DE1044288B - Method for reducing the noise and / or the temperature coefficient in semiconductor arrangements, for example rectifiers or transistors, also with tip electrodes or the like. - Google Patents

Method for reducing the noise and / or the temperature coefficient in semiconductor arrangements, for example rectifiers or transistors, also with tip electrodes or the like.

Info

Publication number
DE1044288B
DE1044288B DES45228A DES0045228A DE1044288B DE 1044288 B DE1044288 B DE 1044288B DE S45228 A DES45228 A DE S45228A DE S0045228 A DES0045228 A DE S0045228A DE 1044288 B DE1044288 B DE 1044288B
Authority
DE
Germany
Prior art keywords
noise
semiconductor
transistors
tip electrodes
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DES45228A
Other languages
German (de)
Inventor
Dr Eberhard Groschwitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DES45228A priority Critical patent/DE1044288B/en
Publication of DE1044288B publication Critical patent/DE1044288B/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

Verfahren zur Verringerung des Rauschens und/oder des Temperaturkoeffizienten in Halbleiteranordnungen, beispielsweise Gleichrichtern oder Transistoren auch mit Spitzenelektroden od. dgl. Bekanntlich ist das Rauschen in Halbleitern um mehrere Größenordnungen stärker als in Metallen und beruht zum Teil auf anderen Ursachen. Besonders störend ist das Rauschen bei Halbleiteranordnungen mit Spitzkontakten, vorzugsweise in Richtleitern und Transistoren. Aber auch bei Flächengleichrichtern und Flächentransistoren sowie anderen Halbleiteranordnungen mit Übergängen zwischen Zonen unterschiedlichen Leitungstypus, beispielsweise pn-Übergängen, oder mit Übergängen zu Intrinsiczonen sowie in magnetisch und/oder elektrisch steuerbaren Halbleiterkörpern, vorzugsweise widerständen, mit oder ohne Zonen unterschiedlichen Leitungstypus und in mit oder ohne Vorspannung betriebenen Photozellen ist die Rauscheigenschaft störend.Method of reducing the noise and / or the temperature coefficient in semiconductor arrangements, for example rectifiers or transistors also with Tip electrodes or the like. It is known that the noise in semiconductors is several Orders of magnitude stronger than in metals and is partly due to other causes. The noise is particularly annoying in semiconductor arrangements with pointed contacts, preferably in directional ladders and transistors. But also with surface rectifiers and junction transistors and other semiconductor arrangements with junctions between Zones of different line types, for example pn junctions, or with junctions to intrinsic zones and in magnetically and / or electrically controllable semiconductor bodies, preferably resistors, with or without zones of different line types and In photocells operated with or without bias voltage, the noise property is disruptive.

Die der Erfindung zugrunde liegenden theoretischen und experimentellen Untersuchungen legen die Vermutung nahe, daß das Rauschen mindestens wesentlich durch Oberflächenströme längs der Oberfläche des Halbleiterkristalls, insbesondere Einkristalls, bedingt ist, welche besonders in der Nähe von Übergängen zwischen Zonen unterschiedlichen Leitungstypus, beispielsweise pn-Übergängen, und/oder in der Umgebung einer Kontaktspitze auftreten. Dies dürfte, mindestens zum Teil, daher rühren, daß auf der Halbleiteroberfläche ein- oder zweifach ionisierte Atome der umgebenden Atmosphäre, insbesondere Sauerstoffionen, angelagert sind. Durch Injektionen der an die Ionen angelagerten Elektronen in den an der Halbleiteroberfläche liegenden Oberflächenstrom vom p-Typ - bestehe dieser aus Majoritätsträgern oder Minoritätsträgern - wird dieser zu statistischen Schwankungen angeregt, welche für das Rauschen mindestens teilweise verantwortlich sein dürften.The theoretical and experimental on which the invention is based Research suggests that the noise is at least substantial by surface currents along the surface of the semiconductor crystal, in particular Single crystal, which is conditional, especially in the vicinity of transitions between Zones of different line types, for example pn junctions, and / or in occur in the vicinity of a contact tip. This is likely, at least in part, therefore stir that on the semiconductor surface once or twice ionized atoms of the surrounding atmosphere, in particular oxygen ions, are deposited. By injections of the electrons attached to the ions in those lying on the semiconductor surface P-type surface current - let this consist of majority or minority carriers - this is stimulated to statistical fluctuations, which for the noise at least may be partly responsible.

