonnenen Wasserstoffes getrennt kondensieren. Wenn der Wasserstoff zur Ammoniaksynthese verwendet werden soll, wird er mit flüssigem Stickstoff zur Beseitigung der unerwünschten Bestandteile gewaschen. Kondensate, die sich in den einzelnen Wärmeaustauschern ansammeln, bilden sogenannte Fraktionen, die nach Drosselung gegen den Strom des eintretenden Gasgemisches geführt werden.The gas mixture is broken down by applying low temperatures, with progressive cooling of the gas mixture all of its components with the exception of the hydrogen obtained in this way condense separately. If the hydrogen is to be used for ammonia synthesis, will he washed with liquid nitrogen to remove the unwanted constituents. Condensates that collect in the individual heat exchangers, form so-called fractions, which after throttling against the flow of the incoming gas mixture.

Je nach dem Bestimmungszweck der Gaszerlegungsanlage haben die Fraktionen verschiedene Zusammensetzung. Im allgemeinen werden als Nebenfraktionen die Äthylen-, Methan- und Kohlenoxydfraktion gewonnen. Wenn die Anlage durch eine besondere Kolonne ergänzt wird, kann man auch reines Methan erzeugen, indem man niedrigersiedende Komponenten aus der Methanfraktion beseitigt. Das Gasgemisch wird in der Regel in einer selbständigen Einrichtung für jeden Bestandteil zerlegt. Die Kälteverluste, die bei der Zerlegung des Gasgemisches durch den unvollkommenen Wärmeaustausch und durch die Verluste an die Umgebung entstehen,-werden auf verschiedene Weise ersetzt, wie z. B. mittels Hochdruckstickstoff mit einer Ammoniakvorkühlung, mittels Hochdruckstickstoff mit der Zirkulation des Mitteldruckstickstoffes oder mittels Expansion des Stickstoffes in einer Expansionsmaschine, gegebenenfalls mit einer Ammoniakvorkühlung.-Bekannt ist auch die Zerlegung der Äthylenfraktion in einer Anlage zur Koksofengaszerlegung, wobei die Kälteverluste mittels einer Kaskade unter Benutzung von Ammoniak, Äthylen, Methan und Stickstoff ersetzt werden.Depending on the intended purpose of the gas separation plant, the fractions have different compositions. In general, the ethylene, methane and carbon oxide fractions are obtained as secondary fractions. If the system is supplemented by a special column, you can also produce pure methane, by removing lower boiling components from the methane fraction. The gas mixture is usually dismantled for each component in a separate facility. The cold losses that in the decomposition of the gas mixture due to the imperfect heat exchange and the losses to the environment, are replaced in various ways, such as B. by means of high pressure nitrogen with an ammonia precooling, by means of high pressure nitrogen with the circulation of the medium pressure nitrogen or by means of expansion of the nitrogen in an expansion machine, optionally with a Ammonia precooling.-The decomposition of the ethylene fraction in a plant for coke oven gas decomposition is also known. the cold losses by means of a cascade using ammonia, ethylene, Methane and nitrogen are replaced.

Die Erfindung bezweckt eine Vereinfachung der Ersetzung der bei der Zerlegung eines Gasgemisches auftretenden Kälteverluste, wie dies bei einer Gasgemischzerlegung durch fortschreitende Kondensation der einzelnen Bestandteile außer -Wasserstoff, wobei die Äthylenfraktion und gegebenenfalls auch die Methanfraktion in einer gemeinsamen Anlage verarbeitet werden, der Fall ist.The invention aims to simplify the replacement the cold losses occurring during the decomposition of a gas mixture, as is the case with a gas mixture decomposition by progressive condensation of the individual components except hydrogen, whereby the ethylene fraction and possibly also the methane fraction are processed in a joint plant will be the case.

