DE1030936B - Vacuum-tight radiation window made of beryllium for discharge vessels - Google Patents

Vacuum-tight radiation window made of beryllium for discharge vessels

Info

Publication number
DE1030936B
DE1030936B DEL11298A DEL0011298A DE1030936B DE 1030936 B DE1030936 B DE 1030936B DE L11298 A DEL11298 A DE L11298A DE L0011298 A DEL0011298 A DE L0011298A DE 1030936 B DE1030936 B DE 1030936B
Authority
DE
Germany
Prior art keywords
vacuum
tight
beryllium
radiation window
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DEL11298A
Other languages
German (de)
Inventor
Dr Phil Wolfgang Rohde
Phil Nat Habil Rolf Hoseman Dr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Licentia Patent Verwaltungs GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Priority to DEL11298A priority Critical patent/DE1030936B/en
Publication of DE1030936B publication Critical patent/DE1030936B/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/02Vessels; Containers; Shields associated therewith; Vacuum locks
    • H01J5/18Windows permeable to X-rays, gamma-rays, or particles

Description

DEUTSCHESGERMAN

Zum Vakuumabschluß von Entladungsgefäßen, insbesondere von Röntgenröhren, bei denen elektromagnetische Wellen kleiner Wellenlänge außerhalb des Gefäßes nutzbar gemacht werden sollen, wurden bisher bestimmte Glassorten, z. B. Lindemann-Glas, oder dünne Metallfolien verwendet. Wegen des Druckunterschiedes auf beiden Seiten der Wandung ist jedoch eine bestimmte Dicke der Folie erforderlich und die Oberflächengröße sehr begrenzt. Bekanntlich sinkt die Durchlässigkeit für Strahlen mit der Ordnungszahl des Elementes, so daß beispielsweise die Durchlässigkeit der häufig verwendeten Aluminiumfolie 17mal kleiner ist als die einer Berylliumfolie gleicher Stärke. Es können somit bei gleicher Strahlendurchlässigkeit bei leichtatomigem Material größere Dicken verwendet werden als bei höheratomigem, so daß die Verwendung eines Berylliumfensters stets angestrebt wurde und auch bereits bekannt ist. Das handelsübliche Beryllium ist aber in dünner Schicht nicht vakuumdicht, so daß bei Außenfenstern eine derart dicke Scheibe verwendet werden mußte, daß der Vorteil der durch die niedrige Ordnungszahl bedingten geringen Absorption durch die erforderliche Dicke der Scheibe fortfällt. Es ist zwar gelungen, vakuumdichtes Beryllium in dünnen Scheiben herzustellen, doch ist das Herstellungsverfahren sehr schwierig und kostspielig.For vacuum sealing of discharge vessels, especially X-ray tubes, where electromagnetic Waves of small wavelengths outside of the vessel are to be made usable, were previously certain types of glass, e.g. B. Lindemann glass, or thin metal foils are used. Because of the pressure difference However, a certain thickness of the film is required on both sides of the wall and the Surface size very limited. As is well known, the permeability for rays decreases with the ordinal number of the element, so that, for example, the permeability of the frequently used aluminum foil 17 times is smaller than that of a beryllium foil of the same thickness. It can thus with the same radiation permeability larger thicknesses are used for light atomic material are than with higher atomic, so that the use of a beryllium window is always sought was and is already known. The commercially available beryllium is not vacuum-tight in a thin layer, so that such a thick pane had to be used for exterior windows that the advantage of low absorption due to the low atomic number due to the required thickness of the pane no longer applies. It has been possible to produce vacuum-tight beryllium in thin slices, but it is Manufacturing process very difficult and expensive.

Es ist ferner bekannt, Beryllium zur Verstärkung von Metallfolienfenstern zu verwenden, die gleichzeitig zur Vakuumdichtung dienen, doch verringern die Metallfolien die Strahlendurchlässigkeit ganz beträchtlich. It is also known to use beryllium to reinforce metal foil windows, the same time serve for vacuum sealing, but the metal foils reduce the radiation permeability quite considerably.

