DE10237646A1 - Monocyclopentadienylkomplexe - Google Patents

Monocyclopentadienylkomplexe Download PDF

Info

Publication number
DE10237646A1
DE10237646A1 DE10237646A DE10237646A DE10237646A1 DE 10237646 A1 DE10237646 A1 DE 10237646A1 DE 10237646 A DE10237646 A DE 10237646A DE 10237646 A DE10237646 A DE 10237646A DE 10237646 A1 DE10237646 A1 DE 10237646A1
Authority
DE
Germany
Prior art keywords
aryl
alkyl
atoms
radicals
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10237646A
Other languages
English (en)
Inventor
Sharam Dr. Mihan
Ilya Prof. Nifant'ev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Basell Polyolefine GmbH
Original Assignee
Basell Polyolefine GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basell Polyolefine GmbH filed Critical Basell Polyolefine GmbH
Priority to DE10237646A priority Critical patent/DE10237646A1/de
Priority to US10/525,223 priority patent/US20060089253A1/en
Priority to EP03790896A priority patent/EP1534724B1/de
Priority to CNB03824103XA priority patent/CN100334098C/zh
Priority to BR0313335-4A priority patent/BR0313335A/pt
Priority to JP2004532082A priority patent/JP2005535726A/ja
Priority to PCT/EP2003/008900 priority patent/WO2004020479A2/en
Priority to AT03790896T priority patent/ATE319727T1/de
Priority to AU2003258599A priority patent/AU2003258599A1/en
Priority to ES03790896T priority patent/ES2259775T3/es
Priority to DE60303959T priority patent/DE60303959T2/de
Priority to KR1020057002334A priority patent/KR20050075749A/ko
Priority to US10/522,574 priority patent/US7541481B2/en
Publication of DE10237646A1 publication Critical patent/DE10237646A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/01Cp or analog bridged to a non-Cp X neutral donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63912Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63916Component covered by group C08F4/62 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/6392Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

Monocyclopentadienylkomplexe, in welchen das Cyclopentadienyl-System mindestens ein über eine spezifische Brücke gebundenes unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem trägt, ein Katalysatorsystem, enthaltend mindestens einen der Monocyclopentadienylkomplexe, die Verwendung des Katalysatorsystems zur Polymerisation oder Copolymerisation von Olefinen und ein Verfahren zur Herstellung von Polyolefinen durch Polymerisation oder Copolymerisation von Olefinen in Gegenwart des Katalysatorsystems und damit erhältliche Polymere.

