DE10246063A1 - Anisotropic etching of structures defined by etching mask in silicon substrate involves periodic deposition of fluoropolymer from exotic fluorocarbon by plasma polymerization, alternating with plasma etching - Google Patents
Anisotropic etching of structures defined by etching mask in silicon substrate involves periodic deposition of fluoropolymer from exotic fluorocarbon by plasma polymerization, alternating with plasma etching Download PDFInfo
- Publication number
- DE10246063A1 DE10246063A1 DE2002146063 DE10246063A DE10246063A1 DE 10246063 A1 DE10246063 A1 DE 10246063A1 DE 2002146063 DE2002146063 DE 2002146063 DE 10246063 A DE10246063 A DE 10246063A DE 10246063 A1 DE10246063 A1 DE 10246063A1
- Authority
- DE
- Germany
- Prior art keywords
- etching
- polymerization
- steps
- gas
- during
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000005530 etching Methods 0.000 title claims abstract description 68
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 49
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 12
- 239000010703 silicon Substances 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 title claims abstract description 12
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 title abstract 3
- 230000008021 deposition Effects 0.000 title description 3
- 238000001020 plasma etching Methods 0.000 title description 2
- 229920002313 fluoropolymer Polymers 0.000 title 1
- 239000004811 fluoropolymer Substances 0.000 title 1
- 230000000737 periodic effect Effects 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 37
- 229920000642 polymer Polymers 0.000 claims description 10
- 238000010849 ion bombardment Methods 0.000 claims description 4
- WFLOTYSKFUPZQB-OWOJBTEDSA-N (e)-1,2-difluoroethene Chemical compound F\C=C\F WFLOTYSKFUPZQB-OWOJBTEDSA-N 0.000 abstract 1
- YBMDPYAEZDJWNY-UHFFFAOYSA-N 1,2,3,3,4,4,5,5-octafluorocyclopentene Chemical compound FC1=C(F)C(F)(F)C(F)(F)C1(F)F YBMDPYAEZDJWNY-UHFFFAOYSA-N 0.000 abstract 1
- QVHWOZCZUNPZPW-UHFFFAOYSA-N 1,2,3,3,4,4-hexafluorocyclobutene Chemical compound FC1=C(F)C(F)(F)C1(F)F QVHWOZCZUNPZPW-UHFFFAOYSA-N 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 abstract 1
- 238000002161 passivation Methods 0.000 description 10
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000004341 Octafluorocyclobutane Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 description 1
- 235000019407 octafluorocyclobutane Nutrition 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
- H01L21/30655—Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
Die Endung betrifft ein Verfahren zum anisotropen Einätzen von mit einer Ätzmaske definierten Strukturen in ein Siliziumsubstrat mittels eines Plasmas nach der Gattung des Hauptanspruches.The extension concerns a procedure for anisotropic etching from with an etching mask defined structures in a silicon substrate by means of a plasma according to the genus of the main claim.
Aus
In
Aus
Die erfindungsgemäß eingesetzten Polymerisationsgase C4F6 oder C5F8 sowie in geringerem Ausmaß auch C2H2F2 haben gegenüber dem Stand der Technik den Vorteil einer besonders effektiven Polymerbildung, d.h. die Polymerabscheidung aus dem Plasma erfolgt bei sonst vergleichbaren Plasmakenndaten schneller, und das erhaltene Polymer ist dichter und stärker quervernetzt als beispielsweise bei bekannten Polymerisationsgasen wie C4F8 oder C3F6.The polymerization gases C 4 F 6 or C 5 F 8 and to a lesser extent also C 2 H 2 F 2 have the advantage of a particularly effective polymer formation compared to the prior art, ie the polymer separation from the plasma takes place faster with otherwise comparable plasma characteristics, and the polymer obtained is denser and more crosslinked than, for example, known polymerization gases such as C 4 F 8 or C 3 F 6 .
Weiter ist voreilhaft, dass die erfindungsgemäß eingesetzten Polymerisationsgase zu akzeptablen Preisen und auch in für den industriellen Maßstab erforderlichen Mengen angeboten werden, so dass auch die Liefersicherheit dieser an sich „exotischen" Gase gegeben ist.It is also advantageous that the used according to the invention Polymerization gases at acceptable prices and also for the industrial Scale required Quantities are offered so that the delivery security of these "exotic" gases per se.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.Advantageous further developments of Invention result from the measures mentioned in the subclaims.