Weiterhin ist es bekannt, bei den üblichen stärkeren Berylliumfenstern die Verbindungsstellen zwischen Berylliumfenster und Gefäßwand mit einem abdichtenden Lack oder Emailleüberzug zu versehen. Gegenstand der Erfindung ist ein vakuumdichtes Strahlenfenster aus Beryllium für Entladungsgefäße, insbesondere Röntgenröhren, bei dem eine Berylliumscheibe verwendet ist, die infolge ihrer geringen Dicke nicht vauumdicht und die auf mindestens einer Seite mit einem dünnen, leichtatomigen, vakuumdichten Überzug versehen ist.Furthermore, it is known in the usual stronger beryllium windows, the connection points between To provide the beryllium window and the vessel wall with a sealing lacquer or enamel coating. object The invention is a vacuum-tight radiation window made of beryllium for discharge vessels, in particular X-ray tubes in which a beryllium disc is used, which due to its small thickness is not vacuum-tight and on at least one side with a thin, light atomic, vacuum-tight coating is provided.

Es hat sich ein sehr dünner Überzug gewisser Emaillesorten oder ein dünner Lackanstrich als sehr geeignet erwiesen. Wird beispielsweise ein dünnflüssiger Einbrennlack oder ein dünnflüssiger Silikonlack benutzt, so ist es vorteilhaft, diesen nach dem Einsetzen des Berylliumabschlusses in die Röhre während des Pumpprozesses aufzustreichen, so daß er tief in die Poren eindringt. Von der Gesamtoberfläche kann der überflüssige Lack dann wieder abgerieben werden, so daß die Durchlässigkeit fast unverändert bleibt. Es ist also vorteilhaft, den Überzug auf der dem Vakuum abgewandten Seite anzubringen. Die Figur zeigt Vakuumdichtes Strahlenfenster
aus Beryllium für Entladungsgefäße
A very thin coating of certain types of enamel or a thin coat of varnish has proven to be very suitable. If, for example, a thin stoving lacquer or a thin silicone lacquer is used, it is advantageous to spread it on after the beryllium seal has been inserted into the tube during the pumping process so that it penetrates deep into the pores. The superfluous varnish can then be rubbed off again from the entire surface, so that the permeability remains almost unchanged. It is therefore advantageous to apply the coating on the side facing away from the vacuum. The figure shows a vacuum-tight radiation window
Made of beryllium for discharge vessels

Anmelder:Applicant:

LICENTIA Patent -Verwaltungs - G. m. b. H., Hamburg 36, Hohe Bleichen 22LICENTIA Patent Administration - G. m. B. H., Hamburg 36, Hohe Bleichen 22

Dr, phil. Wolfgang Rohde, Berlin-Britz,Dr. phil. Wolfgang Rohde, Berlin-Britz,

und Dr. phil. nat. habil. Rolf Hosemann, Berlin-Spandau,and Dr. phil. nat. habil. Rolf Hosemann, Berlin-Spandau,

sind als Erfinder genannt wordenhave been named as inventors

in zum Teil schematischer Darstellung ein Ausführungsbeispiel der Erfindung. In die Röhrenwandung 1 aus Metall ist das Berylliumfenster 2 eingelegt, das auf der dem Vakuum abgewandten Seite mit einem vakuumdichten Überzug 3 aus Emaille oder Lack versehen ist. Der Deutlichkeit halber ist dieser Überzug übertrieben stark dargestellt.in a partially schematic representation, an embodiment of the invention. In the tube wall 1 made of metal, the beryllium window 2 is inserted, the Provided on the side facing away from the vacuum with a vacuum-tight coating 3 made of enamel or lacquer is. For the sake of clarity, this coating is shown exaggerated.

Es kann sich auch empfehlen, den Überzug bis über die Verbindungsnaht zwischen Berylliumfenster und Gefäßwandung sich erstrecken zu lassen (Fig. 2).It may also be advisable to extend the coating over the joint between the beryllium window and To let the vessel wall extend (Fig. 2).