Description

  • Die vorliegende Erfindung betrifft Monocyclopentadienylkomplexe, in welchen das Cyclopentadienyl-System mindestens ein über eine spezifische Brücke gebundenes unsubstituiertes, suustituiertes oder kondensiertes, heteroaromatisches Ringsystem trägt und ein Katalysatorsystem enthaltend mindestens einen der Monocyclopentadienylkomplexe, sowie Verfahren zu deren Herstellung.
  • Außerdem betrifft die Erfindung die Verwendung des Katalysatorsystems zur Polymerisation oder Copolymerisation von Olefinen und ein Verfahren zur Herstellung von Polyolefinen durch Polymerisation oder Copolymerisation von Olefinen in Gegenwart des Katalysatorsystems und damit erhältliche Polymere.
  • Viele der Katalysatoren, die zur Polymerisation von α-Olefinen eingesetzt werden, basieren auf immobilisierten Chromoxiden (siehe z. B. Kirk-Othmer, Encyclopedia of Chemical Technology", 1981, Vol.16, S. 402). Diese ergeben i. a. Ethylenhomo- und Copolymere mit hohen Molekulargewichten, sind jedoch relativ unempfindlich gegenüber Wasserstoff und erlauben somit keine einfache Kontrolle des Molekulargewichts. Demgegenüber läßt sich durch Verwendung von Bis(cyclopentadienyl)- ( US 3,709,853 ), Bis(indenyl)- oder Bis(fluorenyl)chrom ( US 4,015,059 ), das auf einem anorganischen, oxidischen Träger aufgebracht ist, das Molekulargewicht von Polyethylen durch Zugabe von Wasserstoff einfach steuern.
  • Wie bei den Ziegler-Natta-Systemen, ist man auch bei den Chromverbindungen seit kurzem auf der Suche nach Katalysatorsystemen mit einem einheitlich definierten, aktiven Zentrum, sogenannten Single-Site-Katalysatoren. Durch gezielte Variation des Ligandgerüstes sollen Aktivität, Copolymerisationsverhalten des Katalysators und die Eigenschaften der so erhaltenen Polymeren einfach verändert werden können.
  • So werden in EP 0742 046 die sogenannten constrained geometry Komplexe der 6. Nebengruppe, ein spezielles Verfahren zu ihrer Darstellung (via Metalltetraamiden), sowie ein Verfahren zur Herstellung eines Polyolefins in Anwesenheit solcher Katalysatoren beansprucht. Polymerisationsbeispiele sind nicht enthalten. Das Ligandgerüst besteht aus einem anionischen Donor, der mit einen Cyclopentadienylrest verknüpft ist.
  • Von K. H. Theopold et al. wird in Organomet. 1996, 15, 5284-5286, ein analoger {[(Tert.Butylamido)dimethylsilyl](tetramethylcyclopentadienyl)}chromchlorid Komplex für die Poly merisation von Olefinen beschrieben. Dieser Komplex polymerisiert selektiv Ethylen. Weder Comonomere, wie z.B. Hexen werden eingebaut, noch kann Propen polymerisiert werden.
  • Dieser Nachteil kann durch Verwendung von strukturell sehr ähnlichen Systemen überwunden werden. So beschreibt DE 197 10615 Donorligand-substituierten Monocyclopentadienylchrom-Verbindungen mit denen z.B. auch Propen polymerisiert werden kann. Der Donor ist hierin aus der 15. Gruppe und neutral. Der Donor ist über ein (ZR2)n-Fragment an den Cyclopentadienylring gebunden, wobei R ein Wasserstoff, Alkyl oder Aryl, Z ein Atom der 14. Gruppe und n≧1 ist: In DE 196 30 580 werden spezifisch Z=Kohlenstoff in Kombination mit einem Amindonor beansprucht.
  • In WO 96/13529 werden reduzierte Übergangsmetallkomplexe der Gruppen 4 bis 6 des Periodensystems mit mehrzähnigen monoanionischen Liganden beschrieben. Hierzu gehören auch Cyclopentadienylliganden, die eine Donorfunktion enthalten. Die Beispiele beschränken sich auf Titanverbindungen.
  • Es gibt nun auch Ligandsysteme, in denen die Donorgruppe rigide mit dem Cyclopentadienylrest verknüpft ist. Solche Ligandsysteme und deren Metallkomplexe werden z.B. von P. Jutzi und U. Siemeling in J. Orgmet. Chem. (1995), 500, 175-185, Abschnitt 3 zusammengefaßt. M. Enders et. al. beschreiben in Chem. Ber. (1996), 129, 459-463 8-Quinolyl-substitierte Cyclopentadienylliganden und deren Titan- und Zirkontrichlorid Komplexe. 2-Picolyl-cyclopentadienyltitantrichlorid in Kombination mit MAO wurde von M. Blais, J. Chien und M. Rausch in Organomet. (1998); 1.7 (17) 3775-3783 zur Polymerisation von Olefinen eingesetzt.
  • In der WO01/12641 sind Monocyclopentadienylkomplexe von Chrom, Molybdän und Wolfram beschrieben, welche insbesondere Chinolyl- oder Pyridyl-Donoren tragen, welche entweder direkt oder über eine C1- oder Si-Brücke an das Cyclopenatdienylsystem gebunden sind.
  • Der Erfindung lag die Aufgabe zugrunde weitere Übergangsmetallkomplexe auf der Basis von Cyclopentadienylliganden mit einem verbrückten Donor zu finden, die für die Polymerisation von Olefinen geeignet sind. Des weiteren war die Aufgabe der Erfindung ein günstiges Verfahren zur Herstellung von derartigen Komplexen zu finden.
  • Demgemäß wurde Monocyclopentadienylkomplexe gefunden, die folgendes Strukturmerkmal der allgemeinen Formel (Cp)(-Z-A)mM (I) enthalten, worin die Variablen folgende Bedeutung haben:
    Cp ein Cyclopentadienyl-System,
    Z eine Brücke zwischen A und Cp ist, ausgewählt aus der folgenden Gruppe
    Figure 00030001
    wobei
    L1B-L3B unahängig voneinander Kohlenstoff oder Silizium bedeutet,
    R1B-R6B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR7B 3 bedeutet, wobei die organischen Reste R1B-R6B auch durch Halogene substituiert sein können und je zwei geminale oder vicinale Reste R1B-RB8 oder ein Rest R1B-R6B und A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und
    R7B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R7B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,
    A ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem,
    M ein Metall ausgewählt aus der Gruppe Titan in der Oxidationsstufe 3, Vanadium, Chrom, Molybdän und Wolfram und
    m 1, 2 oder 3 ist.
  • Weiterhin wurde ein Katalysatorsystem enthaltend die erfindungsgemässen Monocyclopentadienylkomplexe, die Verwendung der Monocyclopentadienylkomplexe oder des Katalysatorsystems zur Polymerisation oder Copolymerisation von Olefinen und ein Verfahren zur Herstellung von Polyolefinen durch Polymerisation oder Copolymerisation von Olefinen in Gegenwart des Monocyclopentadienylkomplexes oder des Katalysatorsystems und daraus erhältliche Polymere gefunden.
  • Die erfindungsgemässen Monocyclopentadienylkomplexe enthalten das Strukturelement der allgemeinen Formel (Cp)(-Z-A)mM (1), wobei die Variablen die obige Bedeutung besitzen. An das Metallatom M können daher durchaus noch weitere Liganden gebunden sein. Die Anzahl weiterer Liganden hängt beispielsweise von der Oxidationsstufe des Metallatoms ab. Als Liganden kommen nicht weitere Cyclopentadienyl-Systeme in Frage. Geeignet sind mono- und dianionische Liganden wie sie beispielsweise für X beschrieben sind. Zusätzlich können auch noch Lewisbasen wie beispielsweise Amine, Ether, Ketone, Aldehyde, Ester, Sulfide oder Phosphine an das Metallzentrum M gebunden sein.
  • Cp ist ein Cyclopentadienyl-System, welches beliebig substituiert und/oder mit ein oder mehreren aromatischen, aliphatischen, heterocyclischen oder auch heteroaromatischen Ringen kondensiert sein kann, wobei 1, 2 oder 3 Substituenten, bevorzugt 1 Substituent von der Gruppe -Z-A, gebildet wird. Das Cyclopentadienyl-Grundgerüst selbst ist ein C5-Ringsystem mit 6 π-Elektronen, wobei eines der Kohlenstoffatome auch durch Stickstoff oder Phosphor, bevorzugt Phosphor ersetzt sein kann. Bevorzugt werden C5-Ringsysteme ohne Ersatz durch ein Heteroatom verwendet. An dieses Cyclopentadienyl-Grundgerüst kann beispielsweise ein Heteroaromat, welcher mindestens ein Atom der Gruppe N, P, O oder S enthält oder ein Aromat ankondesiert sein. Ankondensiert bedeutet hierin, dass der Heterocyclus und das Cyclopentadienyl-Grundgerüst zwei Atome, bevorzugt Kohlenstoffatome gemeinsam haben. Bevorzugt sind Cyclopentadienylsysteme Cp der Formel (II)
    Figure 00040001
    worin die Variablen folgende Bedeutung besitzen:
    E1A-E5A Kohlenstoff oder maximal ein E1A bis E5A Phosphor,
    R1A-R5A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C2-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR6A 2, N(SiR6A 3)2, OR6A, OSiR6A 3, SiR6A 3, BR6A 2, wobei die organischen Reste R1A-R5A auch durch Halogene substituiert sein können und je zwei vicinale Reste R1A-R5A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R1A-R5A zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält, wobei 1, 2 oder 3, bevorzugt 1 Substituent R1A-R5A eine Gruppe -Z-A ist und
    R6A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R6A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können.
  • In bevorzugten Cyclopentadienylsystemen Cp sind alle E1A bis E5A Kohlenstoff.
  • Zwei vicinale Reste R1A-R5A können jeweils mit den sie tragenden E1A-E5A, einen Heterocyclus, bevorzugt Heteroaromaten bilden, welcher mindestens ein Atom aus der Gruppe Stickstoff, Phosphor, Sauerstoff und/oder Schwefel, besonders bevorzugt Stickstoff und/oder Schwefel enthält, wobei die im Heterocyclus, bzw. Heteroaromaten enthaltenen E1A-E5A bevorzugt Kohlenstoffe sind. Bevorzugt sind Heterocyclen und Heteraromaten mit einer Ringgrösse von 5 oder 6 Ringatomen. Beispiele für 5-Ring Heterocyclen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, sind 1,2-Dihydrofuran, Furan, Thiophen, Pyrrol, Isoxazol, 3-Isothiazol, Pyrazol, Oxazol, Thiazol, Imidazol, 1,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1,3,4-Oxadiazol, 1,2,3-Triazol oder 1,2,4-Triazol. Beispiele für 6-gliedrige Heteroarylgruppen, welche ein bis vier Stickstoffatome und/oder ein Phosphoratom enthalten können, sind Pyridin, Phosphabenzol, Pyridazin, Pyrimidin, Pyrazin, 1,3,5-Triazin, 1,2,4-Triazin oder 1,2,3-Triazin. Die 5-Ring und 6-Ring Heterocyclen können hierbei auch durch C1-C10-Alkyl, C6-C10-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-10 C-Atomen im Arylrest, Trialkylsilyl oder Halogenen, wie Fluor, Chlor oder Brom, Dialkylamid, Alkylarylamid, Diarylamid, Alkoxy oder Aryloxy substituiert oder mit ein oder mehreren Aromaten oder Heteroaromaten kondensiert sein. Beispiele für benzokondensierte 5-gliedrige Heteroarylgruppen sind Indol, Indazol, Benzofuran, Benzothiophen, Benzothiazol, Benzoxazol oder Benzimidazol. Beispiele für benzokondensierte 6-gliedrige Heteroarylgruppen sind Chroman, Benzopyran, Chinolin, Isochinolin, Cinnolin, Phthalazin, Chinazolin, Chinoxalin, 1,10-Phenanthrolin oder Chinolizin. Bezeichnung und Nummerierung der Heterocyclen wurde aus Lettau, Chemie der Heterocyclen, 1. Auflage, VEB, Weinheim 1979 entnommen. Die Heterocyclen/Heteroaromaten sind mit dem Cyclopentadienyl-Grundgerüst bevorzugt über eine C-C-Doppelbindung des Heterocyclus/Heteroaromaten kondensiert. Heterocyclen/Heteroaromaten mit einem Heteroatom sind bevorzugt 2,3-oder b- anneliert.
  • Cyclopentadienylsytemen Cp mit einem kondensierten Heterocyclus sind beispielsweise Thiapentalen, 2-Methylthiapentalen, 2-Ethylthiapentalen, 2-Isopropylthiapentalen, 2-n-Butylthiapentalen, 2-tert.-Butylthiapentalen, 2-Trimethylsilylthiapentalen, 2-Phenylthiapentalen, 2-Naphthylthiapentalen, 3-Methylthiopentalen, 4-Phenyl-2,6-dimethyl-1-thiopentalen, 4-Phenyl-2,6-diethyl-1-thiopentalen, 4-Phenyl-2,6-diisopropyl-1-thiopentalen, 4-Phenyl-2,6-di-n-butyl-1-thiopentalen, 4-Phenyl-2,6-di-trimethylsilyl-1-thiopentalen, Azapentalen, 2-Methylazapentalen, 2-Ethylazapentalen, 2-Isopropylazapentalen, 2-n-Butylazapentalen, 2-Trimethylsilylazapentalen, 2-Phenylazapentalen, 2-Naphthylazapentalen, 1-Phenyl-2,5-dimethyl-1-azapentalen, 1-Phenyl-2,5-diethyl-1-azapentalen, 1-Phenyl-2,5-di-n-butyl-1-azapentalen, 1-Phenyl-2,5-di-tert.-butyl-1-azapentalen, 1-Phenyl-2,5-di-trimethylsilyl-1-azapentalen, 1-tert.Butyl-2,5-dimethyl-1-azapentalen, Oxapentalen, Phosphapentalen, 1-Phenyl-2,5-dimethyl-1-phosphapentalen, 1-Phenyl-2,5-diethyl-1-phosphapentalen, 1-Phenyl-2,5-di-n-butyl-1-phosphapentalen, 1-Phenyl-2,5-di-tert.-butyl-1-phosphapentalen, 1-Phenyl-2,5-di-trimethylsilyl-1-phosphapentalen, 1-Methyl-2,5-dimethyl-1-phosphapentalen, 1-tert.Butyl-2,5-dimethyl-1-phosphapentalen, 7-Cyclopenta[1,2]thiophen[3,4]cyclopentadiene oder 7-Cyclopenta[1,2]pyrrol[3,4]cyclopentadiene.
  • In weiteren bevorzugten Cyclopentadienylsystemen Cp bilden vier der Reste R1A-R5A, also zweimal je zwei vicinale Reste zusammen, zwei Heterocyclen, insbesondere Heteroaraomaten aus. Die heterocyclischen Systeme sind gleich wie weiter oben näher ausgeführt. Cyclopentadienylsysteme Cp mit zwei kondensierten Heterocyclen sind beispielsweise 7-Cyclopentadithiophen, 7-Cyclopentadipyrrol oder 7-Cyclopentadiphosphol.
  • Die Synthese derartiger Cyclopentadienylsysteme mit ankondensiertem Heterocyclus ist beispielsweise in der Eingangs erwähnten WO 98/22486 beschrieben. In "metalorganic catalysts for synthesis and polymerisation" , Springer Verlag 1999, sind von Ewen et al., S.150 ff weitere Synthesen dieser Cyclopentadienylsyteme beschrieben.
  • Durch die Variation der Substituenten R1A-R5A, kann ebenfalls Einfluss auf das Polymerisationsverhalten der Metallkomplexe genommen werden. Durch die Zahl und Art der Substituenten kann die Zugänglichkeit des Metallatoms M für die zu polymerisierenden Olefine beeinflußt werden. So ist es möglich die Aktivität und Selektivität des Katalysators hinsichtlich verschiedener Monomerer, insbesondere sterisch anspruchsvoller Monomerer, zu modifizieren. Da die Substituenten auch auf die Geschwindigkeit von Abbruchreaktionen der wachsenden Polymerkette Einfluß nehmen können, läßt sich hierdurch auch das Molekulargewicht der entstehenden Polymere verändern. Die chemische Struktur der Substituenten R1A bis R5A kann daher in weiten Bereichen variiert werden, um die gewünschten Ergebnisse zu erzielen und ein maßgeschneidertes Katalysatorsystem zu erhalten. Als C-organische Substituenten R1A-R5A kommen beispielsweise folgende in Betracht: C1-C20-Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Peetyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits eine C6-C10-Arylgruppe als Substituent tragen kann, wie z.B. Cyclopropan, Cyclobutan, Cyclopentan, Cyclohexan, Cycloheptan, Cyclooctan, Cyclononan oder Cyclododekan, C2-C20-Alkenyl, wobei das Alkenyl linear, cyclisch oder verzweigt sein kann und die Doppelbindung intern oder endständig sein kann, wie z.B. Vinyl, 1-Allyl, 2-Allyl, 3-Allyl, Butenyl, Pentenyl, Hexenyl, Cyclopentenyl, Cyclohexenyl, Cyclooctenyl oder Cyclooktadienyl, C6-C20-Aryl, wobei der Arylrest durch weitere Alkylgruppen substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, oder Arylalkyl, wobei das Arylalkyl durch weitere Alkylgruppen substituiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl, wobei gegebenenfalls auch zwei R1A bis R5A zu einem 5- oder 6-gliedrigen Ring verbunden sein können und die organi schen Reste R1A-R5A auch durch Halogene, wie z.B. Fluor, Chlor oder Brom substituiert sein können. Des weiteren kann R1A-R5A Amio oder Alkoxyl sein, wie beispielsweise Dimethylamio, N-Pyrolidinyl, Picolinyl, Methoxy, Ethoxy oder Isopropoxy. Als Si-organische Substituenten SiR5A 3 kommen für R5A die gleichen Reste, wie oben für R1A-R5A näher ausgeführt, wobei gegebenenfalls auch zwei R6A zu einem 5- oder 6-gliedrigen Ring verbunden sein können, in Betracht, wie z.B. Trimethylsilyl, Triethylsilyl, Butyldimethylsilyl, Tributylsilyl, Tritert.butylsilyl, Triallylsilyl, Triphenylsilyl oder Dimethylphenylsilyl. Diese SiR6A 3 Reste können auch über einen Sauerstoff oder Stickstoff an das Cyclopentadienyl-Grundgerüst gebunden sein, wie beispielsweise Trimethylsilyloxy, Triethylsilyloxy, Butyldimethylsilyloxy, Tributylsilyloxy oder Tritert.butylsilyloxy. Bevorzugt Reste R1A-R5A sind Wasserstoff, Methyl, Ethyl, n-Proyl, iso-Proyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, Vinyl, Allyl, Benzyl, Phenyl, ortho Dialkyl- oder Dichlorosubstituierte Phenyle, Trialkyl- oder Trichlorosubstituierte Phenyle, Naphthyl, Biphenyl und Anthranyl. Als Si-organische Substituenten kommen besonders Trialkylsilyl-Gruppen mit 1 bis 10 C-Atomen im Alkylrest in Betracht, insbesondere Trimethylsilyl-Gruppen.
  • Beispiele für derartige Cyclopentadienylsysteme (ohne die Gruppe -Z-A-, diese sitzt hierbei bevorzugt in der 1-Position) sind 3-Methylcyclopentadienyl, 3-Ethylcyclopentadienyl, 3-Isopropylcyclopentadienyl, 3-tert.Butylcyclopentadienyl, Di-, wie z.B. Tetrahydroindenyl, 2,4-Dimethylcyclopentadienyl oder 3-Methyl-5-tert.Butylcyclopentadienyl, Tri-, wie z.B. 2,3,5-Trimethylcyclopentadienyl oder Tetraalkylcyclopentadienyl, wie z.B. 2,3,4,5-Tetramethylcyclopentadienyl.
  • Des weiteren sind auch solche Verbindungen bevorzugt in denen zwei vicinale Reste R1A-R5A ein cyclisches kondensiertes Ringsystem ausbilden, also zusammen mit dem E1A-E5A –, bevorzugt einem C5-Cyclopentadienyl-Grundgerüst z.B. ein unsubstituiertes oder substituiertes Indenyl-, Benzindenyl-, Phenantrenyl-, Fluorenyl- oder Tetrahydroindenylsystem bilden, wie beispielsweise Indenyl, 2-Methylindenyl, 2-Ethylindenyl, 2-Isopropylindenyl, 3-Methylindenyl, Benzindenyl oder 2-Methylbenzindenyl.
  • Das kondensierte Ringsystem kann dabei weitere C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alky-laryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR6A 2, N(SiR6A 3)2, OR6A, OSiR6A 3 oder SiR6A 3 tragen, wie z.B. 4-Methylindenyl, 4-Ethylindenyl, 4-Isopropylindenyl, 5-Methylindenyl, 4-Phenylindenyl, 5-Methyl-4-phenylindenyl, 2-Methyl-4-phenylindenyl oder 4-Naphthylindenyl.
  • Bevorzugte Substituenten R1A-R5A , die nicht -Z-A bilden, sind die weiter oben beschriebenen C-organischen Substituenten und die C-organischen Substituenten, welche ein cyclisches kondensiertes Ringsystem bilden, sowie insbesondere deren bevorzugte Ausführungsformen.
  • m kann 1, 2 oder 3 sein, d.h. 1, 2 oder 3 Reste R1A-R5A sind -Z-A, wobei bei Anwesenheit von 2 oder 3 -Z-A Resten, diese gleich oder verschieden sein können. Bevorzugt ist nur einer der Reste R1A-R5A gleich -Z-A (m = 1).
  • Wie auch bei den Metallocenen können die erfindungsgemässen Monocyclopentadienylkomplexe chiral sein. So kann einerseits einer der Substituenten R1A-R5A des Cyclopentadienyl-Grundgerüstes ein oder mehrere chirale Zentren besitzen, oder aber das Cyclopentadienylsystem Cp selbst kann enantiotop sein, so daß erst durch dessen Bindung an das Übergangsmetall M die Chiralität induziert wird (zum Formalismus der Chiralität bei Cyclopentadienylverbindungen siehe R. Halterman, Chem. Rev. 92, (1992), 965-994).
  • Als C-organische Substituenten R1B-R6B der Verknüpfung Z kommen beispielsweise folgende in Betracht: C1-C20-Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits eine C6-C10-Arylgruppe als Substituent tragen kann, wie z.B. Cyclopropan, Cyclobutan, Cyclopentan, Cyclohexan, Cycloheptan, Cyclooctan, Cyclononan oder Cyclododekan, C2-C20-Alkenyl, wobei das Alkenyl linear, cyclisch oder verzweigt sein kann und die Doppelbindung intern oder endständig sein kann, wie z.B. Vinyl, 1-Allyl, 2-Allyl, 3-Allyl, Butenyl, Pentenyl, Hexenyl, Cyclopentenyl, Cyclohexenyl, Cyclooctenyl oder Cyclooktadienyl, C6-C20-Aryl, wobei der Arylrest durch weitere Alkylgruppen substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, oder Arylalkyl, wobei das Arylalkyl durch weitere Alkylgruppen substituiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl, wobei gegebenenfalls auch zwei R1B bis R6B zu einem 5- oder 6-gliedrigen Ring verbunden sein können, wie beispielsweise Cyclohexan, und die organischen Reste R1B-R6B auch durch Halogene, wie z.B. Fluor, Chlor oder Brom und Alkyl oder Aryl substituiert sein können. Als Si-organische Substituenten SiRB1 3 kommen für R7B die gleichen Reste, wie oben für R1B-R6B näher ausgeführt, wobei gegebenenfalls auch zwei R7B zu einem 5- oder 6-gliedrigen Ring verbunden sein können, in Betracht, wie z.B. Trimethylsilyl, Triethylsilyl, Butyldimethylsilyl, Tributylsilyl, Tritert.butylsilyl, Triallylsilyl, Triphenylsilyl oder Dimethylphenylsilyl. Bevorzugt Reste R1B-R6B sind Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, Benzyl, Phenyl, ortho Dialkyl- oder Dichlorosubstituierte Phenyle, Trialkyl- oder Trichlorosubstituierte Phenyle, Naphthyl, Biphenyl und Anthranyl.
  • Die Verbrückung Z zwischen dem Cyclopentadienylsystem Cp und dem Heterocyclus A isf eine organische, bevorzugt divalente Verbrückung, bestehend aus Kohlenstoff- und/oder Silizium-Einheiten. Z kann dabei an das Cyclopentadienyl-Grundgerüst oder an den Heterocyclus oder den ankondensierten Ring des Cyclopentadienylsystems gebunden sein. Bevorzugt ist Z an das Cyclopentadienyl-Grundgerüst gebunden. Durch eine Änderung der Verknüpfungslänge zwischen dem Cyclopentadienylsystem und A kann die Aktivität des Katalysators beeinflußt werden. Ganz besonders bevorzugt ist Z neben dem kondensierten Heterocyclus oder ankondensierten Aromaten an das Cyclopentadienyl-Grundgerüst gebunden. Ist also der Heterocyclus oder Aromat in der 2,3-Position des Cyclopentadienyl-Grundgerüstes kondensiert, so sitzt Z bevorzugt in der 1- oder 4-Position des Cyclopentadienyl-Grundgerüstes.
  • Bevorzugte Brücken Z sind -C(R1BR2B)-C(R3BR4B)-, -C(R1BR2B)-Si(R3BR4B)-, oder 1,2-Phenylen. Die -C(R1BR2B)- Gruppe in -C(R1BR2B)-Si(R3BR4B)- kann dabei an A oder Cp gebunden sein. Bevorzugt ist -C(R1BRZB)- an A gebunden, da diese Verbindungen einfach und kostengünstig darzustellen sind. Besonders bevorzugt ist darin -C(R1BR2B)- gleich CH2, so dass Verbindungen Z gleich -CH2-C(R3BR4B)- oder -CH2-Si(R3BR4B)- besonders bevorzugt sind. Bevorzugt ist die CH2-Gruppe dabei an A gebunden. Besonders bevorzugt ist Z eine -C(R1BR2B)-Si(R3bR4B)-, 1,2-Cyclohexandiyl oder 1,2-Phenylen Brücke. Die weiter oben aufgeführten Ausführurgsformen und bevorzugten Ausführungsformen für R1B-R4B und R7B gelten auch für diese bevorzugten Monocyclopentadienylkomplexe.
  • A ist ein unsubstituiertes, substituiertes oder kondensiertes heteroaromatisches Ringsystem, welches neben Kohlenstoffringgliedern Heteroatome aus der Gruppe Sauerstoff, Schwefel, Stickstoff und Phosphor enthalten kann. Beispiele für 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, sind 2-Furyl, 2-Thienyl, 2-Pyrrolyl, 3-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 5-Isothiazolyl, 1-Pyiazolyl, 3-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,3,4-Oxadiazol-2-yl oder 1,2,4-Triazol-3-yl. Beispiele für 6-gliedrige Heteroarylgruppen, welche ein bis vier Stickstoffatome und/oder ein Phosphoratom enthalten können, sind 2-Pyridinyl, 2-Phosphabenzolyl 3-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl oder 1,2,4-Triazin-6-yl. Die 5-Ring und 6-Ring Heteroarylgruppen können hierbei auch durch C1-C10-Alkyl, C6-C10-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-10 C-Atomen im Arylrest, Trialkylsilyl oder Halogenen, wie Fluor, Chlor oder Brom substituiert oder mit ein oder mehreren Aromaten oder Heteroaromaten kondensiert sein. Beispiele für benzokondensierte 5-gliedrige Heteroarylgruppen sind 2-Indolyl, 7-Indolyl, 2-Cumaronyl, 7-Cumaionyl, 2-Thionaphthenyl, 7-Thionaphthenyl, 3-Indazolyl, 7-Indazolyl, 2-Benzimidazolyl oder 7-Benzimidazolyl. Beispiele für benzokondensierte 6-gliedrige Heteroarylgruppen sind 2-Chinolyl, 8-Chinolyl, 3-Cinnolyl, 8-Cinnolyl, 1-Phthalazyl, 2-Chinazolyl, 4-Chinazolyl, 8-Chinazolyl, 5-Chinoxalyl, 4-Acridyl, 1-Phenanthridyl oder 1-Phenazyl.
  • A kann dabei inter- oder intramolekular an das Metall M binden. Bevorzugt ist A intramolekular an M gebunden. Die synthetische Anbindung von A an den Cyclopentadienylring kann z.B. in Analogie zu M. Enders et. al. in Chem: Ber. (1996), 129, 459-463 oder P. Jutzi und U. Siemeling in J. Orgmet. Chem. (1995), 500, 175-185 durchgeführt werden.