Die Erfindung bezieht sich daher auf ein Verfahren zur Verringerung des Rauschens und/oder des Temperaturkoeffizienten in Halbleiteranordnungen, beispielsweise Gleichrichtern, Transistoren auch mit Spitzenelektroden od. dgl.The invention therefore relates to a method for reducing the noise and / or the temperature coefficient in semiconductor devices, for example Rectifiers, transistors also with tip electrodes or the like.

Gemäß der Erfindung wird die hochgradig gereinigte Oberfläche des Halbleiterkristalls bei gleichzeitiger Einwirkung einer aus Sauerstoff oder Edelgas bestehenden Gasatmosphäre geeigneten Druckes mindestens in der Nähe bzw. Umgebung von pn-Übergängen, z. B. auch an Spitzenelektroden mit einer den Bindungseigenschaften und/oder der Dotierung des Kristallgitters angepaßten kurzwelligen Bestrahlung des UV-Gebietes, des Röntgen-Gebietes oder des zwischen ihnen liegenden Stahlungsgebietes bestrahlt. Durch die Bestrahlung wird, wie Versuche gezeigt haben, das Rauschen herabgesetzt, was nach den vorangehenden Betrachtungen vermutlich durch eine Verringerung der Anzahl der Rauschzentren auf der Halbleiterkristalloberfläche bedingt ist. Diese Wirkung kann vielleicht dadurch erklärt werden, daß durch die Strahlung in Kristallgitter an der Halt)-leiteroberfläche ein Photoeffekt ausgelöst wird, welcher die adsorbierten Sauerstoffionen oder -atome in einen energetisch günstigen Zustand versetzt, wobei eine beträchtliche Anzahl dieser Adsorptionsstellen die Funktion als Rauschzentrum verliert. Gleichzeitig wird auch der Temperaturkoeffizient herabgesetzt.According to the invention, the highly cleaned surface of the Semiconductor crystal with simultaneous action of one of oxygen or noble gas existing gas atmosphere of suitable pressure at least in the vicinity or environment of pn junctions, e.g. B. also on tip electrodes with one of the binding properties and / or the doping of the crystal lattice adapted short-wave irradiation of the UV area, the X-ray area or the radiation area between them irradiated. As experiments have shown, the irradiation reduces the noise reduced, which, according to the previous considerations, is presumably due to a reduction depends on the number of noise centers on the semiconductor crystal surface. These Effect can perhaps be explained by the fact that through the radiation in crystal lattices a photoelectric effect is triggered on the holding) conductor surface, which the adsorbed Oxygen ions or atoms put in an energetically favorable state, whereby a considerable number of these adsorption sites function as noise centers loses. At the same time, the temperature coefficient is also reduced.

Es ist an sich bereits vorgeschlagen worden, die Oberfläche von Halbleiterkristallgleichrichtern, vorzugsweise Germaniumspitzengleichrichtern, mit UV-Licht zu bestrahlen zwecks Verbesserung der Richteigenschaften. Die Tatsache, daß sich durch eine solche Bestrahlung auch das Rauschen und der Temperaturkoeffizient herabsetzen läßt, ist jedoch bisher nicht bekannt gewesen.It has already been proposed that the surface of semiconductor crystal rectifiers, preferably germanium tip rectifiers, to be irradiated with UV light for the purpose of improvement the directional properties. The fact that through such irradiation too can reduce the noise and the temperature coefficient, but is not yet been known.

Gemäß einer besonderen Ausbildung des Erfindungsgedankens läßt sich für jede Halbleiteranordnung je nach dem verwendeten Halbleitermaterial, sei es Silizium, Germanium, eine Legierung oder Verbindung von Elementen der IV. Gruppe untereinander oder eine Legierung bzw. Verbindung von Elementen der III. und V., II. und VI., I. und VII. Gruppe des Periodischen Systems oder deren Mehrfachverbindungen oder Mischkristallen, eine optimale Bestrahlung bezüglich Bestrahlungsdauer, Intensität und/oder Wellenlänge bzw. Spektrum der Bestrahlung ermitteln.According to a special embodiment of the inventive concept can for each semiconductor arrangement depending on the semiconductor material used, be it Silicon, germanium, an alloy or compound of elements of group IV with each other or an alloy or combination of elements of III. and V., II. And VI., I. and VII. Group of the Periodic Table or their multiple compounds or mixed crystals, an optimal irradiation in terms of irradiation duration, intensity and / or determine the wavelength or spectrum of the irradiation.