Claims (6)

PATENTANSPRÜCHE:PATENT CLAIMS: 1. Vakuumdichtes Strahlenfenster aus Beryllium für Entladungsgefäße, insbesondere Röntgenröhren, gekennzeichnet durch eine Berylliumscheibe, die infolge ihrer geringen Dicke nicht vakuumdicht ist und die auf mindestens einer Seite mit einem dünnen, leichtatomigen, vakuumdichten Überzug versehen ist.1. Vacuum-tight beryllium radiation window for discharge vessels, especially X-ray tubes, characterized by a beryllium disc which, due to its small thickness, is not vacuum-tight and which on at least one side with a thin, light atomic, vacuum-tight Cover is provided. 2. Vakuumdichtes Strahlenfenster nach Anspruch 1, dadurch gekennzeichnet, daß der Überzug aus einer Emaille besteht.2. Vacuum-tight radiation window according to claim 1, characterized in that the coating consists of an enamel. 3. Vakuumdichtes Strahlenfenster nach Anspruch 1, dadurch gekennzeichnet, daß der Überzug aus einem Lack gebildet ist.3. Vacuum-tight radiation window according to claim 1, characterized in that the coating is formed from a lacquer. 4. Vakuumdichtes Strahlenfenster nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß der Überzug auf der dem Vakuum abgewandten Seite aufgetragen ist.4. Vacuum-tight radiation window according to claim 1 to 3, characterized in that the Coating is applied on the side facing away from the vacuum. 5. Verfahren zur Herstellung eines vakuumdichten Strahlenfensters nach Anspruch 3, dadurch gekennzeichnet, daß der Lack während des Pump-5. A method for producing a vacuum-tight radiation window according to claim 3, characterized in that characterized that the paint during the pumping «•9 528/Ϊ63«• 9 528 / Ϊ63 Prozesses in dünnflüssigem Zustand aufgestrichen wird.Process is applied in a thin liquid state. 6. Verfahren zur Herstellung eines vakuumdichten Strahlenfensters nach Anspruch 1, dadurch gekennzeichnet, daß der abdichtende Überzug auch die Verbindungsstelle zwischen Berylliumfenster und Gefäßwandung bedeckt.6. A method for producing a vacuum-tight radiation window according to claim 1, characterized in that characterized in that the sealing coating also forms the junction between beryllium windows and vessel wall covered. In Betracht gezogene Druckschriften: Deutsche Patentschrift Nr. 578 926.Publications considered: German Patent No. 578 926. Hierzu 1 Blatt Zeichnungen1 sheet of drawings
DEL11298A 1952-01-11 1952-01-11 Vacuum-tight radiation window made of beryllium for discharge vessels Pending DE1030936B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEL11298A DE1030936B (en) 1952-01-11 1952-01-11 Vacuum-tight radiation window made of beryllium for discharge vessels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEL11298A DE1030936B (en) 1952-01-11 1952-01-11 Vacuum-tight radiation window made of beryllium for discharge vessels

Publications (1)

Publication Number Publication Date
DE1030936B true DE1030936B (en) 1958-05-29

Family

ID=7258796

Family Applications (1)

Application Number Title Priority Date Filing Date
DEL11298A Pending DE1030936B (en) 1952-01-11 1952-01-11 Vacuum-tight radiation window made of beryllium for discharge vessels

Country Status (1)