So ist besonders vorteilhaft, dass
die erläuterten
Polymerisationsgase in einem Prozess nach Art der
Vorteilhaft ist weiter, dass eine mit Hilfe der genannten Polymerisationsgase erzeugte teflonartige Seitenwandpassivierung auf der Oberfläche der in dem Siliziumsubstrat erzeugten Ätzgräben einen höheren Kohlenstoffgehalt aufweist als eine entsprechende Seitenwandpassivierung, die beispielsweise ausgehend von dem Polymerisationsgas C4F8 erzeugt worden ist. Dieser erhöhte Kohlenstoffgehalt und die gleichzeitig stärkere Quervernetzung des Polymermaterials, die vor allein von den angebotenen polymerisationsfähigen Doppelbindungen des Ausgangsstoffes herrührt, macht die Seitenwandpassivierung widerstandsfähiger gegenüber einem Ätzabtrag, so dass die Dauer der Polymerisationsschritte entsprechend insbesondere relativ zur Dauer der Ätzschritte deutlich verkürzt werden kann, um eine gleiche bzw. noch ausreichende Passivierung zu erreichen. Daneben geht durch den höheren Kohlenstoffgehalt und den verringerten Seitenwandabtrag des widerstandsfähigeren Polymers weniger Fluor durch Wechselwirkung mit während der Ätzschritte ionengetrieben vorwärts transportierten Polymermaterialien verloren.It is also advantageous that a teflon-like side wall passivation generated with the aid of the polymerization gases mentioned has a higher carbon content on the surface of the etching trenches produced in the silicon substrate than a corresponding side wall passivation which was generated, for example, from the polymerization gas C 4 F 8 . This increased carbon content and, at the same time, stronger cross-linking of the polymer material, which results primarily from the polymerizable double bonds of the starting material, make the sidewall passivation more resistant to etching removal, so that the duration of the polymerization steps can be significantly shortened, in particular relative to the duration of the etching steps to achieve an equal or sufficient passivation. In addition, due to the higher carbon content and the reduced sidewall removal of the more resistant polymer, less fluorine is lost through interaction with polymer materials that are ion-propelled during the etching steps.
Andererseits wird vor allem bei dem
Prozess gemäß
Insgesamt führt der Einsatz der Polymerisationsgase
C4F6, C5F8 oder C2H2F2, wobei vor allem C4F6 vorteilhaft ist,
zu einer gesteigerten Polymerisationseffizienz und verbesserten
Seitenwandfilmeigenschaften hinsichtlich Dichtheit, Quervernetzung und
einer erhöhten
Widerstandsfähigkeit
gegenüber einem Ätzabtrag,
was sich vor allem bei einem Prozess gemäß
Die erläuterten Polymerisationsgase führen daneben vorteilhaft auch zu einer verbesserten Maskenselektivität, da die auch auf der Ätzmaske abgeschiedenen Polymerfilme bzw. Passivierschichten beständiger sind als vergleichbare Schichten nach dem Stand der Technik. Dies führt zu einem verbesserten Schutz der Ätzmaske vor einem Ätzangriff was vor allein bei Verwendung einer Fotolackmaske wichtig ist, und damit zu einer sehr zuverlässigen und präzisen Maskierung.The polymerization gases explained run next to it also advantageous for improved mask selectivity, since the also on the etching mask deposited polymer films or passivation layers are more resistant as comparable layers according to the prior art. This leads to one improved protection of the etching mask something before an etching attack alone when using a photoresist mask is important, and therefore to a very reliable and precise Masking.
Vorteilhaft ist weiter, wenn der Einsatz der erläuterten Polymerisationsgase mit der Verwendung eines hochdichten Plasmas mit mindestens 1012 reaktiven Spezies/cm3 verbunden wird, und/oder wenn bevorzugt zumindest zeitweilig während der Ätzschritte ein Ionenbeschuss des Substrates, insbesondere mit einer Ionenenergie von 1 eV bis 100 eV, vorzugsweise 1 eV bis 50 eV, erfolgt. Der Ionenbeschuss ist weiterhin bevorzugt gepulst mit einem Puls-Pause-Verhältnis von vorzugsweise 1:1 bis 1:5. In diesem Fall wird die genannten Ionenenergie im zeitlichen Mittel eingesetzt.It is also advantageous if the use of the polymerization gases described is combined with the use of a high-density plasma with at least 10 12 reactive species / cm 3 , and / or if preferably at least temporarily ion bombardment of the substrate, in particular with an ion energy of 1 eV, during the etching steps up to 100 eV, preferably 1 eV to 50 eV. The ion bombardment is furthermore preferably pulsed with a pulse-pause ratio of preferably 1: 1 to 1: 5. In this case, the ion energy mentioned is used on average over time.