Die Erfindung ist dadurch gekennzeichnet, daß die Kälteverluste durch Hochdrucksrickstoff, der von Verfahren
zur Zerlegung eines Gasgemisches
The invention is characterized in that the cold losses through high pressure nitrogen, which is from the method
for the decomposition of a gas mixture

Anmelder:Applicant:

Zavody vitezneho unora, narodni podnik, Hradec Kralove (Tschechoslowakei)Zavody vitezneho unora, narodni podnik, Hradec Kralove (Czechoslovakia)

Vertreter: Dipl.-Ing. A. Spreer, Patentanwalt,
Göttingen, Gironer Str. 37
Representative: Dipl.-Ing. A. Spreer, patent attorney,
Göttingen, Gironer Str. 37

Beanspruchte Priorität:
Tschechoslowakei vom 18. Januar 1958
Claimed priority:
Czechoslovakia from January 18, 1958

Dipl.-Ing. Vins Ludek, Hradec KräloveDipl.-Ing. Vins Ludek, Hradec Krälove

(Tschechoslowakei),
ist als Erfinder genannt worden
(Czechoslovakia),
has been named as the inventor

einem Teil des flüssigen, durch Ammoniak vorgekühlten Kreislaufäthylens vorgekühlt wird, ersetzt werden, wobei der restliche Teil des Kreislaufäthylens zur Bildung des Rückflusses bei der Erzeugung des reinen Äthylens und gegebenenfalls zur Vorkühlung des eintretenden Gasgemisches verwendet wird.part of the liquid, precooled by ammonia Circulation ethylene is pre-cooled, replaced, with the remaining part of the circulation ethylene for Formation of the reflux in the production of the pure ethylene and, if necessary, for pre-cooling the incoming Gas mixture is used.

Die Zeichnung stellt ein Ausführungsbeispiel des Gegenstandes der Erfindung dar.The drawing represents an embodiment of the subject matter of the invention.

Das Gasgemisch, verdichtet auf 10 bis 25 atü und befreit von allen unerwünschten Bestandteilen, wie CO2, NO, H2S u. dgl., wird in einem verdoppelten Wärmeaustauscher 1 auf eine Temperatur von — 70 bis — 80° C abgekühlt. In diesem Wärmeaustauscher 1 wird das Gasgemisch von Wasserdampf und gegebenenfalls auch von Benzol durch Kondensation und Ausfrieren dadurch befreit, daß abwechselnd ein Wärmeaustauscher in Betrieb ist und der andere abgetaut wird. Das Gasgemisch wird dann im Ä'thylenverdämpfer 2 bis auf eine Temperatur von etwa — 93° C und anschließend in den Wärmeaustauschern 3 und 4 bis auf eine Temperatur von etwa — 140° C abgekühlt. Statt der Wärmeaustauscher 3 und 4 kann auch nur ein Wärmeaustauscher mit Gegenstromkondensation eingeschaltet werden. Im Wärmeaustauscher 4 kondensiert die Äthylenfraktion und sammelt sich im Gefäß 5. Eine weitere Abkühlung des Gasgemisches erfolgt im Wärmeaustauscher 6 und im Verdampfer 7 der Kohlenoxydfraktion bis auf die Temperatur von etwa —190° C. Im Wärmeaustauscher 6 und im Verdampfer 7 kondensiert die Methanfraktion, welche sich im Sumpf des Verdamp-The gas mixture, compressed to 10 to 25 atmospheres and freed from all undesirable constituents such as CO 2 , NO, H 2 S and the like, is cooled in a doubled heat exchanger 1 to a temperature of -70 to -80 ° C. In this heat exchanger 1, the gas mixture is freed from water vapor and possibly also from benzene by condensation and freezing out by alternately operating one heat exchanger and defrosting the other. The gas mixture is then cooled in the ethylene evaporator 2 to a temperature of about -93.degree. C. and then in the heat exchangers 3 and 4 to a temperature of about -140.degree. Instead of the heat exchangers 3 and 4, only one heat exchanger with countercurrent condensation can also be switched on. The ethylene fraction condenses in the heat exchanger 4 and collects in the vessel 5. The gas mixture is further cooled in the heat exchanger 6 and in the evaporator 7 of the carbon oxide fraction to a temperature of around -190 ° C. The methane fraction condenses in the heat exchanger 6 and in the evaporator 7, which is located in the sump of the evaporation

009 529/57009 529/57

Claims (4)