Country Link
DE (1) DE1030936B (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2449967A1 (en) * 1979-01-24 1980-09-19 Tokyo Shibaura Electric Co IMAGE INTENSIFIER, ESPECIALLY X-RAY IMAGE
EP1547116A1 (en) * 2002-09-13 2005-06-29 Moxtek, Inc. Radiation window and method of manufacture
US7382862B2 (en) 2005-09-30 2008-06-03 Moxtek, Inc. X-ray tube cathode with reduced unintended electrical field emission
US7428298B2 (en) 2005-03-31 2008-09-23 Moxtek, Inc. Magnetic head for X-ray source
US7737424B2 (en) 2007-06-01 2010-06-15 Moxtek, Inc. X-ray window with grid structure
US7756251B2 (en) 2007-09-28 2010-07-13 Brigham Young Univers ity X-ray radiation window with carbon nanotube frame
US7983394B2 (en) 2009-12-17 2011-07-19 Moxtek, Inc. Multiple wavelength X-ray source
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
US8526574B2 (en) 2010-09-24 2013-09-03 Moxtek, Inc. Capacitor AC power coupling across high DC voltage differential
US8736138B2 (en) 2007-09-28 2014-05-27 Brigham Young University Carbon nanotube MEMS assembly
US8750458B1 (en) 2011-02-17 2014-06-10 Moxtek, Inc. Cold electron number amplifier
US8761344B2 (en) 2011-12-29 2014-06-24 Moxtek, Inc. Small x-ray tube with electron beam control optics
US8792619B2 (en) 2011-03-30 2014-07-29 Moxtek, Inc. X-ray tube with semiconductor coating
US8804910B1 (en) 2011-01-24 2014-08-12 Moxtek, Inc. Reduced power consumption X-ray source
US8817950B2 (en) 2011-12-22 2014-08-26 Moxtek, Inc. X-ray tube to power supply connector
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US8995621B2 (en) 2010-09-24 2015-03-31 Moxtek, Inc. Compact X-ray source
US9072154B2 (en) 2012-12-21 2015-06-30 Moxtek, Inc. Grid voltage generation for x-ray tube
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9173623B2 (en) 2013-04-19 2015-11-03 Samuel Soonho Lee X-ray tube and receiver inside mouth
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US9177755B2 (en) 2013-03-04 2015-11-03 Moxtek, Inc. Multi-target X-ray tube with stationary electron beam position
US9184020B2 (en) 2013-03-04 2015-11-10 Moxtek, Inc. Tiltable or deflectable anode x-ray tube
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE578926C (en) * 1926-09-15 1933-06-19 Siemens Reiniger Werke Akt Ges Radiation exit window for X-ray tubes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE578926C (en) * 1926-09-15 1933-06-19 Siemens Reiniger Werke Akt Ges Radiation exit window for X-ray tubes

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2449967A1 (en) * 1979-01-24 1980-09-19 Tokyo Shibaura Electric Co IMAGE INTENSIFIER, ESPECIALLY X-RAY IMAGE
EP1547116A1 (en) * 2002-09-13 2005-06-29 Moxtek, Inc. Radiation window and method of manufacture
EP1547116A4 (en) * 2002-09-13 2006-05-24 Moxtek Inc Radiation window and method of manufacture
US7233647B2 (en) 2002-09-13 2007-06-19 Moxtek, Inc. Radiation window and method of manufacture
US7428298B2 (en) 2005-03-31 2008-09-23 Moxtek, Inc. Magnetic head for X-ray source
US7382862B2 (en) 2005-09-30 2008-06-03 Moxtek, Inc. X-ray tube cathode with reduced unintended electrical field emission
US7737424B2 (en) 2007-06-01 2010-06-15 Moxtek, Inc. X-ray window with grid structure
US7756251B2 (en) 2007-09-28 2010-07-13 Brigham Young Univers ity X-ray radiation window with carbon nanotube frame
US8736138B2 (en) 2007-09-28 2014-05-27 Brigham Young University Carbon nanotube MEMS assembly
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
US7983394B2 (en) 2009-12-17 2011-07-19 Moxtek, Inc. Multiple wavelength X-ray source
US8995621B2 (en) 2010-09-24 2015-03-31 Moxtek, Inc. Compact X-ray source
US8526574B2 (en) 2010-09-24 2013-09-03 Moxtek, Inc. Capacitor AC power coupling across high DC voltage differential
US8948345B2 (en) 2010-09-24 2015-02-03 Moxtek, Inc. X-ray tube high voltage sensing resistor
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
US8964943B2 (en) 2010-10-07 2015-02-24 Moxtek, Inc. Polymer layer on X-ray window
US8804910B1 (en) 2011-01-24 2014-08-12 Moxtek, Inc. Reduced power consumption X-ray source
US8750458B1 (en) 2011-02-17 2014-06-10 Moxtek, Inc. Cold electron number amplifier
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
US8792619B2 (en) 2011-03-30 2014-07-29 Moxtek, Inc. X-ray tube with semiconductor coating
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US8817950B2 (en) 2011-12-22 2014-08-26 Moxtek, Inc. X-ray tube to power supply connector
US8761344B2 (en) 2011-12-29 2014-06-24 Moxtek, Inc. Small x-ray tube with electron beam control optics
US9072154B2 (en) 2012-12-21 2015-06-30 Moxtek, Inc. Grid voltage generation for x-ray tube
US9351387B2 (en) 2012-12-21 2016-05-24 Moxtek, Inc. Grid voltage generation for x-ray tube
US9177755B2 (en) 2013-03-04 2015-11-03 Moxtek, Inc. Multi-target X-ray tube with stationary electron beam position
US9184020B2 (en) 2013-03-04 2015-11-10 Moxtek, Inc. Tiltable or deflectable anode x-ray tube
US9173623B2 (en) 2013-04-19 2015-11-03 Samuel Soonho Lee X-ray tube and receiver inside mouth