Darüber hinaus ist vorteilhaft, wenn die während der einzelnen Polymerisationsschritte jeweils eingesetzte Menge an Polymerisationsgas mit dem Fortschreiten des Einätzens insbesondere kontinuierlich oder schrittweise reduziert wird. Dies vermeidet ein Übermaß an deponiertem Polymer mit dem Ätzfortschritt, das immer weniger benötigt wird.It is also advantageous if that during the amount of the individual polymerization steps used of polymerization gas with the progress of the etching in particular is reduced continuously or gradually. This avoids an excess of deposited Polymer with the progress of etching, that needs less and less becomes.
Schließlich ist vorteilhaft, wenn bei dem anisotropen Einätzen mit separaten, alternierend aufeinander folgenden Ätzschritten und Polymerisationsschritten der erste Schritt zu Beginn des Einätzens ein Polymerisationsschritt ist, um so einer unerwünschten Unterätzung oder einem Maskenangriff von Beginn an zu begegnen.Finally, it is advantageous if with anisotropic etching with separate, alternating successive etching steps and polymerization steps the first step at the beginning of the etching Polymerization step is so as to avoid an undesirable undercut or to face a mask attack from the start.
Ein erstes Ausführungsbeispiel geht zunächst von
dem aus
In einem zweiten Ausführungsbeispiel
der Erfindung wird bei dem Verfahren gemäß
In einem dritten Ausführungsbeispiel
der Erfindung wird bei dem Verfahren gemäß
Ansonsten werden die Verfahren gemäß den vorstehenden
Ausführungsbeispielen
jeweils entsprechend dem Stand der Technik durchgeführt, wobei
im Fall der
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2002146063 DE10246063A1 (en) | 2002-10-02 | 2002-10-02 | Anisotropic etching of structures defined by etching mask in silicon substrate involves periodic deposition of fluoropolymer from exotic fluorocarbon by plasma polymerization, alternating with plasma etching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2002146063 DE10246063A1 (en) | 2002-10-02 | 2002-10-02 | Anisotropic etching of structures defined by etching mask in silicon substrate involves periodic deposition of fluoropolymer from exotic fluorocarbon by plasma polymerization, alternating with plasma etching |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10246063A1 true DE10246063A1 (en) | 2004-04-22 |
Family
ID=32038215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2002146063 Ceased DE10246063A1 (en) | 2002-10-02 | 2002-10-02 | Anisotropic etching of structures defined by etching mask in silicon substrate involves periodic deposition of fluoropolymer from exotic fluorocarbon by plasma polymerization, alternating with plasma etching |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE10246063A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007013686A1 (en) | 2007-03-22 | 2008-09-25 | Entec Consulting Gmbh | Internal combustion engine i.e. petrol engine, for motor vehicle, has injection nozzle arranged for injection of fuel between valves, where another fuel with air is fed as fuel air mixture into combustion chamber at inlet valve over channel |
CN108780748A (en) * | 2016-03-17 | 2018-11-09 | 日本瑞翁株式会社 | Plasma-etching method |
CN112520688A (en) * | 2020-11-13 | 2021-03-19 | 中国科学院微电子研究所 | Preparation method of nano forest structure |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5498312A (en) * | 1993-05-27 | 1996-03-12 | Robert Bosch Gmbh | Method for anisotropic plasma etching of substrates |
DE19826382A1 (en) * | 1998-06-12 | 1999-12-16 | Bosch Gmbh Robert | Anisotropic plasma etching of silicon using sulfur hexafluoride etching gas especially to produce recesses of precise lateral dimensions in silicon wafers |
US6071822A (en) * | 1998-06-08 | 2000-06-06 | Plasma-Therm, Inc. | Etching process for producing substantially undercut free silicon on insulator structures |
US6159862A (en) * | 1997-12-27 | 2000-12-12 | Tokyo Electron Ltd. | Semiconductor processing method and system using C5 F8 |
DE19736370C2 (en) * | 1997-08-21 | 2001-12-06 | Bosch Gmbh Robert | Process for anisotropic etching of silicon |
US20020000422A1 (en) * | 1999-06-29 | 2002-01-03 | Micron Technology, Inc. | Etching methods and apparatus and substrate assemblies produced therewith |
US6451703B1 (en) * | 2000-03-10 | 2002-09-17 | Applied Materials, Inc. | Magnetically enhanced plasma etch process using a heavy fluorocarbon etching gas |
-
2002
- 2002-10-02 DE DE2002146063 patent/DE10246063A1/en not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5498312A (en) * | 1993-05-27 | 1996-03-12 | Robert Bosch Gmbh | Method for anisotropic plasma etching of substrates |