Es ist unter Umständen vorteilhaft, ein Wellenlängenspektrum der Bestrahlung anzuwenden, welches im UV-Gebiet oder zwischen dem UV-Gebiet und dem Röntgengebiet liegt oder teilweise in das eine oder andere Gebiet hineinreicht. Außerdem ist die notwendige kurzwellige Bestrahlungsfrequenz dem Bindungstppus und/oder der Dotierung des Kristalls anzupassen.. Als Bestrahlungsdauer kommt für die meisten Zwecke eine Größenordnung von 1/z bis zu 2 Stunden in Frage.It may be advantageous to use a wavelength spectrum of the irradiation apply which in the UV area or between the UV area and the X-ray area or partially extends into one or the other area. In addition, the necessary short-wave irradiation frequency is the binding stop and / or adapt to the doping of the crystal .. As the irradiation time comes for most Purposes on the order of 1 / z up to 2 hours in question.

Gemäß einer weiteren Ausbildung des Erfindungsgedankens wird die Bestrahlung in einer definiertengegebenenfalls mit Spurenelement, z. B. Donatoren, Akzeptoren, Rekombinationszentren und/oder Haftstellen angereicherten - Gasatmosphäre aus Sauerstoff oder einem anderen Chalkogenid und/oder Edelgas geeigneten Druckes durchgeführt. Um -%"#olildefinierteIonenanlagerungen auf der Halbleiterkristalloberfläche zu erzeugen, welche durch die Bestrahlung umgelagert bzw. umgeladen werden sollen, ist es gemäß einer weiteren Ausbildung des Erfindungsgedankens zweckmäßig, die Halbleiteroberfläche zuvor hochgradig zu reinigen, beispielsweise durch eine chemische oder elektrochemische Abtragung bzw. Politur und/ oder eine Abdampfreinigung im Hochvakuum durch Erhitzen mindestens der Oberfläche auf erhöhte Temperatur bis zur Glühtemperatur oder durch Kathodenzerstäubung und erst anschließend die Bestrahlung in einer wohldefinierten Atmosphäre vorzunehmen. Unter Umständen geniigt es auch, die Kristalloberfläche nach der Reinigung einer wohldefinierten Atmosphäre auszusetzen, um sie dann im Hochvakuum zu bestrahlen. Die Bestrahlungszeiten liegen nach den. gemachten Erfahrungen zweckmäßig in der Größenordnung einiger Minuten bis ztt einer oder einigen Stunden.According to a further development of the inventive concept, the irradiation in a defined, possibly with trace element, e.g. B. Donors, acceptors, Recombination centers and / or traps enriched - gas atmosphere of oxygen or another chalcogenide and / or noble gas of suitable pressure. In order to generate -% "# oil-defined ion accumulations on the semiconductor crystal surface, which are to be relocated or reloaded by the irradiation, it is according to a further development of the inventive idea expediently, the semiconductor surface to be cleaned to a high degree beforehand, for example by a chemical or electrochemical Ablation or polishing and / or steam cleaning in a high vacuum by heating at least the surface to an elevated temperature up to the annealing temperature or through Cathode sputtering and only then the irradiation in a well-defined Atmosphere. The crystal surface may also be sufficient to expose it to a well-defined atmosphere after purification in order to then Irradiate high vacuum. The irradiation times are after. experiences made expediently in the order of a few minutes to ztt one or a few hours.

Claims (2)

' PATENTANSPRÜCHE: 1. Verfahren zur Verringerung des Rauschens und/oder des Temperaturkoeffizienten in Halbleiteranordnungen, beispielsweise Gleichrichtern, Transistoren auch mit Spitzenelektroden od. dgl., dadurch gekennzeichnet, daß die hochgradig gereinigte Oberfläche des Halbleiterkristalls bei gleichzeitiger Einwirkung einer aus Sauerstoff oder Edelgas bestehenden Gasatmosphäre geeigneten Druckes mindestens in der Nähe bzw. Umgebung von pn-Übergängen, z. B. auch an Spitzenelektroden, mit einer den Bindungseigenschaften und/oder der Dotierung des Kristallgitters angepaßten kurzwelligen Bestrahlung des UV-Gebietes, des Röntgengebietes oder des zwischen ihnen li-'-genden Strahlungsgebietes bestrahlt wird. 'PATENT CLAIMS: 1. Method for reducing noise and / or the temperature coefficient in semiconductor arrangements, e.g. rectifiers, Transistors also with tip electrodes or the like, characterized in that the highly cleaned surface of the semiconductor crystal with simultaneous exposure a gas atmosphere consisting of oxygen or noble gas of suitable pressure at least in the vicinity of pn junctions, e.g. B. also on tip electrodes, with one adapted to the binding properties and / or the doping of the crystal lattice short-wave irradiation of the UV area, the X-ray area or the between them li -'- is irradiated radiation area. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die auf den Halbleiterkristall einwirkende Gasatmosphäre mit Spurenelementen angereichert wird. In Betracht gezogene Druckschriften: Deutsche Patentanmeldung S 8310 VIII c/21 g, (bekanntgemacht am 21. B. 1952) ; USA.-Patentschrift Nr. 2 402 662.2. The method according to claim 1, characterized in that the gas atmosphere acting on the semiconductor crystal is enriched with trace elements. Publications considered: German Patent application S 8310 VIII c / 21 g, (published 21 B. 1952); U.S. Patent No. 2 402 662.
DES45228A 1955-08-19 1955-08-19 Method for reducing the noise and / or the temperature coefficient in semiconductor arrangements, for example rectifiers or transistors, also with tip electrodes or the like. Pending DE1044288B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DES45228A DE1044288B (en) 1955-08-19 1955-08-19 Method for reducing the noise and / or the temperature coefficient in semiconductor arrangements, for example rectifiers or transistors, also with tip electrodes or the like.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DES45228A DE1044288B (en) 1955-08-19 1955-08-19 Method for reducing the noise and / or the temperature coefficient in semiconductor arrangements, for example rectifiers or transistors, also with tip electrodes or the like.