3 43 4 fers 7 sammelt. Der unreine Wasserstoff, d. h. der Drosselung im Äthylenverdampfer 10 und kühlt den Rest des Gasgemisches nach der Kondensation der Hochdruckstickstoff, der zweite Strom verdampft im Äthylen- und Methanfraktion, wird mit flüssigem Äthylenverdampf er 2 und kühlt das eintretende Gas-Stickstoff in der Waschkolonne 8 gewaschen. gemisch. Nach dem Verdampfen vereinigen sich beidefers 7 collects. The impure hydrogen, i.e. H. the throttling in the ethylene evaporator 10 and cools the Rest of the gas mixture after the condensation of the high pressure nitrogen, the second stream evaporates in the Ethylene and methane fraction, becomes 2 with liquid ethylene evaporator and cools the incoming gas nitrogen washed in the washing column 8. mixture. After evaporation, both unite Der Hochdruckstickstoff von einem Druck von 5 Ströme und kühlen den HochdruckstickstofF imThe high pressure nitrogen from a pressure of 5 streams and cool the high pressure nitrogen in the etwa 150 bis 200 atü wird zuerst im Wärmeaus- Wärmeaustauscher 9 oder das eintretende Gasgemischabout 150 to 200 atü is first in the heat exchanger 9 or the incoming gas mixture tauscher 9, dann im Äthylenverdampfer 10 auf die im Wärmeaustauscher 1. Der dritte Strom vonexchanger 9, then in the ethylene evaporator 10 to that in the heat exchanger 1. The third stream of Temperatur von — 93° C und schließlich im Wärme- Äthylen bildet nach Drosselung den Rückfluß in derTemperature of - 93 ° C and finally in the warmth ethylene forms the reflux in the after throttling austauscher 11 abgekühlt. Hinter diesem teilt sich der zweiten Äthylenkolonne 13.exchanger 11 cooled down. Behind this, the second ethylene column divides 13. Hochdruckstickstoff in zwei Ströme. Der erste Strom xo Nach dem Verfahren gemäß der Erfindung kann ergänzt nach Drosselung das reine Wasserstoff-Stick- man aus dem Gasgemisch, dessen Zusammensetzung stoff-Gemisch aus der Waschkolonne 8 zu einem Ge- weiter vorn angeführt ist, ein reines Wasserstoffmisch 3 H2 + N2 und wird durch die Wärmeaus- Stickstoff-Gemisch für die Ammoniaksynthese, reines tauscher 6, 4, 3, 1, wo es sich erwärmt und das Äthylen, eine Methanfraktion mit 70 bis 8O°/o CH4 eintretende Gasgemisch kühlt, geleitet. Der zweite 15 und eine Kohlenoxydfraktion erzeugen. Durch eine Strom des Hochdruckstickstoffes dient nach Drosse- Abänderung des Verfahrens kann reiner Wasserstoff lung und Unterkühlung im Verdampfer 7 in flüssiger an Stelle des reinen Wassertoff-Stickstoff-Gemisches Form zum Waschen des Wasserstoffes in der Wasch- erzeugt werden. Nach Ergänzung des Verfahrens kolonne 8. Die Kohlenoxydfraktion, die sich im Sumpf durch eine besondere Methankolonne kann man auch der Waschkolonne 8 sammelt, verdampft nach Drosse- ao reines Methan erzeugen.High pressure nitrogen in two streams. The first stream xo According to the method according to the invention, after throttling, the pure hydrogen nitrogen can be added from the gas mixture, the composition of which is a mixture of substances from the scrubbing column 8 to form a pure hydrogen mixture 3 H 2 + N 2 and is passed through the heat from nitrogen mixture for ammonia synthesis, pure exchanger 6, 4, 3, 1, where it heats up and cools the ethylene, a methane fraction with 70 to 80% CH 4 entering gas mixture. The second 15 and produce a carbon oxide fraction. According to Drosse's modification of the process, a stream of high-pressure nitrogen can be used to generate pure hydrogen treatment and subcooling in the evaporator 7 in liquid form instead of the pure hydrogen-nitrogen mixture for washing the hydrogen in the washing machine. After completing the process, column 8. The carbon oxide fraction, which is collected in the sump by a special methane column, can also be collected in the washing column 8, evaporates after Drosse- ao to produce pure methane. lung im Verdampfer 7, erwärmt sich in den Wärme- Das Verfahren gemäß der Erfindung bringt eine austauschern 6, 4, 3, 1 und kühlt ebenfalls das ein- Reihe von Vorteilen. Wie bei dem bekannten Vertretende Gasgemisch. fahren wird die Äthylenfraktion direkt verarbeitet, sotreatment in the evaporator 7, warms up in the heat The method according to the invention brings a exchangers 6, 4, 3, 1 and also cools this a number of advantages. As with the well-known representative Gas mixture. the ethylene fraction is processed directly, see above Die Methanfraktion aus dem Verdampfer 7 wird daß eine Verdampfung, Erwärmung, Verdichtung,The methane fraction from the evaporator 7 is that evaporation, heating, compression, gleichfalls gedrosselt und in drei Ströme geteilt. Der 35 Reinigung, Abkühlung und Kondensation der Frak-also throttled and divided into three streams. 