  • Von diesen heteroaromatischen Systemen sind besonders unsubstituierte, substituierte und/oder kondensierte sechsgliedrige Heteroaromaten mit 1, 2, 3, 4 oder 5 Stickstoffatomen im Heteroaromatenteil der an Z gebunden ist, insbesondere 2-Pyridyl oder 2-Chinolyl bevorzugt. Bevorzugt ist A daher eine Gruppe der Formel (III)
    Figure 00100001
    wobei
    E1c-E4C Kohlenstoff oder Stickstoff,
    R1C-R4C unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR5C 3 bedeutet, wobei die organischen Reste R1C-R4C auch durch Halogene oder Stickstoff und weitere C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR5C 3 substituiert sein können und je zwei vicinale Reste R1C-R4C oder R1C und Z auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und
    R5C unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R5C auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und
    p 0 für, E1C-E4C gleich Stickstoff und 1 für E1C-E4C gleich Kohlenstoff ist.
  • Insbesondere sind 0 oder E1C-E4C gleich Stickstoff und die übrigen Kohlenstoff. Besonders bevorzugt ist A ein 2-Pyridyl, 6-Methyl-2-Pyridyl, 4-Methyl-2-Pyridyl, 5-Methyl-2-Pyridyl, 5-Ethyl-2-Pyridyl, 4,6-Dimethyl-2-Pyridyl, 3-Pyridazyl, 4-Pyrimidyl, 6-Methyl-4-Pyrimidyl, 2-Pyrazinyl, 6-Methyl-2-Pyrazinyl, 5-Methyl-2-Pyrazinyl, 3-Methyl-2-Pyrazinyl, 3-Ethylpyrazinyl, 3,5,6-Trimethyl-2-pyrazinyl, 2-Chinolyl, 4-Methyl-2- Chinolyl, 6-Methyl-2- Chinolyl, 7-Methyl-2- Chinolyl, 2-Chinoxalyl oder 3-Methyl-2-Chinoxalyl.
  • In bevorzugten Monocyclopentadienylkomplex bilden das Cyclopentadienylsystem Cp und -Z-A- einen Liganden (Cp-Z-A) der Formel IV:
    Figure 00110001
  • Worin die Variablen A, Z, E1A bis E5A und R6A die obige Bedeutung besitzen und auch deren bevorzugte Ausführungsformen hierin bevorzugt sind und
    R1A-R5A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR6A 2, (SiR6A 3)2, OR6A, OSiR6A SiR6A BR6A 2 wobei die organischen Reste R1A-R5A auch durch Halogene substituiert sein können und je zwei vicinale Reste R1A-R5A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R1A-R5A zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält.
  • Für R1A-R5A gelten ebenfalls die weiter oben beschriebenen Ausführungen und die bevorzugten Ausführungsformen.
  • Insbesondere enthält der Monocyclopentadienylkomplex den Liganden (Cp-Z-A) der Formel IV in der folgenden bevorzugten Ausführungsform:
    Z ist ausgewählt aus -C(R1BR2B)-Si(R3BR4B)- oder 1,2-Phenylen, wobei die -C(R1BR2B)- bevorzugt an A gebunden ist und wobei das Phenylen weiter subsutiuiert sein kann:
    Figure 00110002
    wobei
    R1B-R4B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR1B 3 bedeutet, wobei die organischen Reste R1B-R4B auch durch Halogene substituiert sein können und je zwei geminale oder vicinale Reste R1B-R4B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und
    R7B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeu tet und je zwei Reste R7B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und A
    Figure 00120001
    ist, wobei
    E1C-E4C Kohlenstoff oder Stickstoff,
    R1C-R4C unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Al-kylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR5C 3 bedeutet, wobei die organischen Reste R1C-R4C auch durch Halogene und weitere C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR5C 3 substituiert sein können und je zwei vicinale Reste R1C-R4C oder R1C und Z auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,
    R5C unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R5C auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und
    p 0 für E1C-E4C gleich Stickstoff und 1 für E1C-E4C gleich Kohlenstoff ist.
  • M ist ein Metall ausgewählt aus der Gruppe Titan in der Oxidationsstufe 3, Vanadium, Chrom, Molybdän und Wolfram, bevorzugt Titan in der Oxidationsstufe 3, Chrom, Molybdän und Wolfram. Besonders bevorzugt ist Chrom in den Oxidationsstufen 2, 3 und 4, insbesondere 3. Die Metallkomplexe, insbesondere die Chromkomplexe, lassen sich auf einfache Weise erhalten, wenn man die entsprechenden Metallsalze wie z.B. Metallchloride mit dem Ligandanion umsetzt (z.B. analog zu den Beispielen in DE 197 10615 ).
  • Von den erfindungsgemässen Monocyclopentadienylkomplexen sind solche der allgemeinen Formel (Cp)(-Z-A)mMXk (V) bevorzugt, worin die Variablen Cp, Z, A, m und M die obige Bedeutung besitzen und auch deren bevorzugte Ausführungsformen hierin bevorzugt sind und:
    X unabhängig voneinander Fluor, Chlor, Brom, Jod, Wasserstoff, C1-C10-Alkyl, C2-C10-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1-10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR1R2, OR1, SR1, SO3R1, OC(O)R1, CN, SCN, β-Diketonat, CO, BF4-, PF6-, oder sperrige nichtkoordinierende Anionen,
    R1-R2 unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, SiR3 3, wobei die organischen Reste R1-R2 auch durch Halogene oder Stickstoff- und Sauerstoffhaltige Gruppen substituiert sein können und je zwei Reste R1-R2 auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,
    R3 unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei Reste R3 auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und
    k 1, 2, oder 3 ist.
  • Die weiter oben aufgeführten Ausführungsformen und bevorzugten Ausführungsformen für Cp, Z, A, m und M gelten auch einzeln und in Kombination für diese bevorzugten Monocyclopentadienylkomplexe.
  • Die Liganden X ergeben sich z.B. durch die Auswahl der entsprechenden Metallausgangsverbindungen, die zur Synthese der Monocyclopentadienylkomplexe verwendet werden, können aber auch nachträglich noch variiert werden. Als Liganden X kommen insbesondere die Halogene wie Fluor, Chlor, Brom oder Jod und darunter insbesondere Chlor in Betracht. Auch Alkylreste, wie Methyl, Ethyl, Propyl, Butyl, Vinyl, Allyl, Phenyl oder Benzyl stellen vorteilhafte Liganden X dar. Als weitere Liganden X sollen nur exemplarisch und keineswegs abschließend Trifluoracetat, BF4 , PF6 sowie schwach bzw. nicht koordinierende Anionen (siehe z.B. S. Strauss in Chem. Rev. 1993, 93, 927-942) wie B(C6F5) genannt werden.
  • Auch Amide, Alkoholate, Sulfonate, Carboxylate und β-Diketonate sind besonders geeignete Liganden X. Durch Variation der Reste R1 und R2 können z.B. physikalische Eigenschaften wie Löslichkeit fein eingestellt werden. Als C-organische Substituenten R1-R2 kommen beispielsweise folgende in Betracht: C1-C20-Alkyl, wobei das Alkyl linear oder verzweigt sein kann, wie z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Dodecyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits eine C6-C10-Arylgruppe als Substituent tragen kann, wie z.B. Cyclopropan, Cyclobutan, Cyclopentan, Cyclohexan, Cycloheptan, Cyclooctan, Cyclononan oder Cyclododekan, C2-C20-Alkenyl, wobei das Alkenyl linear, cyclisch oder verzweigt sein kann und die Doppelbindung intern oder endständig sein kann, wie z.B. Vinyl, 1-Allyl, 2-Allyl, 3-Allyl, Butenyl, Pentenyl, Hexenyl, Cyclopentenyl, Cyclohexenyl, Cyclooctenyl oder Cyclooktadienyl, C6-C20-Aryl, wobei der Arylrest durch weitere Alkylgruppen und/oder N- oder O-haltige Reste substituiert sein kann, wie z.B. Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, 2-Methoxyphenyl, 2-N,N-Dimethylaminophenyl oder Arylalkyl, wobei das Arylalkyl durch weitere Alkylgruppen substituiert sein kann, wie z.B. Benzyl, o-, m-, p-Methylbenzyl, 1- oder 2-Ethylphenyl, wobei gegebenenfalls auch R1 mit R2 zu einem 5- oder 6-gliedrigen Ring verbunden sein können und die organischen Reste R1-R2 auch durch Halogene, wie z.B. Fluor, Chlor oder Brom substituiert sein können. Als Si-organische Substituenten SiR3 3 kommen für R3 die gleichen Reste, wie oben für R1-R2 näher ausgeführt, wobei gegebenenfalls auch zwei R3 zu einem 5- oder 6-gliedrigen Ring verbunden sein können, in Betracht, wie z.B. Trimethylsilyl, Triethylsilyl, Butyldimethylsilyl, Tributylsilyl, Triallylsilyl, Triphenylsilyl oder Dimethylphenylsilyl. Bevorzugt werden C1-C10-Alkyl wie Methyl, Ethyl, n-Propyl, n-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, sowie Vinyl, Allyl, Benzyl und Phenyl als Reste R1 und R2 verwendet. Manche dieser substituierten Liganden X werden ganz besonders bevorzugt verwendet, da sie aus billigen und einfach zugänglichen Ausgangsstoffen erhältlich sind. So ist eine besonders bevorzugte Ausführungsform, wenn X für Dimethylamid, Methanolat, Ethanolat, Isopropanolat, Phenolat, Naphtholat, Triflat, p-Toluolsulfonat, Acetat oder Acetylacetonat steht.
  • Die Anzahl k der Liganden X hängt von der Oxidationsstufe des Übergangsmetaller M ab. Die Zahl k kann somit nicht allgemein angegeben werden. Die Oxidationsstufe der Übergangsmetalle M in katalytisch aktiven Komplexen, sind dem Fachmann zumeist bekannt. Chrom, Molybdän und Wolfram liegen sehr wahrscheinlich in der Oxidationsstufe +3 vor, Vanadium in der Oxidationsstufe +3 oder +4. Es können jedoch auch Komplexe eingesetzt werden, deren Oxidationsstufe nicht der des aktiven Katalysators entspricht. Solche Komplexe können dann durch geeignete Aktivatoren entsprechend reduziert oder oxidiert werden. Bevorzugt werden Chromkomplexe in der Oxidationsstufe +3 und Titankomplexe in der Oxidationsstufe 3 verwendet.
  • Des weiteren wurde ein Verfahren zur Darstellung von Cyclopentadienylsystem-Anionen der Formel (V) gefunden:
    Figure 00140001
    worin die Variablen folgende Bedeutung besitzen:
    R1A-R5A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR6A 2, N(SiR6A 3)2, OR6A, OSiR6A 3, SiR6A 3, wobei die organischen Reste R1A-R5A auch durch Halogene substituiert sein können und je zwei vicinale Reste R1A-R5A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R1A-R5A zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält,
    R6A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R6A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können.
    A ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem,
    R1B-R4B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR7B 3 bedeutet, wobei die organischen Reste R1B-R4B auch durch Halogene substituiert sein können und je zwei geminale oder vicirale Reste R1B-R4B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und R7B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R7B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, wobei ein A-CR1BR2B-Anion mit einem Fulven der Formel (VI)
    Figure 00150001
    umgesetzt wird, worin die Variablen die obige Bedeutung haben.
  • Die Variablen und ihre bevorzugten Ausführungsformen wurden schon weiter oben beschrieben. Fulvene sind seit langem bekannt und können beispielsweise nach Freiesleben, Angew. Chem. 75 (1963); S. 576 hergestellt werden.
  • Das Cyclopentadienylsystem-Anion (V) hat als Gegenkation das Kation des A-CR1BR2B-Anion. Dies ist in der Regel ein Metall der Gruppe 1, 2 oder 3 des Periodensystems der Elemente, welches weitere Liganden tragen kann. Besonders bevorzugt sind Lithium, Natrium oder Kalium-Kationen, welche auch neutrale Liganden wie Amine oder Ether tragen können und Magnesiumchlorid- oder Magnesiumbromid-Kation, welche ebenfalls weitere neutrale Liganden tragen können.
  • Das A-CR1BR2B·-Anion wird dabei üblicherweise durch Deprotonierung von A-CR1BR2BH erhalten. Dazu können starke Basen, wie beispielsweise Lithiumalkyle, Nahydrid, Natriumamide, Natriumalkoxide, Natriumalkyle, Kaliumhydrid, Kaliumamide, Kaliumalkoxide, Kaliumalkyle, Magnesiumalkyle, Magnesium(alkyl)halogenide, oder Gemische davon eingesetzt werden. Das molare Verhältnis von Base zu A-CR1BR2BH ist dabei üblicherweise im Bereich von 0,4:1 bis 100:1, bevorzugt im Bereich 0,9:1 bis 10:1 und besonders bevorzugt 0,95:1 bis 1,1:1. Beispiele für derartige Deprotonierungen sind in L. Brandsma, Preparative polar organometallic chemistry 2, S.133- 142 beschrieben.
  • Als Lösungsmittel zur Deprotonierung können alle aprotischen Lösungsmittel verwendet werden, insbesondere aliphatische und aromatische Kohlenwasserstoffe wie beispielsweise n-Pentan, n-Hexan, iso-Hexan, n-Heptan, iso-Heptan, Decalin, Bezol, Toluol, Ethylbenzol oder Xyxlol oder Ether wie Diethylether, Dibutylether, Tetrahydrofuran, Dimethoxyethan oder Diethylenglykoldimethylether und Gemische davon. Die Deprotonierung kann bei Temperaturen von –100 bis +160°C, insbesondere von –80 bis 100°C ausgeführt werden. Bei Temperaturen über 40°C werden bevorzugt aromatische oder aliphatische Lösungsmittel verwendet, die keinen oder nur geringe Anteile an Ether als Lösungsmittel haben.
  • Das unsubstituierte, substituiertes oder kondensiertes, heteroaromatisches Ringsystem A hat die gleiche Bedeutung wie weiter oben beschrieben und trägt eine CR1BR2BH-Gruppe. Die Reste R1B und R2B, sowie deren bevorzugte Ausführungsformen sind ebenfalls schon weiter oben beschrieben. Diese Gruppe sitzt bevorzugt in ortho-Position zu einem Heteroatom von A, insbesondere von einem Stickstoffatom, falls A ein solche enthält. Bevorzugt ist A-CR1BR2BH 2-Methylfuran, 2,5-Dimethylfuran, 2-Ethylfuran, 1,2-Dimethylpyrrol, 1,2,3-Trimethylpyrrol, 1,3-Dimethylpyrazol, 1,2-Dimethylimidazol, 1-Decyl-2-Methylimidazol, 1-Methyl-2-Undecylimidazol, 2-Picolin, 2-Ethylpyridin, 2-Propylpyridin, 2-Benzylpyridin, 2,6-Lutidin, 2,4-Lutidin, 2,5-Lutidin, 2,3-Cycloheptenopyridin, 5-Ethyl-2-Methylpyridin, 2,4,6-Collidin, 3-Methylpyridazin, 4-Methylpyrimidin, 4,6-Dimethylpyrimidin, 2-Methylpyrazin, 2-Ethylpyrazin, 2,6-Dimethylpyrazin, 2,5-Dimethylpyrazin, 2,3-Dimethylpyrazin, 2,3-Diethylpyrazin, Tetrahydrochinoxalin, Tetramethylpyrazin, Chinaldin, 2,4-Dimethylchinolin, 2,6-Dimethylchinolin, 2,7-Diniethylchinolin, 2-Methylchinoxalin, 2,3-Dimethylchinoxalin oder Neocuproin.
  • Bevorzugt ist A-CR'1BR2BH insbesondere eine Gruppe der Formel (VII)
    Figure 00170001
    worin die Variablen folgende Bedeutung haben:
    E1C-E4C Kohlenstoff oder Stickstoff,
    R1C-R4C unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl; Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR5C 3 bedeutet, wobei die organischen Reste R1C-R4C auch durch Halogene oder Stickstoff und weitere C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR5C 3 substituiert sein können und je zwei vicinale Reste R1C-R4C oder R1C und R1B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und
    R5C unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R5C auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und
    p 0 für E1C-E4C gleich Stickstoff und 1 für E1C-E4C gleich Kohlenstoff ist.
  • Insbesondere sind 0 oder 1 E1C-E4C gleich Stickstoff und die übrigen Kohlenstoff. Besonders bevorzugte A-CR1BR2BH Systeme sind 2-Picolin, 2-Ethylpyridin, 2-Propylpyridin, 2-Benzylpyridin, 2,6-Lutidin, 2,4-Lutidin, 2,5-Lutidin, 2,3-Cycloheptenopyridin, 5-Ethyl-2-Methylpyridin, 2,4,6-Collidin, 3-Methylpyridazin, 4-Methylpyrimidin, 4,6-Dimethylpyrimidin, 2-Methylpyrazin, 2-Ethylpyrazin, 2,6-Dimethylpyrazin, 2,5-Dimethylpyrazin, 2,3-Dimethylpyrazin, 2,3-Diethylpyrazin, Tetrahydrochinoxalin, Tetramethylpyrazin,Chinaldin, 2,4-Dimethylchinolin, 2,6-Dimethylchinolin, 2,7-Dimethylchinolin, 2-Methylchinoxalin, 2,3-Dimethylchinoxalin oder Neocuproin.
  • Das nach Deprotonierung entstandene A-CR1BR2B--Anion kann isoliert oder bevorzugt ohne weitere Isolierung mit dem Fulven (VI) umgesetzt werden. Als Lösungsmittel zur weiteren Reaktion können alle aprotischen Lösungsmittel verwendet werden, insbesondere aliphatische und aroma tische Kohlenwasserstoffe wie beispielsweise n-Pentan, n-Hexan, iso-Hexan, n-Heptan, iso-Heptan, Decalin, Bezol, Toluol, Ethylbenzol oder Xyxlol oder Ether wie Diethylether, Dibutylether, Tetrahydrofuran, Dimethoxyethan oder Diethylenglykoldimethylether und Gemische davon. Die anschliessende Reaktion kann bei Temperaturen von –100 bis +160°C, bevorzugt von –80 bis 100°C und besonders bevorzugt von 0 bis 60°C ausgeführt werden. Bei Temperaturen über 40°C werden bevorzugt aromatische oder aliphatische Lösungsmittel verwendet, die keinen oder nur geringe Anteile an Ether als Lösungsmittel haben.
  • Das so erhaltene Cyclopentadienylsystem-Anionen (V) kann dann weiter mit der entsprechenden Übergangsmetallverbindung, z.B. Chromtrichlorid-Tris(Tetrahydrofuran), zum entsprechenden Monocyclopentadienylkomplex (A) umgesetzt werden.
  • Des weiteren wurde eine Verfahren zur Herstellung von Cyclopentadienylsytemen der Formel (VIII) gefunden:
    Figure 00180001
    worin die Variablen folgende Bedeutung haben:
    E6A-E10A Kohlenstoff oder maximal ein E6A bis E10A Phosphor, wobei jeweils vier benachbarte
    E1A-E5A ein konjugiertes Diensystem bilden und das verbleibende E 6A-E10A zusätzlich ein Wasserstoffatom trägt, R1A-R5A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR5A 2, N(SiR6A 3)2, OR6A, OSiR6A 3, SiR6A 3, wobei die organischen Reste R1A-R5A auch durch Halogene substituiert sein können und je zwei vicinale Reste R1A-R5A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R1A-R5A zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält
    R6A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R6A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können.
    A ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem,
    R1B-R4B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR7B 3 bedeutet, wobei die organischen Reste R1B-R4B auch durch Halogene substituiert sein können und je zwei geminale oder vicinale Reste R1B-R4B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und R7B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R7B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können,
    wobei ein A-CR1BR2B--Anion mit einem Cyclopentadienylsystem der Formel (IX)
    Figure 00190001
    umgesetzt wird, worin die Variablen die obige Bedeutung haben und
    Q für eine Abgangsgruppe, insbesondere Chlor, Brom, Jod , Tosylat oder Triflat steht.
  • Die Darstellung der A-CR1BR2B--Anionen und deren bevorzugte Ausführungsformen wurden weiter oben beschrieben und gelten auch in diesem Verfahren.
  • Das Cyclopentadienylsystem (IX) kann beispielsweise durch Reaktion des entsprechenden Cyclopentadienylsystem Anions, worin die Gruppe SiR1BR2BQ durch Wasserstoff ersetzt ist und ein einzelnes Wasserstoffatom an einem der E6A-E10A deprotoniert wurde, mit SiR1BRZBQ2 dargestellt werden, wobei Q gleich oder verschieden sein kann und für eine Abgangsgruppe, insbesondere Chlor, Brom, Jod , Tosylat oder Triflat steht. Derartige Synthesen sind beispielsweise in der EP-A-659757 beschrieben.
  • Das nach Deprotonierung entstandene A-CR1BR2B--Anion kann isoliert oder bevorzugt ohne weitere Isolierung mit dem Cyclopentadienylsystem (IX) umgesetzt werden. Als Lösungsmittel können alle aprotischen Lösungsmittel verwendet werden, insbesondere aliphatische und aromatische Kohlenwasserstoffe wie beispielsweise n-Pentan, n-Hexan, iso-Hexan, n-Heptan, iso-Heptan, Decalin, Bezol, Toluol, Ethylbenzol oder Xyxlol oder Ether wie Diethylether, Dibutylether, Tetrahydrofuran, Dimethoxyethan oder Diethylenglykoldimethylether und Gemische davon. Die Reaktion kann bei Temperaturen von –100 bis +160°C, bevorzugt von –80 bis 100°C und besonders bevorzugt von 0 bis 60°C ausgeführt werden. Bei Temperaturen über 40°C werden bevorzugt aromatische oder aliphatische Lösungsmittel verwendet, die keinen oder nur geringe Anteile an Ether als Lösungsmittel haben.
  • Das so erhaltene Cyclopentadienylsystem (VIII) kann dann nach den üblichen Methoden deprotoniert werden und weiter mit der entsprechenden Übergangsmetallverbindung, z.B. Chromtrichlorid-Tris(Tetrahydrofuran), zum entsprechenden Monocyclopentadienylkomplex (A) umgesetzt werden. Des weiter kann Cyclopentadienylsystem (VIII) auch direkt beispielsweise mit Chromamiden zum Monocyclopentadienylkomplex (A) umgesetzt werden in Analogie zum Verfahren in EP-A-742 046.
  • Die erfindungsgemässen Monocyclopentadienylkomplexe können allein oder mit weiteren Komponenten als Katalysatorsystem zur Olefinpolymerisation verwendet werden. Es wurden weiterhin. Katalysatorsysteme zur Olefinpolymerisation gefunden, enthaltend
    • A) mindestens einen erfindungsgemässen Monocyclopentadienylkomplex
    • B) optional einen organischen oder anorganischen Träger,
    • C) optional eine oder mehrere aktivierende Verbindungen,
    • D) optional ein oder mehrere zur Olefinpolymerisation geeignete Katalysatoren und
    • E) optional eine oder mehrere Metallverbindungen mit einem Metall der Gruppe 1, 2 oder 13 des Periodensystems.
  • So kann mehr als einer der erfindungsgemässen Monocyclopentadienylkomplexe gleichzeitig mit dem oder den zu polymerisierenden Olefinen in Kontakt gebracht werden. Dies hat den Vorteil, daß so ein weiter Bereich an Polymeren erzeugt werden kann. Auf diese Weise können z.B. bimodale Produkte hergestellt werden.
  • Damit die erfindungsgemässen Monocyclopentadienylkomplexe bei Polymerisationsverfahren in der Gasphase oder in Suspension eingesetzt werden können, ist es oftmals von Vorteil, daß die Metallocene in Form eines Feststoffs eingesetzt werden, d.h. daß sie auf einen festen Träger B) aufgebracht werden. Weiterhin weisen die geträgerten Monocyclopentadienylkomplexe eine hohe Produktivität auf. Die erfindungsgemässen Monocyclopentadienylkomplexe können daher optional auch auf einem organischen oder anorganischen Träger B) immobilisiert und in geträgerter Form in der Polymerisation verwendet werden. Dadurch können beispielsweise Reaktorablagerungen vermieden werden und die Polymermorphologie gesteuert werden. Als Trägermaterialien werden bevorzugt Kieselgel, Magnesiumchlorid, Aluminiumoxid, mesoporöse Materialien, Aluminosilikate, Hydrotalcite und organische Polymere wie Polyethylen, Polypropylen, Polystyrol, Polytetrafluorethylen oder polar funktionalisierte Polymere, wie beispielsweise Copolymere von Ethen und Acrylester, Acrolein oder Vinylacetat verwendet.
  • Besonders bevorzugt ist ein Katalysatorsystem enthaltend einen erfindungsgemäßen Monocyclopentadienylkomplex und mindestens einen aktivierende Verbindung C), welches zusätzlich eine Trägerkomponente B) enthält.
  • Um ein solches geträgertes Katalysatorsystem zu erhalten, kann das trägerlose Katalysatorsystem mit einer Trägerkomponente B) umgesetzt werden. Prinzipiell ist die Reihenfolge der Zusammengabe von Trägerkomponente B), erfindungsgemäßem Monocyclopentadienylkomplex A) und der aktivierenden Verbindung C) beliebig. Der erfindungsgemäße Monocyclopentadienylkomplex A) und die aktivierende Verbindung C) können unabhängig voneinander oder gleichzeitig fixiert werden. Nach den einzelnen Verfahrensschritten kann der Feststoff mit geeigneten inerten Lösungsmitteln wie z. B. aliphatischen oder aromatischen Kohlenwasserstoffen gewaschen werden.
  • In einer bevorzugten Form der Darstellung des geträgerten Katalysatorsystems wird mindestens einer der erfindungsgemäßen Monocyclopentadienylkomplexe in einem geeigneten Lösungsmittel mit mindestens einer aktivierenden Verbindung C) in Kontakt gebracht, wobei bevorzugt ein lösliches Reaktionsprodukt, ein Addukt oder ein Gemisch erhalten wird. Die so erhaltene Zubereitung wird dann mit dem dehydratisierten oder inertisierten Trägermaterial vermischt, das Lösungsmittel entfernt und das resultierende geträgerte Monocyclopentadienylkomplex-Katalysatorsystem getrocknet, um sicherzustellen, daß das Lösungsmittel vollständig oder zum größten Teil aus den Poren des Trägermaterials entfernt wird. Der geträgerte Katalysator wird als frei fließendes Pulver erhalten. Beispiele für die technische Realisierung des obigen Verfahrens sind in WO 96/00243, WO 98/40419 oder WO 00/05277 beschrieben. Eine weitere bevorzugte Ausführungsform ist, zunächst die aktivierende Verbindung C) auf der Trägerkomponente B) zu erzeugen und anschließend diese geträgerte Verbindung mit dem erfindungsgemäßen Monocyclopentadienylkomplex A) in Kontakt zu bringen.