Publications (1)

Publication Number Publication Date
DE1044288B true DE1044288B (en) 1958-11-20

Family

ID=7485461

Family Applications (1)

Application Number Title Priority Date Filing Date
DES45228A Pending DE1044288B (en) 1955-08-19 1955-08-19 Method for reducing the noise and / or the temperature coefficient in semiconductor arrangements, for example rectifiers or transistors, also with tip electrodes or the like.

Country Status (1)

Country Link
DE (1) DE1044288B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2402662A (en) * 1941-05-27 1946-06-25 Bell Telephone Labor Inc Light-sensitive electric device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2402662A (en) * 1941-05-27 1946-06-25 Bell Telephone Labor Inc Light-sensitive electric device

Similar Documents

Publication Publication Date Title
DE2429705C3 (en) Schottky diode and process for its manufacture
DE2805442A1 (en) PROCESS FOR PRODUCING A SCHOTTKY BARRIER LAYER SEMI-CONDUCTOR COMPONENT
DE2031333C3 (en) Method for manufacturing a semiconductor component
DE1544211A1 (en) Method of manufacturing semiconductor devices
DE2341311C3 (en) Method for setting the service life of charge carriers in semiconductor bodies
DE1444501B2 (en) METHOD OF GETTERING A SEMICONDUCTOR
DE1154878B (en) Process for the production of semiconductor bodies for semiconductor arrangements made of n-conductive silicon by irradiation with thermal neutrons
DE19920871B4 (en) Process for activating charge carriers by radiation-assisted heat treatment
DE2212489B2 (en) Process for the production of a field effect transistor
DE10015884A1 (en) Schottky diode
DE1033783B (en) Electrode system with at least one semiconducting body, in particular a crystal diode or transistor
DE1044288B (en) Method for reducing the noise and / or the temperature coefficient in semiconductor arrangements, for example rectifiers or transistors, also with tip electrodes or the like.
DE3839210A1 (en) METHOD FOR AXIAL ADJUSTING THE CARRIER LIFE
DE2733146C2 (en) Implantation process and its use to manufacture a transistor
DE2825212C2 (en) Process for the production of semiconductor components by means of a short, intense laser light pulse
DE2738152A1 (en) SOLID COMPONENT AND METHOD FOR ITS MANUFACTURING
DE1178947B (en) Process for the production of semiconductor components with at least one thin semiconductor layer doped by diffusion
DE1193335B (en) Method for shaping and / or separating processing of photoelectrically active semiconductor crystals
DE2836796A1 (en) PROCEDURE FOR CHANGING THE ELECTRICAL PROPERTIES OF A UNIJUNCTION TRANSISTOR AND THE PRODUCT OBTAINED BY THIS PROCEDURE
AT233119B (en) Semiconductor arrangement with an essentially monocrystalline semiconductor body
DE1186950C2 (en) METHOD OF REMOVING UNDESIRED METALS FROM A PN-JUMPED SILICON SEMICONDUCTOR BODY
DE1268116B (en) Process for the production of a photoconductive semiconductor body from gallium phosphide which is at least partially activated with copper
DE102005035648B4 (en) Method for producing a high-performance component
DE2735769C3 (en) Method for setting the minority charge carrier lifetime in semiconductor components made of single-crystal silicon
DE1564401A1 (en) Device for generating a stream of electrons