35 Purification, cooling and condensation of the frac- erste Strom kühlt den Hochdruckstickstoff in den tion entfällt. Es werden einige Wärmeaustauscher,First stream cools the high pressure nitrogen in the tion is omitted. There will be some heat exchangers, Wärmeaustauschern 11 und 9. Der zweite Strom Verdichter und Gasbehälter für die ÄthylenfraktionHeat exchangers 11 and 9. The second stream compressor and gas container for the ethylene fraction kühlt das eintretende Gasgemisch in den Wärmeaus- überflüssig. Da das eintretende Gasgemisch mit flüs-cools the incoming gas mixture in the heat, superfluous. Since the gas mixture entering with liquid tauschern 6, 4, 3, 1. Der dritte Strom dient als Rück- sigem Äthylen vorgekühlt wird, wird die Anzahl derexchangers 6, 4, 3, 1. The third stream serves as reverse ethylene is pre-cooled, the number of fluß in der ersten Äthylenkolonne 12. 30 Wärmeaustauscher geringer, und das Umschalten derflow in the first ethylene column 12. 30 heat exchanger less, and switching the Die Äthylenfraktion aus dem Gefäß 5 verdampft eingefrorenen Wärmeaustauscher wird einfacher, teilweise im Wärmeaustauscher 4 und wird danach Außerdem erhöht sich der Drosseleffekt des verarbeiin die Mitte der ersten Äthylenkolonne 12 eingeführt. teten Gasgemisches gegenüber der üblichen Ammo-In dieser wird die Äthylenfraktion so geteilt, daß oben niakvorkühlung. Die Vorkühlung des Hochdruck-Methan mit niedrigersiedenden Bestandteilen und 35 Stickstoffes durch das flüssige Äthylen erhöht den unten ein Gemisch von Äthylen, Äthan und höher- Drosseleffekt besonders. Bei der üblichen Ammoniaksiedenden Bestandteilen ausströmt. vorkühlung beträgt der isotherme Drosseleffekt desThe ethylene fraction evaporated from the vessel 5 frozen heat exchanger becomes easier, partially in the heat exchanger 4 and is thereafter. In addition, the throttling effect of the processing increases the middle of the first ethylene column 12 is introduced. killed gas mixture compared to the usual ammo-in this is the ethylene fraction divided so that niakvorkühlung above. The pre-cooling of the high pressure methane with lower boiling components and 35 nitrogen through the liquid ethylene increases that below a mixture of ethylene, ethane and higher - throttle effect in particular. At the usual ammonia boilers Components flows out. pre-cooling is the isothermal throttle effect of the Im Sumpf der ersten Äthylenkolonne 12 ist eine Stickstoffes bei —45° C und 200 atü 13,7 kcal/kg, da-Heizschlange eingebaut, welche von Hochdruckstick- gegen bei der Äthylenvorkühlung bei —93° C und stoff durchströmt wird. Die Heizschlange ist parallel 40 200 atü 21,2 kcal/kg. Der spezifische Energieverzum Äthylenverdampfer 10 zur Abkühlung des Hoch- brauch bei der Ammoniakvorkühlung beträgt druckstickstoffes geschaltet. Als Rückfluß der ersten 1,7 kWh/100 kcal, dagegen bei der Äthylenvorkühlung Äthylenkolonne 12 dient ein Teil der gedrosselten 1,05 kWh/100 kcal. Diese Erhöhung des Drossel-Methanfraktion. Das frei gewordene Methan und die effektes des Stickstoffes und des verarbeiteten GasniedrigersiedendenBestandteile aus der ersten Äthylen- 45 gemisches ermöglicht das Weglassen des sonst angekolonne 12 werden in die Rohrleitung der Methan- wendeten Stickstoffverdampfers sowie des Rückweges fraktion zwischen den Wärmeaustauschern 4 und 6 des verdampfen Stickstoffes bis zur Saugseite des eingeführt. An dieser Stelle ist die Temperatur der Stickstoffhochdruckkompressors. Die Kurve des spezi-Methanfraktion ungefähr dieselbe wie die Temperatur fischen Energieverbrauches für Stickstoff mit Äthylender