  • Als Trägerkomponente B) werden vorzugsweise feinteilige Träger eingesetzt, die ein beliebiger organischer oder anorganischer Feststoff sein können. Insbesondere kann die Trägerkomponente B) ein poröser Träger wie Talk, ein Schichtsilikat, wie Montmorillonot, Mica oder Glimmer, ein anorganisches Oxid oder ein feinteiliges Polymerpulver (z.B. Polyolefin oder polar funktionalisiertes Polymer) sein.
  • Die verwendeten Trägermaterialien weisen vorzugsweise eine spezifische Oberfläche im Bereich von 10 bis 1000 m2/g, ein Porenvolumen im Bereich von 0,1 bis 5 ml/g und eine mittlere Partikelgröße von 1 bis 500 μm auf. Bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 50 bis 700 m2/g, einem Porenvolumen im Bereich zwischen 0,4 und 3,5 ml/g und einer mittleren Partikelgröße im Bereich von 5 bis 350 μm. Besonders bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 200 bis 550 m2/g, einem Porenvolumen im Bereich zwischen 0,5 bis 3,0 ml/g und einer mittleren Partikelgröße von 10 bis 150 μm.
  • Der anorganische Träger kann einer thermischen Behandlung z.B. zur Entfernung von adsorbiertem Wasser unterzogen werden. Eine solche Trocknungsbehandlung wird in der Regel bei Temperaturen im Bereich von 80 bis 300°C, vorzugsweise von 100 bis 200°C durchgeführt, wobei die Trocknung bei 100 bis 200°C bevorzugt unter Vakuum und/oder Inertgasüberlagerung (z. B. Stickstoff) erfolgt, oder der anorganische Träger kann bei Temperaturen von 200 bis 1000°C calciniert werden, um gegebenenfalls die gewünschte Struktur des Festkörpers und/oder die gewünschte OH-Konzentration auf der Oberfläche einzustellen. Der Träger kann auch chemisch behandelt werden, wobei übliche Trocknungsmittel wie Metallalkyle, bevorzugt Aluminiumalkyle, Chlorsilane oder SiCl4, aber auch Methylalumoxan zum Einsatz kommen können. Entsprechende Behandlungsmethoden werden zum Beispiel in WO 00/31090 beschrieben.
  • Das anorganische Trägermaterial kann auch chemisch modifiziert werden. Beispielsweise führt die Behandlung von Kieselgel mit NH4SiF6 oder anderen Fluorierungsmitteln zur Fluorierung der Kieselgeloberfläche oder die Behandlung von Kieselgelen mit Silanen, die Stickstoff-, Fluor- oder Schwefelhaltige Gruppen enthalten, führen zu entsprechend modifizierten Kieselgeloberflächen.
  • Organische Trägermaterialien wie feinteilige Polyolefinpulver (z.B. Polyethylen, Polypropylen oder Polystyrol) können auch verwendet werden und sollten vorzugsweise ebenfalls vor dem Einsatz von anhaftender Feuchtigkeit, Lösungsmittelresten oder anderen Verunreinigungen durch entsprechende Reinigungs- und Trocknungsoperationen befreit werden. Es können auch funktionaliserte Polymerträger, z. B. auf Basis von Polystyrol, Polyethylen oder Polypropylen, eingesetzt werden, über deren funktionelle Gruppen, zum Beispiel Ammonium- oder Hydroxygruppen, mindestens eine der Katalysatorkomponenten fixiert werden kann.
  • Geeignete anorganische Oxide als Trägerkomponente B) finden sich in den Gruppen 2, 3, 4, 5, 13, 14, 15 und 16 des Periodensystems der Elemente. Beispiele für als Träger bevorzugte Oxide umfassen Siliziumdioxid, Aluminiumoxid, sowie Mischoxide der Elemente Calcium, Aluminium, Silizium, Magnesium oder Titan sowie entsprechende Oxid-Mischungen. Andere anorganische Oxide, die allein oder in Kombination mit den zuletzt genannten bevorzugten oxidischen Trägern eingesetzt werden können, sind z.B. MgO, CaO, AlPO4, ZrO2, TiO2, B2O3 oder Mischungen davon.
  • Als feste Trägermaterialien B) für Katalysatoren für die Olefinpolymerisation werden bevorzugt Kieselgele verwendet, da sich aus diesem Material Partikel herstellen lassen, die in ihrer Größe und Struktur als Träger für die Olefinpolymerisation geeignet sind. Besonders bewährt haben sich dabei sprühgetrocknete Kieselgele, bei denen es sich um sphärische Agglomerate aus kleineren granulären Partikel, den sogenannten Primärpartikeln, handelt. Die Kieselgele können dabei vor ihrer Verwendung getrocknet und/oder calciniert werden.
  • Ebenfalls bevorzugte Träger B) sind Hydroialcite und calcinierte Hydrotalcite. In der Mineralogie wird als Hydrotalcit ein natürliches Mineral mit der Idealformel Mg6Al2(OH)16CO3·4 H2O bezeichnet, dessen Struktur sich von derjenigen des Brucits Mg(OH)2 ableitet. Brucit kristallisiert in einer Schichtstruktur mit den Metallionen in Oktaederlücken zwischen zwei Schichten aus dichtgepackten Hydroxylionen, wobei nur jede zweite Schicht der Oktaederlücken besetzt ist. Im Hydrotalcit sind einige Magnesiumionen durch Aluminiumionen ersetzt, wodurch das Schichtpaket eine positive Ladung erhält. Diese wird durch die Anionen ausgeglichen, die sich zusammen mit Kristallwasser in den Zwischenschichten befinden.
  • Entsprechende Schichtstrukturen finden sich nicht nur bei Magnesium-Aluminium-Hydioxiden, sondern allgemein bei schichtförmig aufgebauten, gemischten Metallhydroxiden der allgemeinen Formel M(II)2x 2+M(III)2 3+(OH)4x+4·A2/n n–·z H2O in der M(II) ein zweiwertiges Metall wie Mg, Zn, Cu, Ni, Co, Mn, Ca und/oder Fe und M(III) ein dreiwertiges Metall wie Al, Fe, Co, Mn, La, Ce und/oder Cr ist, x für Zahlen von 0,5 bis 1,0 in 0,5 Schritten, A für ein interstitielles Anion und n für die Ladung des interstitiellen Anions steht, die von 1 bis 8, üblicherweise von 1 bis 4 betragen kann und z eine ganze Zahl von 1 bis 6, insbesondere von 2 bis 4 bedeutet. Als interstitielle Anionen kommen organische Anionen wie Alkoholatanionen, Alkylethersulfate, Arylethersulfate oder Glykolethersulfate, anorganische Anionen wie insbesondere Carbonat, Hydrogencarbonat, Nitrat, Chlorid, Sulfat oder B(OH)4 oder Polyoxometallanionen wie Mo7O24 6– oder V10O28 6– in Betracht. Es kann sich jedoch auch um eine Mischung mehrerer solcher Anionen handeln.
  • Dementsprechend sollen alle derartigen schichtförmig aufgebauten, gemischten Metallhydroxide als Hydrotalcite im Sinne der vorliegenden Erfindung verstanden werden.
  • Aus Hydrotalciten lassen sich durch Calcinieren, d.h. Erwärmen, die sogenannten calcinierten Hydrotalcite herstellen, wodurch u.a. der gewünschte Gehalt an Hydroxylgruppen eingestellt werden kann. Weiterhin verändert sich auch die Struktur des Kristallaufbaus. Die Herstellung der erfindungsgemäß eingesetzten calcinierten Hydrotalcite erfolgt üblicherweise bei Temperaturen oberhalb von 180°C. Bevorzugt ist eine Calcinierung für eine Zeitdauer von 3 bis 24 Stunden bei Temperaturen von 250°C bis 1000°C und insbesondere von 400°C bis 700°C. Gleichzeitiges Überleiten von Luft oder Inertgas oder Anlegen von Vakuum ist möglich.
  • Beim Erhitzen geben die natürlichen oder synthetischen Hydrotalcite zunächst Wasser ab, d.h. es erfolgt eine Trocknung. Beim weiteren Erhitzen, dem eigentlichen Calcinieren; wandeln sich die Metallhydroxide unter Abspaltung von Hydroxylgruppen und interstitiellen Anionen in die Metalloxide um, wobei auch in den calcinierten Hydrotalciten noch OH-Gruppen oder interstitielle Anionen wie Carbonat enthalten sein können. Ein Maß hierfür ist der Glühverlust. Dieser ist der Gewichtsverlust, den eine Probe erleidet, die in zwei Schritten zunächst für 30 min bei 200°C in einem Trockenschrank und dann für 1 Stunde bei 950°C in einem Muffelofen erhitzt wird.
  • Bei den als Komponente B) eingesetzten calcinierten Hydrotalciten handelt es sich somit um Mischoxide der zwei- und dreiwertigen Metalle M(II) und M(III), wobei das molare Verhältnis von M(II) zu M(III) in der Regel im Bereich von 0,5 bis 10, bevorzugt von 0,75 bis 8 und insbesondere von 1 bis 4 liegt. Weiterhin können noch übliche Mengen an Verunreinigungen, beispielsweise an Si, Fe, Na, Ca oder Ti und auch Chloride und Sulfate enthalten sein.
  • Bevorzugte calcinierte Hydrotalcite B) sind Mischoxide, bei denen M(II) Magnesium und M(III) Aluminium ist. Entsprechende Aluminium-Magnesium-Mischoxide sind von der Fa. Condea Chemie GmbH (jetzt Sasol Chemie), Hamburg unter dem Handelsnamen Puralox Mg erhältlich.
  • Bevorzugt sind weiterhin calcinierte Hydrotalcite, in denen die strukturelle Umwandlung nahezu oder vollständig abgeschlossen ist. Eine Calcinierung, d.h. eine Umwandlung der Struktur läßt sich beispielsweise anhand von Röntgendiffraktogrammen feststellen.
  • Die eingesetzten Hydrotalcite, calcinierten Hydrotalcite oder Kieselgele werden in der Regel als feinteilige Pulver mit einem mittleren Teilchendurchmesser D50 von 5 bis 200 μm, vorzugsweise von 10 bis 150 μm, besonders bevorzugt von 15 bis 100 μm und insbesondere von 20 bis 70 μm eingesetzt und weisen üblicherweise Porenvolumina von 0,1 bis 10 cm3/g, bevorzugt von 0,2 bis 5 cm3/g, und spezifische Oberflächen von 30 bis 1000 m2/g, bevorzugt von 50 bis 800 m2/g und insbesondere von 100 bis 600 m2/g auf. Die erfindungsgemässen Monocyclopentadienylkomplexe werden dabei bevorzugt in einer Menge aufgebracht, dass die Konzentration Monocyclopentadienylkomplexe im fertigen Katalysatorsystem 5 bis 200 μmol, bevorzugt 20 bis 100 μmol und besonders bevorzugt 25 bis 70 μmol pro g Träger B) beträgt.
  • Die erfindungsgemäßen Monocyclopentadienylkomplexe sind für sich teilweise nur wenig polymerisationsaktiv und werden dann mit einem Aktivator, der Komponente C), in Kontakt gebracht um gute Polymerisationsaktivität entfalten zu können. Weiterhin enthält das Katalysatorsystem daher optional als Komponente C) eine oder mehrere aktivierende Verbindungen, bevorzugt mindestens eine kationenbildende Verbindung C).
  • Geeignete Verbindungen C), die in der Lage sind, durch Reaktion mit dem Monocyclopentadienylkomplex A) diesen in eine katalytisch aktive, bzw. aktivere Verbindung zu überführen, sind z.B. Verbindungen vom Typ eines Aluminoxans, einer starken neutralen Lewis-Säure, einer ionischen Verbindung mit lewissaurem Kation oder einer ionischen Verbindung mit Brönsted-Säure als Kation.
  • Als Aluminoxane können beispielsweise die in der WO 00/31090, beschriebenen Verbindungen eingesetzt werden. Besonders geeignet sind offenkettige oder cyclische Aluminoxanverbindungen der allgemeinen Formeln (X) oder (XI)
    Figure 00250001
    wobei R1D-R4D unabhängig voneinander eine C1-C6-Alkylgruppe bedeutet, bevorzugt eine Methyl-, Ethyl-, Butyl- oder Isobutylgruppe und 1 für eine ganze Zahl von 1 bis 30, bevorzugt 5 bis 25 steht.
  • Eine insbesondere geeignete Aluminoxanverbindung ist Methylaluminoxan.
  • Die Herstellung dieser oligomeren Aluminoxanverbindungen erfolgt üblicherweise durch kontrollierte Umsetzung einer Lösung von Trialkylaluminium mit Wasser. In der Regel liegen die dabei erhaltenen oligomeren Aluminoxanverbindungen als Gemische unterschiedlich langer, sowohl linearer als auch cyclischer Kettenmoleküle vor, so daß 1 als Mittelwert anzusehen ist. Die Aluminoxanverbindungen können auch im Gemisch mit anderen Metallalkylen, üblicherweise mit Aluminiumalkylen vorliegen. Als Komponente C) geeignete Aluminoxan-Zubereitungen sind kommerziell erhältlich.
  • Weiterhin können als Komponente C) anstelle der Aluminoxanverbindungen der allgemeinen Formeln (F X) oder (F XI) auch modifizierte Aluminoxane eingesetzt werden, bei denen teilweise die Kohlenwasserstoffreste oder durch Wasserstoffatome, Alkoxy-, Aryloxy-, Siloxy-, oder Amidreste ersetzt sind.
  • Es hat sich als vorteilhaft erwiesen, die Monocyclopentadienylkomplexe A) und die Aluminoxanverbindungen in solchen Mengen zu verwenden, daß das atomare Verhältnis zwischen Aluminium aus den Aluminoxanverbindungen einschliesslich noch enthaltenem Aluminiumalkyl, und dem Übergangsmetall aus dem Monocyclopentadienylkomplex A) im Bereich von 1:1 bis 1000:1, bevorzugt von 10:1 bis 500:1 und insbesondere im Bereich von 20:1 bis 400:1, liegt.
  • Eine weitere Art von geeignete aktivierender Komponente C) sind die sogenannten Hydroxyaluminoxane. Diese können beispielsweise durch Zugabe von 0,5 bis 1,2 Äquivalenten Wasser, bevorzugt 0,8 bis 1,2 Äquivalenten Wasser pro Äquivalent Aluminium einer Alkylaluminiumverbindung, insbesondere Triisobutylaluminium, bei niedrigen Temperaturen, üblicherweise unter 0°C hergestellt werden. Derartige Verbindungen und ihre Verwendung in der Olefinpolymerisation sind beispielsweise in der WO 00/24787 beschrieben. Das atomare Verhältnis zwischen Aluminium aus der Hydroxyaluminoxan-Verbindung und dem Übergangsmetall aus dem Monocyclopentadienylkomplex A) liegt üblicherweise im Bereich von 1:1 bis 100:1, bevorzugt von 10:1 bis 50:1 und insbesondere im Bereich von 20:1 bis 40:1. Bevorzugt wird eine Monocyclopentadienylmetall Dialkylverbindung A) eingesetzt.
  • Als starke, neutrale Lewissäuren sind Verbindungen der allgemeinen Formel (XII) M2DX1DX2DX3D (XII) bevorzugt, in der
    M2D ein Element der 13. Gruppe des Periodensystems der Elemente bedeutet, insbesondere B, Al oder Ga, vorzugsweise B,
    X1D, X2D und X3D für Wasserstoff, C1-C10-Alkyl, C6-C15-Aryl, Alkylaryl, Arylalkyl, Halogenalkyl oder Halogenaryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atome im Arylrest oder Fluor, Chlor, Brom oder Jod stehen, insbesondere für Halogenaryle, vorzugsweise für Pentafluorphenyl.
  • Weitere Beispiele für starke, neutrale Lewissäuren sind in der WO 00/31090 genannt.
  • Insbesondere sind als Komponente C) Borane und Boroxine geeignet, wie z. B. Trialkylboran, Triarylboran oder Trimethylboroxin. Besonders bevorzugt werden Borane eingesetzt, welche min destens zwei perfluorierte Arylreste tragen. Besonders bevorzugt sind Verbindungen der allgemeinen Formel (XII), in der X1D, X2D und X3D gleich sind, vorzugsweise Tris(pentafluorphenyl)boran.
  • Geeignete Verbindungen C) werden bevorzugt aus der Reaktion von Aluminium oder Borverbindungen der Formel (XII) mit Wasser, Alkoholen, Phenolderivaten, Thiophenolderivaten oder Anilinderivaten dargestellt, wobei besonders die halogenierten und insbesondere die perfluorierten Alkohole und Phenole von Bedeutung sind. Beispiele für besonders geeignete Verbindungen sind Pentafluorphenol, 1,1-Bis-(pentafuorphenyl)-methanol oder4-Hydroxy-2,2',3,3',4,4',5,5',6,6'nonafluorbiphenyl. Beispiele für die Kombination von Verbindungen der Formel (XII) mit Broenstedtsäuren sind insbesondere Trimethylaluminium/Pentafluorphenol, Trimethylaluminium/1-Bis(pentafluorphenyl)-methanol, Trimethylaluminium/4-Hydroxy-2,2',3,3',4,4',5,5',6,6'-nonafluorbiphenyl, Triethylaluminium/Pentafluorphenol oder Triisobutylaluminium/Pentafluorphenol oder Triethylaluminium/4,4'-Dihydroxy-2,2',3,3',5,5',6,6'-octafluorbiphenyl Hydrat.
  • In weiteren geeigneten Aluminium und Bor-Verbindungen der Formel XII) ist R1D eine OH Gruppe, wie beispielsweise in Boronsäuren und Borinsäuren, wobei insbesondere Borinsäuren mit perfluorierten Arylresten, wie beispielsweise (C6F5)2BOH, zu nennen sind.
  • Starke neutrale Lewissäuren, die sich als aktivierende Verbindungen C) eignen, sind auch die Reaktionsprodukte aus der Umsetzung einer Boronsäure mit zwei Äquivalenten eines Aluminiumtrialkyls oder die Reaktionsprodukte aus der Umsetzung eines Aluminiumtrialkyls mit zwei Äquivalenten einer aciden fluorierten, insbesondere perfluorierten Kohlenstoffverbindung wie Pentafluorphenol oder Bis-(pentafluorphenyl)-borinsäure.
  • Als ionische Verbindungen mit lewissauren Kationen sind salzartige Verbindungen des Kations der allgemeinen Formel (XIII) (((M3D)a+)Q1Q2...Qz]d+ (XIII) geeignet, in denen
    M3D ein Element der 1. bis 16. Gruppe des Periodensystems der Elemente bedeutet,
    Q1 bis Qz für einfach negativ geladene Reste wie C1-C28-Alkyl, C6-C15-Aryl, Alkylaryl, Arylalkyl, Nalogenalkyl, Halogenaryl mit jeweils 6 bis 20 C-Atomen im Aryl- und 1 bis 28 C-Atome im Alkylrest, C3-C10-Cycloalkyl, welches gegebenenfalls mit C1-C10-Alkylgruppen substituiert sein kann, Halogen, C1-C28-Alkoxy, C6-C15-Aryloxy, Silyl- oder Mercaptylgruppen
    a für ganze Zahlen von 1 bis 6 und
    z für ganze Zahlen von 0 bis 5 steht,
    d der Differenz a – z entspricht, wobei d jedoch größer oder gleich 1 ist.
  • Besonders geeignet sind Carboniumkationen, Oxoniumkationen und Sulfoniumkationen sowie kationische Übergangsmetallkomplexe. Insbesondere sind das Triphenylmethylkation, das Silberkation und das 1,1'-Dimethylferrocenylkation zu nennen. Bevorzugt besitzen sie nichtkoordinierende Gegenionen, insbesondere Borverbindungen wie sie auch in der WO 91/09882 genannt werden, bevorzugt Tetrakis(pentafluorophenyl)borat.
  • Salze mit nicht koordinierenden Anionen können auch durch Zusammengabe einer Bor- oder Aluminiumverbindung, z.B. einem Aluminiumalkyl, mit einer zweiten Verbindung, die durch Reaktion zwei oder mehrere Bor- oder Aluminiumatome verknüpfen kann, z.B. Wasser, und einer dritten Verbindung, die mit der Bor- oder Aluminiumverbindung eine ionisierende ionische Verbindung bildet, z.B. Triphenylchlormethan, oder optional einer Base, bevorzugt einer organischen stickstoffhaltigen Base, wie zum Beispiel einem Amin, einem Anilinderivat oder einem Stickstoffheterocyclus hergestellt werden. Zusätzlich kann eine vierte Verbindung, die ebenfalls mit der Bor- oder Aluminiumverbindung reagiert, z.B. Pentafluorphenol, hinzugefügt werden.
  • Ionische Verbindungen mit Brönsted-Säuren als Kationen haben vorzugsweise ebenfalls nichtkoordinierende Gegenionen. Als Brönstedsäure werden insbesondere protonierte Amin- oder Anilinderivate bevorzugt. Bevorzugte Kationen sind N,N-Dimethylanilinium, N,N-Dimethylcylohexylammonium und N,N-Dimethylbenzylammonium sowie Derivate der beiden letztgenannten.
  • Auch Verbindungen mit anionischen Borheterocyclen, wie sie in der WO 9736937 beschrieben sind eignen sich als Komponente C), insbesondere Dimethylaniliniumboratabenzole oder Tritylboratabenzole.
  • Bevorzugte ionische Verbindungen C) enthalten Borate, welche mindestens zwei perfluorierte Arylreste tragen. Besonders bevorzugt sind N,N-Dimethylaniliniumtetrakis-(pentafluorophenyl)borat und insbesondere N,N-Dimethyl-cyclohexylammoniumtetrakis(pentafluorophenyl)borat, N,N-Dimethylbenzylammoniumtetrakis(pentafluorophenyl)borat oder Trityltetrakispentafluorophenylborat.
  • Es können auch zwei oder mehrere Boratanionen miteinander verbunden sein, wie in dem Dianion [(C6F5)2B-C6F4-B(C6F5)2]2–, oder das Boratanion kann über eine Brücke mit einer geeigneten funktionellen Gruppe auf der Trägeroberfläche gebunden sein.
  • Weitere geeignete aktivierende Verbindungen C) sind in der WO 00/31090 aufgelistet.
  • Die Menge an starken neutralen Lewissäuren, ionischen Verbindungen mit lewissauren Kationen oder ionischen Verbindungen mit Brönsted-Säuren als Kationen beträgt bevorzugt 0,1 bis 20 Äquivalente, bevorzugt 1 bis 10 Äquivalente, bezogen auf den Monocyclopentadienylkomplex A).
  • Geeignete aktivierende Verbindungen C) sind auch Bor-Aluminium-Verbindungen wie Di[bis(pentafluorphenylboroxy)]methylalan. Entsprechende Bor-Aluminium-Verbindungen sind beispielsweise die in der WO 99/06414 offenbart.
  • Es können auch Gemische aller zuvor genannten aktivierenden Verbindungen C) eingesetzt werden. Bevorzugte Mischungen enthalten Aluminoxane, insbesondere Methylaluminoxan, und eine ionische Verbindung, insbesondere eine, die das Tetrakis(pentafluorphenyl)borat-Anion enthält, und/oder eine starke neutrale Lewissäuie, insbesondere Tris(pentafluorphenyl)boran.
  • Vorzugsweise werden sowohl die Monocyclopentadienylkomplexe A) als auch die aktivierende Verbindungen C) in einem Lösungsmittel eingesetzt, wobei aromatische Kohlenwasserstoffe mit 6 bis 20 C-Atomen, insbesondere Xylole, Toluol, Pentan, Hexan, Heptan oder Mischungen von diesen bevorzugt sind.
  • Des weiteren besteht die Möglichkeit eine aktivierende Verbindung C) einzusetzen, welche gleichzeitig als Träger B) verwendet werden kann. Derartige Systeme werden beispielsweise aus einem mit Zirkoniumalkoxid behandelten anorganischem Oxid und anschliessender Chlorierung beispielsweise mit Tetrachlorkohlenstoff erhalten. Die Darstellung derartiger Systeme ist beispielsweise in der WO 01/41920 beschrieben.
  • Ein ebenfalls breites Produktspektrum kann durch Verwendung der erfindungsgemäßen Monocyclopentadienylkomplexe A) in Kombination mit mindestens einem weiteren für die Polymerisation von Olefinen geeigneten Katalysator D) erreicht werden. Daher kann als optionale Komponente D) ein oder mehrere zur Olefinpolymerisation geeignete Katalysatoren im Katalysatorsystem verwendet werden. Als Katalysatoren D) kommen hierbei besonders klassische Ziegler Natta Katalysatoren auf der Basis von Titan und klassische Phillips Katalysatoren auf der Basis von Chromoxiden in Betracht.
  • Als Komponente D) kommen prinzipiell alle organische Gruppen enthaltenden Verbindungen der Übergangsmetalle der 3. bis 12. Gruppe des Periodensystems oder der Lanthaniden in Betracht, die bevorzugt nach Reaktion mit den Komponenten C), in Anwesenheit von A) und optional B) und/oder E) für die Olefinpolymerisation aktive Katalysatoren bilden. Üblicherweise handelt es sich hierbei um Verbindungen, bei denen mindestens ein ein- oder mehrzähniger Ligand über Sigma- oder Pi-Bindung an das Zentralatom gebunden ist. Als Liganden kommen sowohl solche in Betracht, die Cyclopentadienylreste enthalten, als auch solche, die frei von Cyclopentadienylresten sind. In Chem. Rev. 2000, Vol. 100, Nr. 4 wird eine Vielzahl solcher für die Olefinpolymerisation geeigneter Verbindungen B) beschrieben. Weiterhin sind auch mehrkernige Cyclopentadienylkomplexe für die Olefinpolymerisation geeignet.
  • Besonders gut geeignete Komponenten D) sind auch solche mit mindestens einem Cyclopentadienyl-Liganden, die gemeinhin als Metallocenkomplexe bezeichnet werden. Hierbei eignen sich besonders Metallocenkomplexe der allgemeinen Formel (XIV)
    Figure 00300001
    in der die Substituenten und Indizes folgende Bedeutung haben:
    M1E Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän oder Wolfram, sowie Elemente der 3. Gruppe des Periodensystems und der Lanthaniden,
    XE Fluor, Chlor, Brom, Jod, Wasserstoff, C1-C10-Alkyl, C2-C10-Alkenyl, C6-C15-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, -OR6E oder -NR6ER7E, oder zwei Reste XE für einen substituierten oder unsubstituierten Dienliganden, insbesondere einen 1,3-Dienliganden, stehen, und die Reste XE gleich oder verschieden sind und gegebenenfalls miteinander verbunden sind,
    E1E-E5E Kohlenstoff oder maximal ein E1E bis E5E Phosphor oder Stickstoff, bevorzugt Kohlenstoff
    t 1, 2 oder 3 ist, wobei t entsprechend der Wertigkeit von M1E den Wert aufweist, bei dem der Metallocenkomplex der allgemeinen Formel (F XIV) ungeladen vorliegt,
    wobei R6E und R7E C1-C10-Alkyl, C6-C15-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest bedeuten und
    R1E bis R5E unabhängig voneinander Wasserstoff, C1-C22-Alkyl, 5- bis 7-gliedriges Cycloalkyl oder Cycloalkenyl, die ihrerseits durch C1-C10-Alkyl substituiert sein können, C2-C22-Alkenyl, C6-C22-Aryl, Arylalkyl mit 1 bis 16 C-Atomen im Alkylrest und 6-21 C-Atomen im Arylrest, NR8E 2, N(SiR8E 3)2, OR8E, OSiR8E 3, SiR8E 3, wobei die organischen Reste R1E-R5E auch durch Halogene substituiert sein können und/oder je zwei Reste R1E-R5E, insbesondere vicinale Reste, auch zu einem fünf-, sechs- oder siebengliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R1E-R5E zu einem fünf-, sechs- oder siebengliedrigen Heterocyclus verbunden sein können, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält, mit
    R8E gleich oder verschieden C1-C10-Alkyl, C3-C10-Cycloalkyl, C6-C15-Aryl, C1-C4-Alkoxy oder C6-C10-Aryloxy sein kann und Z1E für XE oder
    Figure 00310001