DE19736370C2 (en) * | 1997-08-21 | 2001-12-06 | Bosch Gmbh Robert | Process for anisotropic etching of silicon |
US6159862A (en) * | 1997-12-27 | 2000-12-12 | Tokyo Electron Ltd. | Semiconductor processing method and system using C5 F8 |
US6071822A (en) * | 1998-06-08 | 2000-06-06 | Plasma-Therm, Inc. | Etching process for producing substantially undercut free silicon on insulator structures |
DE19826382A1 (en) * | 1998-06-12 | 1999-12-16 | Bosch Gmbh Robert | Anisotropic plasma etching of silicon using sulfur hexafluoride etching gas especially to produce recesses of precise lateral dimensions in silicon wafers |
US20020000422A1 (en) * | 1999-06-29 | 2002-01-03 | Micron Technology, Inc. | Etching methods and apparatus and substrate assemblies produced therewith |
US6451703B1 (en) * | 2000-03-10 | 2002-09-17 | Applied Materials, Inc. | Magnetically enhanced plasma etch process using a heavy fluorocarbon etching gas |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007013686A1 (en) | 2007-03-22 | 2008-09-25 | Entec Consulting Gmbh | Internal combustion engine i.e. petrol engine, for motor vehicle, has injection nozzle arranged for injection of fuel between valves, where another fuel with air is fed as fuel air mixture into combustion chamber at inlet valve over channel |
CN108780748A (en) * | 2016-03-17 | 2018-11-09 | 日本瑞翁株式会社 | Plasma-etching method |
EP3432346A4 (en) * | 2016-03-17 | 2019-10-16 | Zeon Corporation | Plasma etching method |
US10629447B2 (en) | 2016-03-17 | 2020-04-21 | Zeon Corporation | Plasma etching method |
CN108780748B (en) * | 2016-03-17 | 2023-02-17 | 日本瑞翁株式会社 | Plasma etching method |
CN112520688A (en) * | 2020-11-13 | 2021-03-19 | 中国科学院微电子研究所 | Preparation method of nano forest structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19736370C2 (en) | Process for anisotropic etching of silicon | |
EP0894338B1 (en) | Anisotropic, fluorine-based plasma etching method for silicon | |
DE4241045C1 (en) | Process for anisotropic etching of silicon | |
DE19826382C2 (en) | Process for anisotropic etching of silicon | |
DE4420962C2 (en) | Process for processing silicon | |
DE112015001462B4 (en) | A method of operating an etch process device for a silicon etch process | |
EP2506294A1 (en) | Method for electron beam induced etching | |
EP1532071B1 (en) | Layer system comprising a silicon layer and a passivation layer, method for producing a passivation layer on a silicon layer and the use of said system and method | |
DE102009028256B4 (en) | A method of etching silicon carbide using a plasma etching method and silicon carbide substrate | |
DE10246063A1 (en) | Anisotropic etching of structures defined by etching mask in silicon substrate involves periodic deposition of fluoropolymer from exotic fluorocarbon by plasma polymerization, alternating with plasma etching | |
EP0132684B1 (en) | Process for preparing layers of polymerisates by glow discharge | |
EP1527011B1 (en) | Layer system with a silicon layer and a passivation layer, method for production of a passivation layer on a silicon layer and use thereof | |
EP1614145A2 (en) | Silicon substrate comprising positive etching profiles with a defined slope angle, and production method | |
EP3526812B1 (en) | Method for anisotropic deep reactive-ion etching with a fluorine gas mixture | |
DE102012200236B3 (en) | Method for structuring silicon carbide for e.g. silicon carbide-trench-MOSFET, involves reperforming anisotropic plasma etching step such that passivation layer is removed from trench bottom, and forming enlarged trench region in substrate | |
EP2084734A1 (en) | Plasma etching method for producing positive etching profiles in silicon substrates | |
DE10245671B4 (en) | Manufacturing method for a semiconductor structure by selective isotropic etching of a silicon dioxide layer on a silicon nitride layer | |
DE102011078520A1 (en) | Rotating anode for use in x-ray apparatus for medical applications, comprises internal web, with microstructure on surface of internal web, where microstructure is generated by reactive ion depth etching | |
DE10300197A1 (en) | Process for structuring thin films used in the production of electronic components comprises introducing a reactive gas directly into a source, and converting into a plasma | |
DE10130916B4 (en) | Process for anisotropic structuring of materials | |
DE19939317A1 (en) | Process for the production of polymer structures by means of an etching process | |
DD286458A5 (en) | PROCESS FOR PRODUCING DEEP TRENCH STRUCTURES IN SILICON MATERIAL | |
DE19910984A1 (en) | Process for the production of polymer structures on a substrate by means of an etching process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8131 | Rejection |