Gase aus der ersten Äthylenkolonne 12, was aus 50 vorkühlung in Abhängigkeit vom Druck weist einen thermodynamischen Gründen vorteilhaft ist. Die flachen Verlauf auf. Die Kälteleistung des Stickstoff-Äthylen-Äthan-Fraktion aus dem Sumpf der ersten kreislauf es kann man deshalb vorteilhaft durch Druck-Äthylenkolonne 12 wird nach Drosselung in den mitt- änderung bei konstanter Stickstoffmenge regulieren, leren Teil der zweiten Äthylenkolonne 13 eingeführt. Im Vergleich mit dem bekannten Verfahren zur Koksin dieser Kolonne wird das Gemisch so geteilt, daß 55 ofengaszerlegung ist das hier vorgeschlagene Veroben reines Äthylen und unten die Äthanfraktion mit fahren deshalb vorteilhaft, weil das Fließschema und höhersiedenden Bestandteilen entweicht. Die Äthan- die Bedienung einfacher sind und außerdem der fraktion aus der zweiten Äthylenkolonne 13 wird in Methanverdichter wegfällt. Das bedeutet niedrigere die Methanfraktion zwischen den Wärmeaustauschern 1 Anschaffungskosten,
und 3 eingeführt. Das reine Äthylen aus der zweiten 60
In the bottom of the first ethylene column 12 a nitrogen at -45 ° C and 200 atmospheres 13.7 kcal / kg, da heating coil is installed, which is flowed through by high pressure nitrogen against the ethylene precooling at -93 ° C and substance. The heating coil is parallel 40 200 atü 21.2 kcal / kg. The specific energy supply ethylene evaporator 10 for cooling the high consumption in the ammonia precooling is switched to pressurized nitrogen. A part of the throttled 1.05 kWh / 100 kcal serves as reflux of the first 1.7 kWh / 100 kcal, on the other hand with the ethylene precooling ethylene column 12. This increase in the throttle methane fraction. The methane released and the effects of the nitrogen and the processed low-boiling gas components from the first ethylene mixture make it possible to omit the otherwise attached column 12 in the pipeline of the methane evaporator as well as the return fraction between the heat exchangers 4 and 6 of the evaporated nitrogen introduced to the suction side of the. At this point is the temperature of the high pressure nitrogen compressor. The curve of the speci-methane fraction approximately the same as the temperature fish energy consumption for nitrogen with ethylene gases from the first ethylene column 12, which is advantageous from pre-cooling as a function of the pressure for thermodynamic reasons. The flat course on. The refrigeration capacity of the nitrogen-ethylene-ethane fraction from the sump of the first circuit can therefore be advantageously regulated by pressure ethylene column 12 after throttling in the mean change at a constant amount of nitrogen, leren part of the second ethylene column 13 is introduced. In comparison with the known method for coke in this column, the mixture is divided so that the furnace gas decomposition proposed here is pure ethylene and the ethane fraction below is advantageous because the flow diagram and higher-boiling components escape. The ethane operation is simpler and the fraction from the second ethylene column 13 is omitted in methane compressors. That means lower the methane fraction between the heat exchangers 1 acquisition costs,
and 3 introduced. The pure ethylene from the second 60
Äthylenkolonne 13 erwärmt sich und kühlt in den Patentansprüche:
Wärmeaustauschern 14 und 16 das verdichtete Kreis- 1. Verfahren zur Zerlegung eines Gasgemisches, laufäthylen, das in der Apparatur abgekühlt, konden- welches Wasserstoff als Hauptbestandteil und siert, verdampft, erwärmt und wieder zu der Saug- Methan, Äthan, Äthylen und Kohlenoxyd als seite des Verdichters zurückgeführt wird. Das Kreis- 65 Nebenbestandteile enthält, bei tiefen Temperalaufäthylen wird zuerst im Wärmeaustauscher 16, türen zwecks Gewinnung eines reinen Wasserdann im Ammoniakverdampfer 15 und im Wärmeaus- stoff-Stickstoff-Gemisches oder von reinem Wassertauscher 14 und in der Heizschlange der zweiten stoff und gegebenenfalls anderer Bestandteile des Äthylenkolonne 13 abgekühlt. Dann wird es in drei Gasgemisches im reinen Zustand in einer gemein-Ströme geteilt. Der erste Strom verdampft nach 7° samenAnlage, dadurch gekennzeichnet, daß dieKälte-