    steht,
    wobei die Reste
    R9E bis R13E unabhängig voneinander Wasserstoff, C1-C22-Alkyl, 5- bis 7-gliedriges Cycloalkyl oder Cycloalkenyl, die ihrererseits durch C1-C10-Alkyl substituiert sein können, C2-C22-Alkenyl, C6-C22-Aryl, Arylalkyl mit 1 bis 16 C-Atomen im Alkylrest und 6-21 C-Atomen im Arylrest, NR14E 2, N(SiR14E 3)2, OR14E, OSiR14E 3, SiR14E 3, wobei die organischen Reste R9E-R13E auch durch Halogene substituiert sein können und/oder je zwei Reste R9E-R13E insbesondere vicinale Reste, auch zu einem fünf-, sechs- oder siebengliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R9E-R13E zu einem fünf-, sechsoder siebengliedrigen Heterocyclus verbunden sein können, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält, mit
    R14E gleich oder verschieden C1-C10-Alkyl, C3-C10-Cycloalkyl, C6-C15-Aryl, C1-C4-Alkoxy oder C6-C10-Aryloxy bedeuten,
    E6E-E10E Kohlenstoff oder maximal ein E6E bis E10E Phosphor oder Stickstoff, bevorzugt Kohlenstoff oder wobei die Reste R4E und Z1E gemeinsam eine Gruppierung -R15E v-A1E- bilden, in der
  • Figure 00320001
  • =BR16E =BNR16ER17E, =AlR16E -Ge-, -Sn-, -O-, -S-, = SO, =SO2, = R16E, =CO, =PR16E oder =P(O)R16E ist, wobei
    R16E, R17E und R16E gleich oder verschieden sind und jeweils ein Wasserstoffatom, ein Halogenatom, eine Trimethylsilylgruppe, eine C1-C10-Alkylgruppe, eine C1-C10-Fluoralkylgruppe, eine C6-C10-Fluorarylgruppe, eine C6-C10-Arylgruppe, eine C1-C10-Alkoxygruppe, eine C7-C15-Alkylaryloxygruppe, eine C2-C10-Alkenylgruppe, eine C7-C40-Arylalkylgruppe, eine C8-C40-Arylalkenylgruppe oder eine C7-C40-Alkylarylgruppe bedeuten oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 4 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, und
    M2E Silicium, Germanium oder Zinn ist, bevorzugt Silicium
    Figure 00330001
    -NR19E 2, –PR19E 2 oder ein unsubstituiertes, substituiertes oder kondensiertes, heterocyclisches Ringsystem bedeuten, mit
    R19E unabhängig voneinander C1-C10-Alkyl, C6-C15-Aryl, C3-C10-Cycloalkyl, C7-C18-Alkylaryl oder Si(R20E)3,
    R20E Wasserstoff, C1-C10-Alkyl, C6-C15-Aryl, das seinerseits mit C1-C4-Alkylgruppen substituiert sein kann oder C3-C10-Cycloalkyl,
    v 1 oder im Fall von A1E gleich ein unsubstituiertes, substituiertes oder kondensiertes, heterocyclisches Ringsystem auch 0 oder wobei die Reste R4E und R12E gemeinsam eine Gruppierung -R15E- bilden.
  • A1E kann z.B. zusammen mit der Brücke R15E ein Amin, Ether, Thioether oder Phosphin bilden. A1E kann aber auch ein unsubstituiertes, substituiertes oder kondensiertes, heterocyclisches aromatisches Ringsystem darstellen, welches neben Kohlenstoffringgliedern Heteroatome aus der Gruppe Sauerstoff, Schwefel, Stickstoff und Phosphor enthalten kann: Beispiele für 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, sind 2-Furyl, 2-Thienyl, 2-Pyrrolyl, 3-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 5-Isothiazolyl, 1-Pyrazolyl, 3-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl; 4-Imidazolyl, 5-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,3,4-Oxadiazol-2-yl oder 1,2,4-Triazol-3-yl. Beispiele für 6-gliedrige Heteroarylgruppen, welche ein bis vier Stickstoffatome und/oder ein Phosphoratom enthalten können, sind 2-Pyridinyl, 2-Phosphabenzolyl 3-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl oder 1,2,4-Triazin-6-yl. Die 5-Ring und 6-Ring Heteroarylgruppen können hierbei auch durch C1-C10-Alkyl, C6-C10-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-10 C-Atomen im Arylrest, Trialkylsilyl oder Halogenen, wie Fluor, Chlor oder Brom substituiert oder mit ein oder mehreren Aromaten oder Heteroaromaten kondensiert sein. Beispiele für benzokondensierte 5-gliedrige Heteroarylgruppen sind 2-Indolyl, 7-Indolyl, 2-Cumaronyl, 7-Cumaronyl, 2-Thionaphthenyl, 7-Thionaphthenyl, 3-Indazolyl, 7-Indazolyl, 2-Benzimidazolyl oder 7-Benzimidazolyl. Beispiele für . benzokondensierte 6-gliedrige Heteroarylgruppen sind 2-Chinolyl, 8-Chinolyl, 3-Cinnolyl, 8-Cinnolyl, 1-Phthalazyl, 2-Chinazolyl, 4-Chinazolyl, 8-Chinazolyl, 5-Chinoxalyl, 4-Acridyl, 1-Phenanthridyl oder 1-Phenazyl. Bezeichnung und Nummerierung der Heterocyclen wurde aus L.Fieser und M. Fieser, Lehrbuch der organischen Chemie, 3. neubearbeitete Auflage, Verlag Chemie, Weinheim 1957 entnommen.
  • Bevorzugt sind die Reste XE in der allgemeinen Formel (XIV) gleich, bevorzugt Fluor, Chlor, Brom, C1 bis C7-Alkyl, oder Aralkyl, insbesondere Chlor, Methyl oder Benzyl.
  • Die Synthese derartiger Komplexverbindungen kann nach an sich bekannten Methoden erfolgen, wobei die Umsetzung der entsprechend substituierten, cyclischen Kohlenwasserstoffanionen mit Halogeniden von Titan, Zirkonium, Hafnium oder Chrom, bevorzugt ist.
  • Von den Metallocenkomplexen der allgemeinen Formel (XIV) sind
    Figure 00340001
    Figure 00350001
    bevorzugt.
  • Von den Verbindungen der Formel (XIVa) sind insbesondere diejenigen bevorzugt; in denen
    M1E Titan, Vanadium oder Chrom
    XE Chlor, C1-C4-Alkyl, Phenyl, Alkoxy oder Aryloxy t die Zahl 1 oder 2 und
    R1E bis R5E Wasserstoff, C1-C6-Alkyl oder zwei benachbarte R1E bis R5E eine substituierte oder unsubstituierte Benzogruppe bedeuten.
  • Von den Verbindungen der Formel (XIVb) sind als bevorzugt diejenigen zu nennen, bei denen
    M1E für Titan, Zirkon, Vanadium, Hafnium oder Chrom steht,
    XE Fluor, Chlor, C1-C4-Alkyl oder Benzyl bedeuten, oder zwei Reste XE für einen substituierten oder unsubstituierten Butadienligamden stehen,
    t 0 für Chrom, ansonsten 1 oder 2, bevorzugt 2
    R1E bis R6E Wasserstoff, C1-C8-Alkyl, C6-C8-Aryl, NR8E 2, OSiR8E 3 oder Si(R8E)3 und
    R9E bis R13E Wasserstoff, C1-C8-Alkyl oder C6-C8-Aryl , NR14E 2, OSiR14E 3 oder Si(R14)3 oder jeweils zwei Reste R1 bis R5 und/oder R9 bis R13 zusammen mit dem C5-Ring ein Indenyl – oder substituiertes Indenyl-System bedeuten.
  • Insbesondere sind die Verbindungen der Formel (XIVb) geeignet, in denen die Cyclopentadienylreste gleich sind.
  • Beispiele für besonders geeignete Verbindungen D) der Formel (XIVb) sind u.a.: Bis(cyclopentadienyl)zirkoniumdichlorid, Bis(pentamethylcyclopentadienyl)zirkoniumdichlorid, Bis(methylcyclopentadienyl)zirkoniumdichlorid, Bis(ethylcyclopentadienyl)zirkoniumdichlorid, Bis(n-butylcyclopentadienyl)zirkoniumdichlorid, Bis(1-n-butyl-3-methylcyclopentadienyl)zirkoniumdichlorid, Bis(indenyl)zirkoniumdichlorid, Bis(tetrahydroindenyl)zirkoniumdichlorid und Bis(trimethylsilylcyclopentadienyl)zirkoniumdichlorid sowie die entsprechenden Dimethylzirkoniumverbindungen.
  • Von den Verbindungen der Formel (XIVc) sind diejenigen besonders geeignet, in denen
    Figure 00360001
    oder = BR16E oder = BNR16ER17E bedeuten,
    M1E für Titan, Zirkon oder Hafnium, insbesondere Zirkon und
    XE gleich oder verschieden für Chlor, C1-C4-Alkyl, Benzyl, Phenyl oder C7-C15-Alkylaryloxy stehen.
  • Insbesondere geeignete Verbindungen der Formel (XVIc) sind solche der Formel (XVIc')
    Figure 00360002
    in der die Reste R' gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl oder C3-C10-Cycloalkyl, bevorzugt Methyl, Ethyl, Isopropyl oder Cyclohexyl, C6-C20-Aryl, bevorzugt Phenyl, Naphthyl oder Mesityl, C7-C40-Arylalkyl, C7-C40-Alkylaryl, bevorzugt 4-tert.-Butylphenyl oder 3,5-Di-tert.butylphenyl, oder C8-C40-Arylalkenyl bedeuten,
    R5E und R13E gleich oder verschieden sind und für Wasserstoff, C1-C6-Alkyl, bevorzugt Methyl, Ethyl, Isopropyl, n-Propyl, n-Butyl, n-Hexyl oder tert.-Butyl, stehen, und die Ringe S und T gleich oder verschieden, gesättigt, ungesättigt oder teilweise gesättigt sind.
  • Die Indenyl- bzw. Tetrahydroindenylliganden der Metallocene der Formel (XIVc') sind bevorzugt in 2- , 2,4- , 4,7- , 2,4,7- , 2,6- , 2,4,6- , 2,5,6- , 2,4,5,6- oder 2,4,5,6,7-Stellung, insbesondere in 2,4-Stellung substituiert, wobei für den Substitutionsort die folgende Nomenklatur gilt:
    Figure 00370001
    Als Komponente D) werden ausserdem bevorzugt verbrückte Bis-Indenyl-Komplexe in der Racoder Pseudo-Rac-Form eingesetzt, wobei es sich bei der pseudo-Rac-Form um solche Komplexe handelt, bei denen die beiden Indenyl-Liganden ohne Berücksichtigung aller anderen Substituenten des Komplexes relativ zueinander in der Rac-Anordnung stehen.
  • Weitere Beispiele für besonders geeignete Katalysatoren D) (XIVc) und (XIVc') sind u.a. Dimethylsilandiylbis(cyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(tetrahydroindenyl)zirkoniumdichlorid, Ethylenbis(cyclopentadienyl)zirkoniumdichlorid, Ethylenbis(indenyl)zirkoniumdichlorid, Ethylenbis(tetrahydroindenyl)zirkoniumdichlorid, Tetramethylethylen-9-fluorenylcyclopentadienylzirkoniumdichlorid, Dimethylsilandiylbis(3-tert.butyl-5-methylcyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(3-tert.butyl-5-ethylcyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methylindenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-isopropylindenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-tert.butylindenyl)zirkoniumdichlorid, Diethylsilandiylbis(2-methylindenyl)zirkoniumdibromid, Dimethylsilandiylbis(3-methyl-5-methylcyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(3-ethyl-5-isppropylcyclopentadienyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-ethylindenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4,5-benzindenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-ethyl-4,5-benzindenyl)zirkoniumdichlorid, Methylphenylsilandiylbis(2-methyl-4,5-benzindenyl)zirkoniumdichlorid, Methylphenylsilandiylbis(2-ethyl-4,5-benzindenyl)zirkoniumdichlorid, Diphenylsilandiylbis(2-methyl-4,5-benzindenyl)zirkoniumdichlorid, Diphenylsilandiylbis(2-ethyl-4,5-benzindenyl)zirkoniumdichlorid, Diphenylsilandiylbis(2-methylindenyl)hafniumdichlorid; Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-ethyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-propyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-i-butyl-4-(1-naphthyl)-indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-propyl-4-(9-phenanthryl)-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl--isopropylindenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2,7-dimethyl-4-isopropylindenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4,6-düsopropylindenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4[p-trifluormethylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4-[3',5'-dimethylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4-[4'-tert.butylphenyl]indenyl)-zirkonium dichlorid, Diethylsilandiylbis(2-methyl-4-[4'-tert.butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-ethyl-4-[4'-tert.butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-propyl-4-[4'-tert.butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-isopropyl-4-[4'tert.butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-n-butyl-4-[4'-tert.butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiylbis(2-hexyl-4-[4'-tert.butylphenyl]indenyl)-zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-phenyl-indenyl)-(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-(1-naphthyl)-indenyl)-(2-methyl-4-(1-naphthyl)indenyl)zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-(4'-tert.butylphenyl]indenyl)-(2-methyl-4-[4'-tert.butylphenyl]indenyl)zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-[4'-tert.butylphenyl]indenyl)-(2-ethyl-4-[4'-tert.butylphenyl]indenyl)zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-[4'-tert.butylphenyl]indenyl)-(2-methyl-4-[3',5'-bis-tert.butylphenyl]indenyl)zirkoniumdichlorid, Dimethylsilandiyl(2-isopropyl-4-[4'-tert.butylphenyljindenyl)-(2-methyl-4-[1'naphthyl]indenyl)zirkoniumdichlorid und Ethylen(2-isopropyl-4-[4'-tert.butylphenyl]indenyl)-(2-methyl-4-[4'-tert.butylphenyl]indenyl)zirkoniumdichlorid, sowie die entsprechenden Dimethyl-, Monochloromono(alkylaryloxy)- und Di-(alkylaryloxy)-zirkoniumverbindungen. Die Komplexe werden bevorzugt in der rac-Form eingesetzt.
  • Die Synthese derartiger Komplexverbindungen kann nach an sich bekannten Methoden erfolgen, wobei die Umsetzung der entsprechend substituierten, cyclischen Kohlenwasserstoffanionen mit Halogeniden von Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal oder Chrom, bevorzugt ist. Beispiele für entsprechende Herstellungsverfahren sind u.a. im Journal of Organometallic. Chemistry, 369 (1989), 359-370 beschrieben.
  • Bei den Verbindungen der allgemeinen Formel (XIVd) sind als besonders geeignet diejenigen zu nennen, in denen
    M1E für Titan oder Zirkonium, insbesondere Titan, und
    XE für Chlor, C1-C4-Alkyl oder Phenyl stehen oder zwei Reste X für einen substituierten oder unsubstituierten Butadienliganden stehen.
    Figure 00380001
    und,
    oder = BR16E oder = BNR16ER17E bedeuten,
    Figure 00380002
    steht,
    t für 1 oder 2, bevorzugt 2 steht,
    R1E bis R3E und R5E für Wasserstoff, C1-C10-Alkyl, bevorzugt Methyl, C3-C10-Cycloalkyl, C6-C15-Aryl NR8E 2 oder Si(R8)3 stehen, oder wobei zwei benachbarte Reste für 4 bis 12 C-Atome aufweisende cyclische Gruppen stehen, wobei besonders bevorzugt alle R1 bis R3 und R5 Methyl sind.
  • Besonders geeignete Komplexe D) der Formel (XIVd) sind hierbei Dimethylsilandiyl(tetramethylcyclopentadienyl)(benzyl-amino)titandichlorid, Dimethylsilandiyl(tetramethylcyclopentadienyl)(tert.butyl-amino)titandichlorid, Dimethylsilandiyl-(tetramethylcyelopentadienyl)(adamantyl)titandichlorid oder Dimethylsilandiyl(indenyl)(tert.butylamino)titandichlorid.
  • Eine andere Gruppe von Verbindungen der Formel (XIVd), die besonders geeignet sind, die diejenigen in den
    M1E für Titan, Vanadium oder Chrom, bevorzugt in der Oxidationsstufe III und
    XE für Chlor, C1-C4-Alkyl oder Phenyl stehen oder zwei Reste XE für einen substituierten oder unsubstituierten Butadienliganden stehen,
    Figure 00390001
    und
    Figure 00390002
    oder = BR16E oder = BNR16ER17E
    bedeuten,
    A1E für –O–R19E 2,-PR19E 2 oder ein unsubstituiertes, substituiertes oder kondensiertes, heterocyclisches, insbesondere heteroaromatisches Ringsystem steht,
    v 1 oder im Fall von A1E gleich ein unsubstituiertes, substituiertes oder kondensiertes, heterocyclisches Ringsystem 0 oder 1,
    R1E bis R3E und R5E für Wasserstoff, C1-C10-Alkyl, C1-C10-Cycloalkyl, C6-C15-Aryl oder Si(R8E)3 stehen, oder wobei zwei benachbarte Reste für 4 bis 12 C-Atome aufweisende cyclische Gruppen stehen.
  • In einer bevorzugten Ausführungsform ist A1E hierin ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem und M1E Chrom. Ganz besonders bevorzugt ist A1E ein unsubstituiertes oder substituiertes, z.B. alkylsubstituiertes, insbesondere in Position 8 oder 2 verknüpftes substituiertes oder unsubstituiertes Chinolyl oder Pyridyl und v gleich 0, z.B. 8-Chinolyl, 8-(2-Methylchinolyl), 8-(2,3,4-Trimethylchinolyl), 8-(2,3,4,5,6,7-Hexamethylchinolyl, v gleich 0 und M1E gleich Chrom. Bevorzugte Katalysatoren D) dieser Art sind 1-(8-Chinolyl)-2-methyl-4-methylcyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-3-isopropyl-5-methylcyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-3-tert.butyl-5-methylcyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)-2,3,4,5-tetramethylcyclopentadienylchrom(III)dichlorid, 1-(8-Chinolyl)tetrahydroindenylchrom(III)dichlorid, 1-(8-Chinolyl)indenylchrom(III)dichlorid, 1-(8-Chinolyl)-2-methylindenylchrom(III)dichlorid, 1-(8-Chinolyl)-2-isopropylindenylchrom(III)dichlorid, 1-(8-Chinolyl)-2-ethylindenylchrom(III)dichlorid, 1-(8-Chinolyl)-2-tert.butylindenylchrom(III)dichlorid, 1-(8-Chinolyl)benzindenylchrom(III)dichlorid, 1-(8-Chinolyl)-2-methylbenzindenylchrom(III)dichlorid, 1-(8-(2-Methylchino lyl))-2-methyl-4-methylcyclopentadienylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2,3,4,5-tetramethylcyclopentadienylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))tetrahydroindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))indenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2-methylindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2-isopropylindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2-ethylindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-2-tert.butylindenylchrom(III)dichlorid, 1-(8-(2-Methylchinolyl))-benzindenylchrom(III)dichlorid oder 1-(8-(2-Methylchinolyl))-2-methylbenzindenylchrom(III)dichlorid.
  • Weiterhin bevorzugt wegen der einfachen Darstellbarkeit ist die Kombination von R15E gleich CH=CH oder 1,2-Phenylen mit A1E gleich NR19E 2, als auch R15E gleich CH2, C(CH3)2 oder Si(CH3)2 und A1E gleich unsubstituiertes oder substituiertes 8-Chinolyl oder unsubstituiertes oder substituiertes 2-Pyridyl.
  • Die Herstellung derartiger funktioneller Cyclopentadienyl-Liganden ist seit langer Zeit bekannt: Verschiedene Synthesewege für diese Komplexliganden werden z.B. von M. Enders et. al. in Chem. Ber. (1996), 129, 459-463 oder P. Jutzi und U. Siemeling in J.Orgmet. Chem. (1995), 500, 175-185 beschrieben. Die Metallkomplexe, insbesondere die Chromkomplexe, lassen sich auf einfache Weise erhalten, wenn man die entsprechenden Metallsalze wie z.B. Metallchloride mit dem Ligandanion umsetzt (z.B. analog zu den Beispielen in DE-A-19710615).
  • Weitere geeignete Katalysatoren D) sind Metallocene, mit mindestens einem Liganden, der aus einem Cyclopentadienyl oder Heterocyclopentadienyl mit einem ankondensierten Heterocyclus gebildet wird, wobei die Heterocyclen bevorzugt aromatisch sind und Stickstoff und/oder Schwefel enthalten. Derartige Verbindungen sind beispielsweise in der WO 98/22486 beschrieben. Dies sind insbesondere Dimethylsilandiyl-(2-methyl-4-phenyl-indenyl)-(2,5-dimethyl-N-phenyl-4-azapentalen)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4-phenyl-4-hydroazulenyl)zirkoniumdichlorid oder Dimethylsilandiylbis(2-ethyl-4-phenyl-4-hydroazulenyl)zirkonium-dichlorid.
  • Des weiteren sind Systeme als Katalysatoren D) geeignet, worin eine Metallocenverbindung beispielsweise mit einem anorganischem Oxid, welches mit Zirkoniumalkoxid behandelt wurde und anschliessend chloriert, beispielsweise mit Tetrachlorkohlenstoff, kombiniert wird. Die Darstellung derartiger Systeme ist beispielsweise in der WO 01/41920 beschrieben.
  • Geeignete Katalysatoren D) sind außerdem Imidochromverbindungen, worin Chrom als strukturelles Merkmal mindestens eine Imidogruppe trägt. Diese Verbindungen und deren Herstellung sind z.B. in der WO 01/09148 beschrieben.
  • Weitere geeignete Komponenten D) sind Übergangsmetallkomplexe mit einem dreizähnigen macrocyclischen Liganden, insbesondere substituierten und unsubstituierten 1,3,5-Triazacyclohexanen und 1,4,7-Triazacyclononanen. Bei dieser Art von Katalysatoren sind ebenfalls die Chromkomplexe bevorzugt. Bevorzugte Katalysatoren dieser Art sind (1,3,5-Tri(methyl)-1,3,5-Triazacyclohexan]chromtrichlorid, [1,3,5-Tri(ethyl)-1,3,5-Triazacyclohexan]chromtrichlorid, [1,3,5-Tri(octyl)-1,3,5-Triazacyclohexan]chromtrichlorid, (1,3,5-Tri(dodecyl)-1,3,5-Triazacyclohexan]chromtrichlorid und [1,3,5-Tri(benzyl)-1,3,5-Triazacyclohexan]chromtrichlorid.
  • Geeignete Katalysatoren D) sind weiterhin zum Beispiel Übergangsmetallkomplexe mit mindestens einem Liganden der allgemeinen Formeln XV bis XIX,
    Figure 00410001
    wobei das Übergangsmetall ausgewählt ist aus den Elementen Ti, Zr, Hf, Sc, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Pd, Pt oder ein Element der Seltenerd-Metalle. Bevorzugt sind hierbei Verbindungen mit Nickel, Eisen, Kobalt und Palladium als Zentralmetall.
  • EF ist ein Element der 15. Gruppe des Periodensystems der Elemente bevorzugt N oder P, wobei N besonders bevorzugt ist. Die zwei oder drei Atome EF in einem Molekül können dabei gleich oder verschieden sein.
  • Die Reste R1F bis R25F die innerhalb eines Ligandsystems XV bis XIX gleich oder verschieden sein können, stehen dabei für folgende Gruppen:
    R1F und R4F unabhängig voneinander für Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste, bevorzugt sind dabei Kohlenwasserstoffreste bei denen das dem Element EF benachbarte Kohlensfoffatom mindestens mit zwei Kohlenstoffatomen verbunden ist,
    R2F und R3F unabhängig voneinander für Wasserstoff, Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste, wobei R2F und R3F auch zusammen ein Ringsystem bilden können, in dem auch ein oder mehrere Heteroatome vorhanden sein können,
    R6F und R8F unabhängig voneinander für Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste,
    R5F und R9F unabhängig voneinander für Wasserstoff, Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste, R6F und R5F bzw. R8F und R9F auch zusammen ein Ringsystem bilden können,
    R7F unabhängig voneinander für Wasserstoff, Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste; wobei zwei R7F auch zusammen ein Ringsystem bilden können,
    R10F und R14F unabhängig voneinander für Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste, R11F, R12F, R12F' und R13F unabhängig voneinander für Wasserstoff, Kohlenwasserstoff oder substituierte Kohlenwasserstoffreste, wobei auch zwei oder mehr geminale oder vicinale Reste R11A, R12A, R12' und R13A zusammen ein Ringsystem bilden können,
    R15F und R18F unabhängig voneinander für Wasserstoff, Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste,
    R16F und R17F unabhängig voneinander für Wasserstoff, Kohlenwasserstoff- oder substituierte Kohlenwasserstoffreste,
    R19F und R25F unabhängig voneinander C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest , wobei die organischen Reste R19F und R25F auch durch Halogene substituiert sein können, R20F-R24F unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR26F 3 bedeutet, wobei die organischen Reste R20F-R24F auch durch Halogene substituiert sein können und je zwei vicinale Reste R20F-R24F auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und
    R26F unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R26F auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können.
    x für 0 oder 1, wobei der komplex der Formel (XVI) für x gleich 0 negätiv geladen ist und
    y für eine ganze Zahl zwischen 1 und 4 bevorzugt 2 oder 3.
  • Besonders geeignete sind Übergangsmetallkomplexe mit Fe, Co, Ni, Pd oder Pt als Zentralmetall und Liganden der Formel (XV). Besonders bevorzugt sind Diiminkomplexe des Ni oder Pd, z.B.:
    Di(2,6-di-i-propyl-phenyl)-2,3-dimethyl-diazabutadien-palladiumdichlorid , Di(di-i-propyl-phenyl)-2,3-dimethyl-diazabutadien-nickel-dichlorid, Di(2,6-di-i-propyl-phenyl)-dimethyldiazabutadien-palladium-dimethyl, Di(2,6-di-i-propyl-phenyl)-2,3-dimethyl-diazabutadien-nickeldimethyl, Di(2,6-dimethyl-phenyl)-2,3-dimethyl-diazabutadien-palladiumdichlorid, Di(2,6-dimethyl-phenyl)-2,3-dimethyl-diazabutadien-nickel-dichlorid, Di(2,6-dimethyl-phenyl)-2,3-dimethyldiazabutadien-palladium-dimethyl, Di(2,6-dimethyl-phenyl)-2,3-dimethyl-diazabutadien-nickeldimethyl, Di(2-methyl-phenyl)-2,3-dimethyl-diazabutadien-palladium-dichlorid, Di(2-methylphenyl)-2,3-dimethyl-diazabutadien-nickel-dichlorid, Di(2-methyl-phenyl)-2,3-dimethyldiazabutadien-palladium-dimethyl, Di(2-methyl-phenyl)-2,3-dimethyl-diazabutadien-nickel-di methyl, Diphenyl-2,3-dimethyl-diazabutadien-palladium-dichlorid, Diphenyl-2,3-dimethyldiazabutadien-nickel-dichlorid, Diphenyl-2,3-dimethyl-diazabutadien-palladium-dimethyl, Diphenyl-2,3-dimethyl-diazabutadien-nickel-dimethyl, Di(2,6-dimethyl-phenyl)-azanaphtenpalladium-dichlorid, Di(2,6-dimethyl-phenyl)-azanaphten-nickel-dichlorid, Di(2,6-dimethylphenyl)-azanaphten-palladium-dimethyl, Di(2,6-dimethyl-phenyl)-azanaphten-nickel-dimethyl, 1,1'-Dipyridyl-palladium-dichlorid, 1,1'-Dipyridyl-nickel-dichlorid, 1,1'-Dipyridyl-palladiumdimethyl, 1,1'-Dipyridyl-nickel-dimethyl.