Similar Documents

Publication Publication Date Title
DE1030936B (en) Vacuum-tight radiation window made of beryllium for discharge vessels
DE2731100A1 (en) METHOD OF BONDING METAL PARTS TO GLASS SURFACES
DE2624781B2 (en) Electron-emitting electrode and process for its manufacture
DE2615686C2 (en) Device for absorbing solar energy and converting it into thermal energy and a method for producing such a device
DE2909985B2 (en) Process for the production of a semiconductor-glass composite material and the use of such a composite material
DE718479C (en) Heavy-duty anode for electrical discharge tubes, especially those without artificial cooling
DE3030595A1 (en) METHOD FOR PRODUCING INSIDE AND OUTSIDE PLASTIC-COVERED CORROSION-PROTECTED MULTIPLE PIPES
DE2203717C3 (en) Process for applying a metallic film to a microchannel plate
DE1130937B (en) Hole mask made of glass for cathode ray tubes
DE2852440A1 (en) METHOD OF MANUFACTURING AN INPUT SCREEN FOR AN IMAGE AMPLIFIER
DE2450834A1 (en) PROCEDURE FOR ALUMINIZING THE INSIDE OF THE PANEL OF A TELEVISION TUBE
DE2137142C3 (en) Color cathode ray tube
DE102009035238A1 (en) Solar collector and method for producing a light-absorbing surface
DE2141621A1 (en) METHOD FOR MANUFACTURING TUBULAR LADDERS, ESPECIALLY. FOR SUPRAL CABLES
DE886784C (en) Method for sealing surfaces of objects, in particular of capacitor housings
DE744708C (en) Process for the production of a moisture-proof termination of capacitors
DE1544318C3 (en) Method for producing doped zones in semiconductor bodies
DE3306880C2 (en)
DE2261217A1 (en) METHOD OF MANUFACTURING GAS DISCHARGE INDICATORS OR STORAGE DEVICES
DE2155269A1 (en) CLOSED VESSEL CONTAINING A DIGITAL LIGHT DEFLECTING SYSTEM
DE827657C (en) High pressure tank
DE895470C (en) Process for the production of variable capacitors
DE980090C (en) Single-film electrical capacitor
DE19841772A1 (en) X-ray image enhancer input window, is produced by applying smooth intermediate layer onto substrate for illuminating layer
DE102022113990A1 (en) METHOD FOR PRODUCING VACUUM INSULATED GLASS