Ethylene column 13 heats up and cools in the claims:
Heat exchangers 14 and 16 the compressed cycle 1. Process for the decomposition of a gas mixture, running ethylene, which is cooled in the apparatus, condensate which is hydrogen as the main component and siert, evaporates, heated and again to the suction methane, ethane, ethylene and carbon oxide as side of the compressor is returned. The circuit contains secondary components, at low temperature ethylene is first in the heat exchanger 16, doors for the purpose of obtaining pure water, then in the ammonia evaporator 15 and in the heat substance-nitrogen mixture or from pure water exchanger 14 and in the heating coil the second substance and possibly other components of the ethylene column 13 cooled. Then it is divided into three gas mixtures in the pure state in one common-streams. The first stream evaporates after 7 ° seed system, characterized in that the cold
Verluste durch Hochdruckstickstoff, der von einem Teil des flüssigen, durch Ammoniak vorgekühlten Kreislaufäthylens vorgekühlt wird, ersetzt werden, wobei der restliche Teil des Kreislaufäthylens zur Bildung des Rückflusses bei der Erzeugung des reinen Äthylens und gegebenenfalls zur Vorkühlung des eintretenden Gasgemisches verwendet wird.Losses due to high pressure nitrogen, from part of the liquid, pre-cooled by ammonia Circulation ethylene is pre-cooled, replaced, with the remaining part of the circulation ethylene for Formation of the reflux during the production of the pure ethylene and, if necessary, for pre-cooling of the incoming gas mixture is used.
2. Verfahren zur Zerlegung eines Gasgemisches zur Erzeugung eines reinen Wasserstoff-Stickstoff-Gemisches nach Anspruch 1, dadurch gekennzeichnet, daß die Menge des benötigten Hochdruckstickstoffes durch den Verbrauch für das Waschen des Wasserstoffes und für das Ergänzen des Wasserstoff-Stickstoff-Gemisches auf ein Verhältnis 3 H2 + N2 bestimmt ist, wobei die niedrigste Temperatur von —190° C durch das Verdampfen der Kohlenoxydfraktion aus der Waschkolonne (8) erzielt wird.2. A method for decomposing a gas mixture to produce a pure hydrogen-nitrogen mixture according to claim 1, characterized in that the amount of high-pressure nitrogen required by the consumption for washing the hydrogen and for supplementing the hydrogen-nitrogen mixture to a ratio 3 H 2 + N 2 is determined, the lowest temperature of -190 ° C being achieved by the evaporation of the carbon oxide fraction from the washing column (8). 3. Verfahren zur Zerlegung eines Gasgemisches nach Anspruch 1, dadurch gekennzeichnet, daß der Rückfluß in der ersten Äthylenkolonne (12) durch das Einführen eines Teiles der Methanfraktion aus dem Verdampfer (7) der Kohlenoxydfraktion in die erste Äthylenkolonne (12) gebildet wird, wobei das Methan-Restgas aus der ersten Äthylenkolonne (12) in die Methanleitung zwischen den Wärmeaustauschern (4 und 6) eingeführt wird.3. A method for separating a gas mixture according to claim 1, characterized in that the reflux in the first ethylene column (12) is formed by introducing part of the methane fraction from the evaporator (7) of the carbon oxide fraction into the first ethylene column (12), wherein the residual methane gas from the first ethylene column (12) is introduced into the methane guide between the heat exchangers (4 and 6). 4. Verfahren zur Zerlegung eines Gasgemisches nach Anspruch 1 und 3, dadurch gekennzeichnet, daß die Äthanfraktion aus der zweiten Äthylenkolonne (13) in die Methanleitung zwischen den Wärmeaustauschern (1 und 3) eingeführt wird.4. A method for decomposing a gas mixture according to claim 1 and 3, characterized in that that the ethane fraction from the second ethylene column (13) in the meth manual between the Heat exchangers (1 and 3) is introduced. In Betracht gezogene Druckschriften:
Deutsche Patentschrift Nr. 1032 287.
Considered publications:
German patent specification No. 1032 287.
Hierzu 1 Blatt Zeichnungen1 sheet of drawings
DEZ7055A 1958-01-18 1959-01-15 Process for the decomposition of a gas mixture Pending DE1082923B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS1214522X 1958-01-18