  • Besonders geeignete Verbindungen (XIX) sind auch solche, die in J. Am. Chem. Soc. 120, S. 4049 ff. (1998), J. Chem. Soc., Chem. Commun. 1998, 849 und WO 98/27124 beschrieben sind. EF ist bevorzugt Stickstoff und R19F und R25F sind in (XIX) bevorzugt Phenyl, Naphthyl, Biphenyl, Anthranyl, o-, m-, p-Methylphenyl, 2,3-, 2,4-, 2,5-, oder 2,6-Dimethylphenyl, -Dichlorphenyl, oder Dibromphenyl, 2-Chlor-6-methylphenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- oder 3,4,5-Trimethylphenyl, insbesondere 2,3-oder 2,6-Dimethylphenyl, -Diisopropylphenyl, -Dichlorphenyl, oder – Dibromphenyl und 2,4,6-Trimethylphenyl. Gleichzeitig sind R20, R24F und bevorzugt Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, Benzyl oder Phenyl, insbesondere Wasserstoff oder Methyl. R21 F und R23F sind bevorzugt Wasserstoff und R22F bevorzugt Wasserstoff, Methyl, Ethyl oder Phenyl, insbesondere Wasserstoff. Bevorzugt sind Komplexe der Liganden F-XIX mit Übergangsmetallen Fe, Co oder Ni, insbesondere Fe. Besonders bevorzugt sind 2,6-Diacetylpyridinbis(2,4-dimethylphenylimin)eisendichlorid, 2,6-Diacetylpyridinbis(2,4,6-trimethylphenylimin)eisendichlorid, 2,6-Diacetylpyridinbis(2-chlor-6-methylphenyl)eisendichlorid, 2,6-Diaceutylpyridinbis(2,6-diisopropylphenylimin)eisendichlorid, 2,6-Diacetylpyridinbis(2,6-dichlorphenylimin)eisendichlorid, 2,6-Pyridindicarboxaldehydbis(2,6-diisopropylphenylimin)eisendichlorid, 2,6-Diacetylpyridinbis(2,4-dimethylphenylimin)cobaltdichlorid, 2,6-Diacetylpyridinbis(2,4,6-trimethylphenylimin)cobaltdichlorid, 2,6-Diacetylpyridinbis(2-chlor-6-methylphenyl)cobaltdichlorid, 2,6-Diacetylpyridinbis(2,6-diisopropylphenylimin)cobaltdichlorid, 2,6-Diacetylpyridinbis(2,6-dichlorphenylimin)cobaltdichlorid und 2,6-Pyridindicarboxaldehydbis(2,6-diisopropylphenylimin)cobaltdichlorid.
  • Als Katalysatoren D) können auch Iminophenolat-Komplexe verwendet werden, wobei die Liganden beispielsweise ausgehend von substituierten oder unsubstituierten Salicylaldehyden und primären Aminen, insbesondere substituierten oder unsubstituierten Arylaminen, hergestellt werden. Auch Übergangsmetallkomplexe mit Pi-Liganden, die im Pi-System ein oder mehrere Heteroatome enthalten, wie beispielsweise der Boratabenzolligand, das Pyrrolylanion oder das Phospholylanion, lassen sich als Katalysatoren D) einsetzten.
  • Des weiteren sind als Katalysatoren D) Komplexe geeignet die zwei oder dreizähnige chelatisierende Liganden besitzen. Bei derartigen Liganden ist beispielsweise eine Ether- mit einer Aminoder Amid-Funktionalität oder ein Amid mit einem Heteroaromaten wie Pyridin verknüpft.
  • Durch derartige Kombinationen von Komponenten A) und D) können z.B. bimodale Produkte hergestellt oder in situ Comonomer erzeugt werden. Bevorzugt wird hierbei mindestens Monocyclopentadienylkomplex A) in Gegenwart von mindestens einem für die Polymerisation von Olefinen üblichen Katalysator D) und gewünschtenfalls ein oder mehreren aktivierende Verbindungen C) verwendet. Hierbei sind je nach Katalysatorenkombinationen A) und D) ein oder mehrere aktivierende Verbindungen C) vorteilhaft. Die Polymerisationskatalysatoren D) können ebenfalls geträgert sein und gleichzeitig oder in einer beliebigen Reihenfolge mit dem erfindungsgemäßen Komplex A) verwendet werden. Dabei können der Monocyclopentadienylkomplex A) und die Polymerisationskatalysatoren D) beispielsweise zusammen auf einem Träger B) oder verschiedenen Trägern B) aufgebracht sein. Als Komponente D) können auch Mischungen verschiedener Katalysatoren eingesetzt werden. Das molare Verhältnis von Monocyclopentadienylkomplex A) zu Polymerisationskatalysator B) liegt üblicherweise im Bereich von 1:100 bis 100:1, bevorzugt von 1:20 bis 20:1 und besonders bevorzugt von 1:10 bis 10:1.
  • Das Katalysatorsystem kann als weitere Komponente E) zusätzlich noch eine Metallverbindung der allgemeinen Formel (XX), MG(R1G)r G(R2G)sG(R3G)r G (XX) in der
    MG Li, Na, K, Be, Mg, Ca, Sr, Ba, Bor, Aluminium, Gallium, Indium, Thallium, Zink insbesondere Li, Na, K, Mg, Bor, Aluminium oder Zn bedeutet,
    R1G Wasserstoff, C1-C10-Alkyl, C6-C15-Aryl, Alkylaryl oder Arylalkyi mit jeweils 1 bis 10 C-Atom im Alkylrest und 6 bis 20 C-Atomen im Arylrest,
    R2G und R3G Wasserstoff, Halogen, C1-C10-Alkyl, C6-C15-Aryl, Alkylaryl, Arylalkyl oder Alkoxy mit jeweils 1 bis 20 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, oder Alkoxy mit C1-C10-Alkyl oder C6-C15-Aryl,
    rg eine ganze Zahl von 1 bis 3
    und
    sG und tG ganze Zahlen von 0 bis 2 bedeuten, wobei die Summe rG+sG+tG der Wertigkeit von MG entspricht, enthalten, wobei die Komponente E) nicht identisch mit der Komponente C) ist. Es können auch Mischungen verschiedener Metallverbindungen der Formel (XX) eingesetzt werden.
  • Von den Metallverbindungen der allgemeinen Formel (XX) sind diejenigen bevorzugt, in denen
    MG Lithium, Magnesium, Bor oder Aluminium bedeutet und
    R1G für C1-C20-Alkyl stehen.
  • Besonders bevorzugte Metallverbindungen der Formel (XX) sind Methyllithium, Ethyllithium, n-Butyllithium, Methylmagnesiumchlorid, Methylmagnesiumbromid, Ethylmagnesiumchlorid, Ethylmagnesiumbromid, Butylmagnesiumchlorid, Dimethylmagnesium, Diethylmagnesium, Dibutylmagnesium, n-Butyl-n-octylmagnesium, n-Butyl-n-heptyl-magnesium, insbesondere n-Butyl-n-octylmagnesium, Tri-n-hexyl-aluminium, Tri-iso-butyl-aluminium, Tri-n-butylaluminium, Triethylaluminium, Dimethylaluminiumchlorid, Dimethylaluminiumfluorid, Methylaluminiumdichlorid, Methylaluminiumsesquichlorid, Diethylaluminiumchlorid und Trimethylaluminium und Mischungen davon. Auch die partiellen Hydrolyseprodukte von Aluminiumalkylen mit Alkoholen können eingesetzt werden.
  • Wenn eine Metallverbindung E) eingesetzt wird, ist sie bevorzugt in einer solchen Menge im Katalysatorsystem enthalten, daß das molare Verhältnis von MG aus Formel (XX) zu Übergangsmetall aus Monocyclopentadienylverbindung A) von 2000:1 bis 0,1:1, bevozugt von 800:1 bis 0,2:1 und besonders bevorzugt von 100:1 bis 1:1 beträgt.
  • In der Regel wird der Katalysatorfeststoff zusammen mit weiterer Metallverbindung E) der allgemeinen Formel (XX), wobei diese sich von der oder den bei der Herstellung des Katalysatorfeststoffs verwendeten Metallverbindungen E) unterscheiden kann, als Bestandteil eines Katalysatorsystems zur Polymerisation oder Copolymerisation von Olefinen eingesetzt. Es ist auch möglich, insbesondere dann, wenn der Katalysatorfeststoff keine aktivierende Komponente C) enthält, daß. das Katalysatorsystem zusätzlich zum Katalysatorfeststoff eine oder mehrere aktivierende Verbindungen C) enthält, die gleich oder verschieden von eventuell im Katalysatorfeststoff enthaltenden aktivierenden Verbindungen C) sind.
  • Bevorzugt wird zur Herstellung der erfindungsgemäßen Katalysatorsysteme mindestens eine der Komponenten A) und/oder C) auf dem Träger B) durch Physisorption oder auch durch eine chemische Reaktion, das bedeutet eine kovalente Anbindung der Komponenten, mit reaktiven Gruppen der Trägeroberfläche fixiert. Die Reihenfolge der Zusammengabe von Trägerkomponente B), Komponente A) und gegebenenfalls Komponente C) ist beliebig. Die Komponenten A) und C) können unabhängig voneinander oder auch gleichzeitig oder vorvermischt zu B) zugegeben werden. Nach den einzelnen Verfahrensschritten kann der Feststoff mit geeigneten inerten Lösungsmitteln wie aliphatischen oder aromatischen Kohlenwasserstoffen gewaschen werden.
  • In einer bevorzugten Ausführungsform wird der Monocyclopentadienylkomplex A) in einem geeigneten Lösungsmittel mit der aktivierenden Verbindung C) in Kontakt gebracht, wobei üblicherweise ein lösliches Reaktionsprodukt, ein Addukt oder ein Gemisch erhalten wird. Die so erhaltene Zubereitung wird dann mit dem gegebenenfalls vorbehandelten Träger B) in Kontakt gebracht, und das Lösungsmittel vollständig oder teilweise entfernt. Bevorzugt erhält man dann einen Feststoff in Form eines frei fließenden Pulvers. Beispiele für die technische Realisierung des obigen Verfahrens sind in WO 96/00243, WO 98/40419 oder WO 00/05277 beschrieben. Einer weitere bevorzugte Ausführungsform ist, zunächst die kationenbildende Verbindung C) auf dem Träger B) zu erzeugen und anschließend diese geträgerte kationenbildende Verbindung mit dem Monocyclopentadienylkomplex A) in Kontakt zu bringen.
  • Die Komponente D) kann ebenfalls in beliebiger Reihenfolge mit den Komponenten A) und optional B), C) und E) umgesetzt werden. Bevorzugt wird D) zuerst mit Komponente C) in Kontakt gebracht und danach mit den Komponenten A) und B) und eventuell weiterem C) wie weiter oben verfahren. In einer anderen bevorzugten Ausführungsform wird ein Katalysatorfeststoff aus den Komponenten A), B) und C) wie weiter oben beschrieben dargestellt und dieser während; zu Beginn oder kurz vor der Polymerisation mit der Komponente E) in Kontakt gebracht. Bevorzugt wird E) zuerst mit dem zu polymerisierenden α-Olefin in Kontakt gebracht und anschliessend der Katalysatorfeststoff aus den Komponenten A), B) und C) wie weiter oben beschrieben, zugegeben.
  • Der Monocyclopentadienylkomplex A) kann dabei entweder vor oder nach Kontaktierung mit den zu polymerisierenden Olefinen mit der oder den Komponenten C) und/oder D) in Kontakt gebracht werden. Auch eine Voraktivierung mit ein oder mehreren Komponenten C) vor der Durchmischung mit dem Olefin und weitere Zugabe der gleichen oder anderer Komponenten C) und/oder D) nach Kontaktierung dieses Gemisches mit dem Olefin ist möglich. Eine Voraktivierung erfolgt in der Regel bei Temperaturen zwischen 10-100°C, bevorzugt zwischen 20-80°C.
  • Es ist weiterhin möglich, das Katalysatorsystem zunächst mit α-Olefinen, bevorzugt linearen C2-C10-1-Alkenen und insbesondere mit Ethylen oder Propylen vorzupolymerisieren und dann den resultierenden vorpolymerisierten Katalysatorfeststoff bei der eigentlichen Polymerisation zu verwenden. Üblicherweise liegt das Massenverhältnis von bei der Vorpolymerisation eingesetztem Katalysatorfeststoff zu hinzupolymerisiertem Monomer im Bereich von 1:0,1 bis 1:1000, bevorzugt 1:1 bis 1:200.
  • Weiterhin kann als Additiv während oder nach der Herstellung des Katalysatorsystems eine geringe Menge eines Olefins, bevorzugt eines α-Olefins, beispielsweise Vinylcyclohexan, Styrol oder Phenyldimethylvinylsilan, als modifizierende Komponente, ein Antistatikum oder eine geeignete inerte Verbindung wie eine Wachs oder Öl zugesetzt werden. Das molare Verhältnis von Additiven zu Übergangsmetallverbindung B) beträgt dabei üblicherweise von 1:1000 bis 1000:1, bevorzugt von 1:5 bis 20:1.
  • Die erfindungsgemäßen Katalysatorsysteme eignen sich zur Polymerisation von Olefinen und vor allem zur Polymerisation von α-Olefinen, d.h. Kohlenwasserstoffen mit endständigen Doppelbindungen. Geeignete Monomere können funktionalisierte olefinisch ungesättigte Verbindungen wie Acrolein, Ester- oder Amidderivate der Acryl- oder Methacrylsäure, beispielsweise Acrylate, Methacrylate oder Acrylnitril oder Vinylester, beispielsweise Vinylacetat sein. Bevorzugt sind unpolare olefinische Verbindungen, worunter auch arylsubstituierte α-Olefine fallen. Besonders bevorzugte α sind lineare oder verzweigte C2-C12-1-Alkene, insbesondere lineare C2-C10-1-Alkene wie Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen, 1-Decen oder verzweigte C2-C10-1-Alkene wie 4-Methyl-1-penten, konjugierte und nicht konjugierte Diene wie 1,3-Butadien, 1,5-Hexadien, oder 1,7-Octadien oder vinylaromatische Verbindungen wie Styrol oder substituiertes Styrol. Es können auch Gemische aus verschiedenen α-Olefinen polymerisiert werden. Bevorzugt wird mindestens ein Olefin ausgewählt aus der Gruppe Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen und 1-Decen polymerisiert.
  • Geeignete Olefine sind auch solche, bei denen die Doppelbindung Teil einer cyclischen Struktur ist, die ein oder mehrere Ringsysteme aufweisen kann. Beispiele hierfür sind Cyclopenten, Cyclohexen, Norbornen, Tetracyclododecen oder Methylnorbornen oder Diene wie 5-Ethyliden-2-norbornen, Norbornadien oder Ethylnorbornadien.
    Es können auch Gemische aus zwei oder mehreren Olefinen polymerisiert werden. Im Gegensatz zu einigen bekannten Eisen- und Cobaltkomplexen zeigen die erfindungsgemässen Monocyclopentadienylkomplexe eine gute Polymerisationsaktivität auch mit höheren α-Olefinen, so daß ihre Eignung zur Copolymerisation besonders hervorzuheben ist. Insbesondere lassen sich die erfindungsgemäßen Monocycloperitadienylkomplexe zur Polymerisation oder Copolymerisation von Ethen oder Propen einsetzen. Als Comonomere bei der Ethenpolymerisation werden bevorzugt C3-C8-α-Olefine oder Norbornen, insbesondere 1-Buten, 1-Penten, 1-Hexen und/oder 1-Octen verwendet. Bevorzugt werden Monomermischungen mit mindestens 50 mol-% Ethen verwendet. Bevorzugte Comonomere bei der Propylenpolymerisation sind Ethen und/oder Guten.
  • Die Polymerisation kann in bekannter Weise in Masse, in Suspension, in der Gasphase oder in einem überkritischen Medium in den üblichen, für die Polymerisation von Olefinen verwendeten Reaktoren durchgeführt werden. Sie kann diskontinuierlich oder bevorzugt kontinuierlich in einer oder mehreren Stufen erfolgen. Es kommen Hochdruck-Polymerisationsverfahren in Rohrreaktoren oder Autoklauen, Lösungsverfahren, Suspensionsverfahren, gerührte Gasphasenverfahren oder Gasphasenwirbelschichtverfahren in Betracht.
  • Die Polymerisationen werden üblicherweise bei Temperaturen im Bereich von –60 bis 350°C und unter Drücken von 0,5 bis 4000 bar bei mittleren Verweilzeiten von 0,5 bis 5 Stunden, bevorzugt von 0,5 bis 3 Stunden durchgeführt. Die vorteilhaften Druck- und Temperaturbereiche zur Durchführung der Polymerisationen hängen üblicherweise von der Polymerisationsmethode ab. Bei den Hochdruck-Polymerisationsverfahren, die üblicherweise bei Drücken zwischen 1000 und 4000 bar, insbesondere zwischen 2000 und 3500 bar, durchgeführt werden, werden in der Regel auch hohe Polymerisationstemperaturen eingestellt. Vorteilhafte Temperaturbereiche für diese Hochdruck-Polymerisationsverfahren liegen zwischen 200 und 320°C, insbesondere zwischen 220 und 290°C. Bei Niederdruck-Polymerisationsverfahren wird in der Regel eine Temperatur eingestellt, die mindestens einige Grad unter der Erweichungstemperatur des Polymerisates liegt. Insbesondere werden in diesen Polymerisationsverfahren Temperaturen zwischen 50 und 180°C, vorzugsweise zwischen 70 und 120°C, eingestellt. Bei den Suspensionspolymerisationen wird üblicherweise in einem Suspensionsmittel, vorzugsweise in einem inerten Kohlenwasserstoff, wie beispielsweise iso-Butan, oder Gemischen von Kohlenwasserstoffen oder aber in den Monomeren selbst polymerisiert. Die Polymerisationstemperaturen liegen i.a. im Bereich von –20 bis 115°C, der Druck i.a. im Bereich von 1 bis 100 bar. Der Festustoffgehalt der Suspension liegt i.a. im Bereich von 10 bis 80 %. Es kann sowohl diskontinuierlich, z.B. in Rührautoklaven, als auch kontinuierlich, z.B. in Rohrreaktoren, bevorzugt in Schleifenreaktoren, gearbeitet werden. Insbesondere kann nach dem Phillips-PF-Verfahren, wie in der US-A 3 242 150 und US-A 3 248 179 beschrieben, gearbeitet werden. Die Gasphasenpolymerisation wird i.a. im Bereich von 30 bis 125°C durchgeführt.
  • Von den genannten Polymerisationsverfahren ist die Gasphasenpolymerisation, insbesondere in Gasphasenwirbelschicht-Reaktoren, die Lösungspolymerisation, sowie die Suspensionspolymerisation, insbesondere in Schleifen- und Rührkesselreaktoren, besonders bevorzugt. Die Gasphasenpolymerisation kann auch in der sogenannten condensed oder supercondensed Fahrweise durchgeführt werden, bei dem ein Teil des Kreisgases unter den Taupunkt gekühlt und als Zwei-Phasen-Gemisch in den Reaktor zurückgeführt wird. Des weiteren kann ein sogenannter Multizonenreaktor eingesetzt werden, worin zwei Polymerisationszonen miteinander verknüpft sind und das Polymer abwechselnd, mehrfach durch diese zwei Zonen geleitet wird, wobei die beiden Zonen auch unterschiedliche Polymerisationsbedingungen besitzen können. Eine derartiger Reaktor ist beispielsweise in der WO 97/04015 beschrieben. Die verschiedenen oder auch gleichen Polymerisationsverfahren können auch wahlweise miteinander in Serie geschaltet sein und so eine Polymerisationskaskade bilden, wie beispielsweise im Hostalen Verfahren. Auch eine parallele Reaktorführung zwei oder mehrerer gleicher oder verschiedener Verfahren ist möglich. Weiterhin können bei den Polymerisationen auch Molmassenregler, beispielsweise Wasserstoff, oder übliche Zuschlagstoffe wie Antistatika mitverwendet werden.
  • Die erfindungsgemässen Monocyclopentadienylkomplexe und die sie enthaltenden Katalysator-Systeme können auch mittels kombinatorischer Methoden dargestellt oder mit Hilfe dieser kombinatorischen Methoden auf ihre Polymerisationsaktivität getestet werden.
  • Durch das erfindungsgemäßen Verfahren lassen sich Polymerisate von Olefinen darstellen. Der Begriff Polymerisation, wie er zur Beschreibung der Erfindung hier verwendet wird, umfaßt sowohl Polymerisation als auch Oligomerisation, d.h. Oligomere und Polymere mit Molmassen Mw im Bereich von etwa 56 bis 3000000 können durch diese Verfahren erzeugt werden.
  • Auf Grund ihrer guten mechanischen Eigenschaften eignen sich die mit dem erfindungsgemäßen Katalysatorsystem hergestellten Polymerisate von Olefinen vor allem für die Herstellung von Folien, Fasern und Formkörpern.
  • Die erfindungsgemäßen Katalysatorsysteme zeichnen sich dadurch aus, daß sie eine sehr hohe Produktivität bei der Polymerisation von Olefinen aufweisen, Vorteile bei der Aufarbeitung der Polymerisate nach der Polymerisation bieten, und zu deutlich weniger Problemen im Hinblick auf Katalysatorrückstände im Polymerisat führen. Die mit dem erfndungsgemäßen Katalysatorsystem hergestellten Polymerisate eigenen sich bevorzugt für solche Anwendungen, die eine hohe Produktreinheit erfordern. Die erfindungsgemässen Katalysatorsysteme zeigen ausserdem auch bei
  • relativ niedrigem molaren Verhältnis von Alumoxan zu Organoübergangsmetall eine sehr gute Aktivität.
  • Der Comonergehalt des Polymeren (Gew.-% Hexen im Polymer), dessen Methylseitenkettengehalt pro 1000 C-Atome der Polymerkette (CH3/1000) und dessen Dichte wurde durch IR Spectroskopie bestimmt.
  • Der n Wert wurde mit einem automatischen Ubbelohde Viskometer (Lauda PVS 1) mit Dekalin als Lösungsmittel bei 130°C bestimmt (ISO1628 bei 130°C, 0,001 g/ml Decalin).
  • Die Bestimmung der Molmassenverteilungen und der daraus abgeleiteten Mittelwerte Mn, Mw; und Mw/Mn erfolgte mittels Hochtemperatur-Gelpermeations-chromatographie in Anlehnung an DIN 55672 unter folgende Bedingungen: Lösungsmittel: 1,2,4-Trichlorbenzol, Fluß: 1ml/min, Temperatur: 140°C, Kalibrierung mit PE Standards.
  • Die Schüttdichte wurde nach DIN 53466 bestimmt.
  • Beispiel 1
  • 1.1. Darstellung von 2-(2-(1H-Inden-3-yl)ethyl]pyridin (entsprechend N. Dressler and R.J. Kurland, J.Org.Chem. 29 1 S. 175-178)
  • Zu einer Mischung von 56 ml (0,48 mol) Inden in 40 ml Toluol und 4 g (0,036 mol) festes Kaliumtert-Butanolat wurden 43 g (0,47 mol) 2-Vinylpyridin bei 60 bis 90°C über einen Zeitraum von 40 min zugegeben. Danach wurde weitere 2 h bei 115°C gerührt, die Mischung auf Raumtemperatur abgekühlt und anschliessend mit 2 ml Eisessig neutralisiert. Unlösliche Bestandteile wurden abfil triert und das Filtrat am Vakuum destilliert. Man erhielt 42 g 2-[2-(1H-Inden-3-yl)ethyl]pyridin (40%, b.p. 161-163° bei 2 mm).
    NMR 1H (CDCl3): 8.62 (d, 1H); 7.64 (d, 1H); 7.55 (d, 1H); 7.51 (d, 1H); 7.39 (t, 1H); 7.29 (t, 1H); 7.23 (d, 1H); 7.19 (dd, 1H); 6.32 (m, 1H); 3.40 (m, 2H); 3.28 (m, 2H); 3.12 (m, 2H).
  • 1.2. Darstellung von (3-(2-Pyridylethyl)indenyl)chromdichlorid
  • Figure 00510001
  • Eine Lösung von 22,1 g (0,1 mol) 2-[2-(1H-Inden-3-yl)ethyl]pyridin in 470 ml Tetrahydrofuran wurde auf –100°C gekühlt. Dazu wurden langsam 62,5 ml einer 15%igen n-Butyllithium-Lösung in Hexan (0,1 mol) zugetropft. Nach beendeter Zugabe wurde das Reaktionsgemisch weitere 50 min bei –100°C gerührt. Man liess die Mischung anschliessend auf Raumtemperatur erwärmen. Nach weiteren 2 Stunden Rühren wurde die Lösung auf –60°C gekühlt und 38 g (0,1 mol) Chromtrichloridtris(tetrahydrofuran) unter Rühren zugegeben. Man liess langsam auf Raumtemperatur erwärmen und rührte anschliessend noch weitere 10 h bei Raumtemperatur. Danach wurde das Reaktionsgemisch 20 min unter Rückfluss gesiedet und anschliessend auf Raumtemperatur gekühlt. Der ausgefallene Feststoff wurde abfiltriert und mit heissem Tetrahydrofuran gewaschen. Der Feststoff wurde anschliessend mit Diethylether gewaschen und im Vakuum getrocknet. Dies ergab 28,1 g (3-(2-Pyridylethyl)indenyl)chromdichlorid (82%).
  • Beispiel 2
  • a) Trägervorbehandlung 100 g Puralox MG 61 (calcinierter Hydrotalcit) der Fa. Condea Chemie GmbH (jetzt Sasol Chemie) wurden 6 h bei 180°C ausgeheizt.
  • b) Trägerung 148,9 mg des Komplexes aus Beispiel 1 (82,1 mmol) wurden mit 11,42 ml einer 4,75 M Lösung von MAO in Touol der Firma Albemarle versetzt und 15 min gerührt. Die entstandene Lösung wurde innerhalb von 10 min zu 6,2 g des vorbehandelten calcinierten Hydrotalcites gegeben und 60 min nachgerührt. Danach wurde der Katalysator bei Raumtemperatur bei 10–3 mbar getrocknet. Es wurde ein hellgrünes Pulver erhalten.
  • Beispiel 3
  • Polymerisation
  • Die Polymerisationsversuche wurden in einem mit Kontaktthermometer, Rührer mit Teflonblatt, Heizpilz und Gaseinleitungsrohr versehenen 1l-Vierhalskolben durchgeführt. Unter Argon wurden 15,5 μmol (3-(2-Pyridylethyl)indenyl)chromdichlorid in 250 ml Toluol bei 40°C vorgelegt. Zur Aktivierung wurden 7,77 mmol 1,6 M MAO Lösung in Toluol zugegeben.
  • Es wurden vor der Ethylenzugabe 3 ml Hexen vorgelegt und anschließend ca. 40 l/h Ethylen bei Atmosphärendruck für 20 min durchgeleitet. Die Restmenge an Hexen (weitere 8 ml) wurde innerhalb von 10 min über einer Tropftrichter zudosiert.
  • Die Reaktion wurde durch Zugabe eines Gemisches aus 15 ml konzentrierter Salzsäure und 50 ml Methanol abgestoppt und 15 min nachgerührt. Nach Zugabe von weiteren 250 ml Methanol und 15 min rühren, wurde abfiltriert, dreimal mit Methanol gewaschen und bei –70°C getrocknet. Es wurden 8,9 g Ethylen-Hexen-Copolymer (Aktivität des Katalysators 1735 g/(mmol Cr·h)) mit einem Mw von 397972 g/mol, Mw/Mn von 3,34 einem Hexen-Gehalt von 6,2% und einer Dichte von 0,9053 g/cm3 erhalten.
  • Beispiel 4
  • Polymerisation
  • In einen 1l-Autoklauen, der mit Argon inertisiert worden war, wurden 400 ml Isobutan und 2 ml einer Triisobutylaluminium-Lösung in Heptan (entsprechend 60 mg Triisobutylaluminium) gegeben und schließlich 149 mg des in Beispiel 2 b) erhaltenen Katalysatorfeststoffs zudosiert. Es wurde 60 min bei 40 bar Ethylendruck und 70°C polymerisiert. Die Polymerisation wurde durch Ablassen des Drucks abgebrochen und das Produkt durch das Bodenventil ausgetragen. Es wurden 157 g Polyethylen mit einer Dichte von 0,9228 g/cm3, einer Schüttdichte von 412 kg/m3 und einem η-Wert von 32,28 dl/g erhalten.
  • Produktivität: 1050 g PE/g Katalysatorfeststoff

Claims (12)

  1. Monocyclopentadienylkomplexe, die folgendes Strukturmerkmal der allgemeinen Formel (Cp)(-Z-A)mM (I) enthalten, worin die Variablen folgende Bedeutung haben: Cp ein Cyclopentadienyl-System Z eine Brücke zwischen A und Cp ist, ausgewählt aus der folgenden Gruppe
    Figure 00530001
    wobei L1B-L3B unahängig voneinander Kohlenstoff oder Silizium bedeutet, R1B-R6B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR7B 3 bedeutet, wobei die organischen Reste R1B-R6B auch durch Halogene substituiert sein können und je zwei geminale oder vicinale Reste R1B-R6B oder ein Rest R1B-R6B und A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und R7B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R7B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, A ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem, M ein Metall ausgewählt aus der Gruppe Titan in der Oxidationsstufe 3, Vanadium, Chrom, Molybdän und Wolfram und m 1, 2 oder 3 ist.
  2. Monocyclopentadienylkomplexe nach Anspruch 1, der allgemeinen Formel (Cp)(-Z-A)mMXk (V), worin die Variablen folgende Bedeutung haben: Cp ein Cyclopentadienyl-System Z eine Brücke zwischen A und Cp ist, ausgewählt aus der folgenden Gruppe
    Figure 00540001
    wobei L1B-L3B unahängig voneinander Kohlenstoff oder Silizium bedeutet, R1B-R6B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR7B 3 bedeutet, wobei die organischen Reste R1B-R6B auch durch Halogene substituiert sein können und je zwei geminale oder vicinale Reste R1B-R6B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und R7B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R7B auch zu einem fünfoder sechsgliedrigen Ring verbunden sein können, A ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem; M ein Metall ausgewählt aus der Gruppe Titan in der Oxidationsstufe 3, Chrom, Molybdän und Wolfram, m 1, 2 oder 3, X unabhängig voneinander Fluor, Chlor, Brom, Jod, Wasserstoff, C1-C10-Alkyl, C2-C10-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1-10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR1R2, OR1, SR1, SO3R1, OC(O)R1, CN, SCN, β-Diketonat, CO, BF4-, PF6-, oder sperrige nichtkoordinierende Anionen, R1-R2 unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, SiR3 3, wobei die organischen Reste R1-R2 auch durch Halogene substituiert sein können und je zwei Reste R1-R2 auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, R3 unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei Reste R3 auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein . können und k 1, 2, oder 3 ist.
  3. Monocyclopentadienylkomplexe nach den Ansprüchen 1 oder 2, worin das Cyclopentadienylsystem Cp die Formel (II) hat:
    Figure 00550001
    worin die Variablen folgende Bedeutung besitzen: E1A-E5A Kohlenstoff oder maximal ein E1A bis E5A Phosphor, R1A-R5A unabhängig voneinander Wasserstoff, C1-C20-Alkyl; C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR6A 2, N(SiR6A 3)2, OR6A, OSiR6A, SiR6A, Br6A wobei die organischen Reste R1A-R5A auch durch Halogene substituiert sein können und je zwei vicinale Reste R1A-R5A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R1A-R5A zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält, wobei 1, 2 oder 3, bevorzugt 1 Substituent R1A-R5A eine Gruppe -Z-A ist und R6A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R5A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können.
  4. Monocyclopentadienylkomplexe nach den Ansprüchen 1 bis 3, worin das Cyclopentadienylsystem Cp zusammen mit -Z-A- die Formel (IV) hat:
    Figure 00560001
    worin die Variablen folgende Bedeutung besitzen: E1A-E5A Kohlenstoff oder maximal ein E1A bis E5A Phosphor, R1A-R5A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR6A 2 , N(SiR6A 3)2, OR6A, OSiR6A 3, SiR6A 3, wobei die organischen Reste R1A-R5A auch durch Halogene substituiert sein können und je zwei vicinale Reste R1A-R5A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R1A-R5A zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält R6A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R6A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können. A ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem, Z eine Brücke zwischen A und Cp ist, ausgewählt aus der folgenden Gruppe
    Figure 00560002
    wobei L1B-L3B unahängig voneinander Kohlenstoff oder Silizium bedeutet, R1B-R6B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR1B 3 bedeutet, wobei die organischen Reste R1B-R6B auch durch Halogene substituiert sein können und je zwei geminale oder vicinale Reste R1B-R6B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und R7B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R7B auch zu einem fünfoder sechsgliedrigen Ring verbunden sein können.
  5. Monocyclopentadienylkomplexe nach den Ansprüchen 1 bis 4, worin A die Formel (III) hat:
    Figure 00570001
    worin die Variablen folgende Bedeutung haben: E1C-E4C Kohlenstoff oder Stickstoff, R1C-R4C unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20- Alkenyl, C6-C20-Aryl Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR5C 3 bedeutet, wobei die organischen Reste R1C-R4C auch durch Halogene oder Stickstoff und weitere C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR5C 3 substituiert sein können und je zwei vicinale Reste R1C-R4C oder R1C und Z auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, R5C unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R5C auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und p 0 für E1C-E4C gleich Stickstoff und 1 für E1C-E4C gleich Kohlenstoff ist.
  6. Monocyclopentadienylkomplexe nach den Ansprüchen 1 bis 5, worin Z ausgewählt ist aus der Gruppe -C(R1BR2B)-Si(R3BR4B)- oder 1,2-Phenylen.
  7. Katalysatorsystem zur Olefinpolymerisation, enthaltend A) mindestens einen Monocyclopentadienylkomplex gemäss den Ansprüchen 1 bis 6, B) optional einen organischen oder anorganischen Träger, C) optional eine oder mehrere aktivierende Verbindungen, D) optional weitere zur Olefinpolymerisation geeignete Katalysatoren und E) optional eine oder mehrere Metallverbindungen der Gruppe 1, 2 oder 13 des Periodensystems.
  8. Vorpolymerisiertes Katalysatorsystem, enthaltend ein Katalysatorsystem nach Anspruch 7 und hinzupolymerisiert ein oder mehrere lineare C2-C10-1-Alkene im Massenverhältnis von 1:0,1 bis 1:1000 bezogen auf das Katalysatorsystem.
  9. Verwendung eines Katalysatorsystems nach den Ansprüchen 7 oder 8 zur Polymerisation oder Copolymerisation von. Olefinen.
  10. Verfahren zur Herstellung von Polyolefinen durch Polymerisation oder Copolymerisation von Olefinen in Gegenwart eines Katalysatorsystems nach den Ansprüchen 7 oder B.
  11. Verfahren zur Darstellung von Cyclopentadienylsystem-Anionen der Formel (V):
    Figure 00580001
    worin die Variablen folgende Bedeutung haben: R1A-R5A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR6A 2, N(SiR6S 3)2, OR6A, OSiR6A 3, SIR6A 3, wobei die organischen Reste R1A-R5A auch durch Halogene substituiert sein können und je zwei vicinale Reste R1A-R5A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R1A-R5A zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält R6A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R6A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können. A ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem, R1B-R4B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR7B 3 bedeutet, wobei die organischen Reste R1B-R4B auch durch Halogene substituiert sein können und je zwei geminale oder vicinale Reste R1B-R4B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können und R7B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R7B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, dadurch gekennzeichnet, dass ein A-CR1BR2B--Anion mit einem Fulven der Formel (VI)
    Figure 00590001
    umgesetzt wird.
  12. Verfahren zur Darstellung von Cyclopentadienylsytemen der Formel (VIII):
    Figure 00600001
    worin die Variablen folgende Bedeutung haben: E6A-E10A Kohlenstoff oder maximal ein E6A bis E10A Phosphor, wobei jeweils vier benachbarte E1A-E5A ein konjugiertes Diensystem bilden und das verbleibende E6A-E10A zusätzlich ein Wasserstoffatom trägt, R1A-R4A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest, NR6A 2, N(SiR6A3)2, OR6A, OSiR6A 3, SiR6A 3, wobei die organischen Reste R1A-R5A auch durch Halogene substituiert sein können und je zwei vicinale Reste R1A-R5A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, und/oder dass zwei vicinale Reste R1A-R5A zu einem Heterocyclus verbunden sind, welcher mindestens ein Atom aus der Gruppe N, P, O oder S enthält, R6A unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest und je zwei geminale Reste R6A auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, A ein unsubstituiertes, substituiertes oder kondensiertes, heteroaromatisches Ringsystem, R1B-R4B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest oder SiR7B 3 bedeutet, wobei die organischen Reste R1B-R4B auch durch Halogene substituiert sein können und je zwei geminale oder vicinale Reste R1B-R4B auch zu einem fünf- oder sechsgliedrigen. Ring verbunden sein können und R7B unabhängig voneinander Wasserstoff, C1-C20-Alkyl, C2-C20-Alkenyl, C6-C20-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6-20 C-Atomen im Arylrest bedeutet und je zwei Reste R7B auch zu einem fünf- oder sechsgliedrigen Ring verbunden sein können, dadurch gekennzeichnet dass ein A-CR1BR2B-Anion mit einem Cyclopentadienylsystem der Formel (IX)
    Figure 00610001
    umgesetzt wird, worin die Variablen die obige Bedeutung haben und Q für eine Abgangsgruppe steht.
DE10237646A 2002-08-13 2002-08-13 Monocyclopentadienylkomplexe Withdrawn DE10237646A1 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
DE10237646A DE10237646A1 (de) 2002-08-13 2002-08-13 Monocyclopentadienylkomplexe
US10/525,223 US20060089253A1 (en) 2002-08-13 2003-08-07 Monocyclopentadienyl complexes
EP03790896A EP1534724B1 (de) 2002-08-13 2003-08-11 Monocyclopentadienylkomplexe
CNB03824103XA CN100334098C (zh) 2002-08-13 2003-08-11 单环戊二烯基络合物
BR0313335-4A BR0313335A (pt) 2002-08-13 2003-08-11 Complexo de monociclopentadienila, sistema de catalisador, uso do mesmo, e, processos para preparar poliolefinas e sistemas de ciclopentadienila
JP2004532082A JP2005535726A (ja) 2002-08-13 2003-08-11 モノシクロペンタジエニル錯体
PCT/EP2003/008900 WO2004020479A2 (en) 2002-08-13 2003-08-11 Monocyclopentadienyl complexes
AT03790896T ATE319727T1 (de) 2002-08-13 2003-08-11 Monocyclopentadienylkomplexe
AU2003258599A AU2003258599A1 (en) 2002-08-13 2003-08-11 Monocyclopentadienyl complexes
ES03790896T ES2259775T3 (es) 2002-08-13 2003-08-11 Complejos de monociclopentadienilo.
DE60303959T DE60303959T2 (de) 2002-08-13 2003-08-11 Monocyclopentadienylkomplexe
KR1020057002334A KR20050075749A (ko) 2002-08-13 2003-08-11 모노시클로펜타디에닐 착물
US10/522,574 US7541481B2 (en) 2002-08-13 2003-08-11 Monocyclopentadienyl complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10237646A DE10237646A1 (de) 2002-08-13 2002-08-13 Monocyclopentadienylkomplexe