Publications (1)

Publication Number Publication Date
DE1082923B true DE1082923B (en) 1960-06-09

Family

ID=5457980

Family Applications (1)

Application Number Title Priority Date Filing Date
DEZ7055A Pending DE1082923B (en) 1958-01-18 1959-01-15 Process for the decomposition of a gas mixture

Country Status (2)

Country Link
DE (1) DE1082923B (en)
FR (1) FR1214522A (en)

Also Published As

Publication number Publication date
FR1214522A (en) 1960-04-08

Similar Documents

Publication Publication Date Title
EP0017174B1 (en) Process for separating a gaseous mixture
DE1619728B2 (en) LOW TEMPERATURE RECTIFICATION PROCESS FOR THE SEPARATION OF GAS MIXTURES FROM COMPONENTS WHOSE BOILING TEMPERATURES ARE WIDE DIFFERENT
DE2323410A1 (en) METHOD FOR PRODUCING CARBON MONOXIDE BY GAS SEPARATION
DE2932561A1 (en) METHOD AND DEVICE FOR DISASSEMBLING A GAS MIXTURE
DE1067046B (en) Method for separating a gas mixture at low temperature and device for carrying out the method
DE1082923B (en) Process for the decomposition of a gas mixture
DE1274092C2 (en) METHOD FOR PRODUCING AMMONIA SYNTHESIS GAS
AT210398B (en) Process for the decomposition of a gas mixture
DE1467055C3 (en) Process for obtaining pure carbon dioxide from a mixture with hydrocarbons
DE1074064B (en) Process for separating low-boiling contaminants including nitrogen and carbon monoxide at low temperatures from gaseous raw hydrogen
DE725157C (en) Process for the production of a low-boiling gas, in particular for the production of hydrogen from coke oven gas
DE955867C (en) Process for separating a compressed, hydrogen-rich gas mixture
DE861852C (en) Process for the liquefaction of impure hydrogen
DE855989C (en) Process for increasing the concentration of condensable components in gas mixtures
DE861853C (en) Process for generating pressurized oxygen
DE729475C (en) Process for gas separation using an auxiliary material cycle
DE702246C (en) Device for breaking down a gas mixture with low boiling points
AT141861B (en) Process for the separation of low-boiling gas mixtures.
DE1940623A1 (en) Separation of gas mixtures esp carbon dioxide and - nitrogen from natural gas
AT226656B (en) Process for liquefying natural gas
DE764953C (en) Process for separating mixture components
DE628142C (en) Process for separating gas mixtures
DE1048937B (en) Process for the production of argon from residual synthesis gas
DE973116C (en) Process for the liquefaction of gases, especially chlorine
AT204017B (en) Process for the separation of coke oven gas by means of deep freezing