Publications (1)

Publication Number Publication Date
DE10237646A1 true DE10237646A1 (de) 2004-02-19

Family

ID=30469782

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10237646A Withdrawn DE10237646A1 (de) 2002-08-13 2002-08-13 Monocyclopentadienylkomplexe
DE60303959T Expired - Lifetime DE60303959T2 (de) 2002-08-13 2003-08-11 Monocyclopentadienylkomplexe

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE60303959T Expired - Lifetime DE60303959T2 (de) 2002-08-13 2003-08-11 Monocyclopentadienylkomplexe

Country Status (2)

Country Link
CN (1) CN100334098C (de)
DE (2) DE10237646A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101903413B (zh) * 2007-12-19 2014-03-12 巴塞尔聚烯烃股份有限公司 乙烯三元共聚物
US8828529B2 (en) * 2010-09-24 2014-09-09 Chevron Phillips Chemical Company Lp Catalyst systems and polymer resins having improved barrier properties
GB201718279D0 (en) * 2017-11-03 2017-12-20 Scg Chemicals Co Ltd Solid support material
CN114890987B (zh) * 2022-04-13 2023-12-19 万华化学集团股份有限公司 一种硫酚-噻吩配体及其制备方法、烯烃聚合催化剂及其制备方法、应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889911B1 (de) * 1996-03-29 2000-11-02 The Dow Chemical Company Metallocen cokatalysator
GB0020613D0 (en) * 2000-08-21 2000-10-11 Borealis Tech Oy Catalysts

Also Published As

Publication number Publication date
CN1688594A (zh) 2005-10-26
CN100334098C (zh) 2007-08-29
DE60303959T2 (de) 2006-09-21
DE60303959D1 (de) 2006-05-04

Similar Documents

Publication Publication Date Title
EP1212333B1 (de) Monocyclopentadienylkomplexe von chrom, molybdän oder wolfram mit einer donorbrücke
US7973114B2 (en) Monocyclopentadienyl complexes
DE10359341A1 (de) Monocyclopentadienylkomplexe
EP1824888B1 (de) Monocyclopentadienyl-komplexe
EP1425288B1 (de) Monocyclopentadienylkomplexe mit einem kondensierten heterocyclus
DE60314262T2 (de) Monocyclopentadienylkomplexe
EP1694689B1 (de) Monocyclopentadienylkomplexe
EP1778400B1 (de) Durch silylhalogenid substituierte cyclopentadienylkomplexe der gruppe 6
US7541481B2 (en) Monocyclopentadienyl complex
US7629464B2 (en) Monocyclopentadienyl complexes
DE60303959T2 (de) Monocyclopentadienylkomplexe
EP1861409B1 (de) Monocyclopentadienylkomplexe
EP1430088B1 (de) Verfahren zur polymerisation von olefinen
DE10261109A1 (de) Monocyclopentadienylkomplexe
DE10360059A1 (de) Monocyclopentadienylkomplexe
DE10239275A1 (de) Monocyclopentadienylkomplexe
DE102006051721A1 (de) Verfahren zur Polymerisation von Olefinen mit Organoübergangsmetallkomplex basierten Katalysatorsystemen
DE10323276A1 (de) Übergangsmetallkomplexe mit tridentaten, Stickstoff-haltigen Liganden

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee