DE10233832A1 - MGSM mit speziell konfektionierten Bleichaktivatoren - Google Patents

MGSM mit speziell konfektionierten Bleichaktivatoren

Info

Publication number
DE10233832A1
DE10233832A1 DE2002133832 DE10233832A DE10233832A1 DE 10233832 A1 DE10233832 A1 DE 10233832A1 DE 2002133832 DE2002133832 DE 2002133832 DE 10233832 A DE10233832 A DE 10233832A DE 10233832 A1 DE10233832 A1 DE 10233832A1
Authority
DE
Germany
Prior art keywords
acid
copolymers
alkyl
preferred
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE2002133832
Other languages
English (en)
Inventor
Ulrich Pegelow
Christian Nitsch
Maren Jekel
Thomas Holderbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE2002133832 priority Critical patent/DE10233832A1/de
Publication of DE10233832A1 publication Critical patent/DE10233832A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • C11D3/3917Nitrogen-containing compounds
    • C11D3/3925Nitriles; Isocyanates or quarternary ammonium nitriles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Durch Einfügen von kationischen Nitrilen der Formel (I) DOLLAR F1 in der R·1· für -H, -CH¶3¶, einen C¶2-24¶-Alkyl- oder -Alkenylrest, einen substituierten C¶2-24¶-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH¶2¶, -CN, einen Alkyl- oder Alkenylarylrest mit einer C¶1-24¶-Alkylgruppe oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C¶1-24¶-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R·2· und R·3· unabhängig voneinander ausgewählt sind aus -CH¶2¶-CN, -CH¶3¶, -CH¶2¶-CH¶3¶, -CH¶2¶-CH¶2¶-CH¶3¶, -CH(CH¶3¶)-CH¶3¶, CH¶2¶-OH, -CH¶2¶-CH¶2¶-OH, -CH(OH)-CH¶3¶, -CH¶2¶-CH¶2¶-CH¶2¶-OH, -CH¶2¶-CH(OH)-OH¶3¶, -CH(OH)-CH¶2¶-CH¶3¶, -(CH¶2¶CH¶2¶-O)¶n¶H mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist, in eine Kavität eines vorverpreßten Formkörpers und anschließendes Verschließen der Kavität mit einer Folie läßt sich die Stabilitätsproblematik dieser Stoffklasse lösen.

Description

  • Die vorliegende Erfindung betrifft Wasch- und Reinigungsmittelformkörper, die als Bleichaktivatoren sogenannte Nitrilquats enthalten. Insbesondere betrifft die Erfindung maschinelle Geschirrspülmittel mit den genannten Bleichaktivatoren.
  • Reinigungsmittelzusammensetzungen für das maschinelle Geschirrspülen sind in mannigfaltigen Angebotsformen beschrieben und im Markt vertreten. Von besonderer Bedeutung sind dabei pulver- oder granulafförmige Reiniger, Flüssigkeiten, Gele usw. oder einzeln in Behältnissen aus wasserlöslicher Folie verpackte Zusammensetzungen. Die größte Bedeutung im Markt haben Reinigungsmitteltabletten für das maschinelle Geschirrspülen, da sie kompakt und einfach zu handhaben sind.
  • Ein Nachteil bei der Angebotsform "Tablette" liegt darin, daß die Inhaltsstoffe naturgemäß in sehr engem Kontakt zueinander stehen, was bei miteinander unverträglichen Inhaltsstoffen zu unerwünschten Reaktionen und Aktivsubstanzverlusten führen kann. Darüber hinaus können Abbauprodukte gefärbt oder überlriechend sein, so daß das Produkt vom Verbraucher als mängelbehaftet wahrgenommen und nicht wieder gekauft wird.
  • Ein Ansatz zur Lösung dieses Problems liegt in der geometrischen Trennung unverträglicher Inhaltsstoffe" beispielsweise in verschiedenen Formkörperbereichen wie Schichten. Waschmitteltabletten, in denen einzelne Inhaltsstoffe getrennt von anderen vorliegen, werden beispielsweise in der EP-A-0 481 793 (Unilever) beschrieben. Die in dieser Schrift offenbarten Waschmitteltabletten enthaltend Natriumpercarbonat, das von allen anderen Komponenten, die seine Stabilität beeinflussen könnten (beispielsweise Bleichaktivatoren), räumlich getrennt vorliegt. Angaben zur Teilchengröße des Bleichaktivators sind dieser Schrift nicht zu entnehmen, auch werden Bleichaktivatoren des Nitrilquat-Typs nicht erwähnt.
  • Das Problem läßt sich auf diese Weise zwar minimieren, aber nicht vollständig lösen, da an der Phasengrenzfläche immer noch direkte und enge Kontakte bestehen. Darüber hinaus migriert Kristallwasser und/oder Konstitutionswasser im Formkörper und kann so auch über Phasengrenzflächen hinweg zu unerwünschten Reaktionen führen. Dieses Problem ist bei den empfindlichen Nitrilquats gegenüber robusteren Bleichaktivatoren wie dem TAED noch deutlicher ausgeprägt.
  • Bleichmittelzusammensetzungen, welche Bleichaktivatoren vom Nitrilquat-Typ enthalten, sind im Stand der Technik beschrieben. So offenbart die europäische Patentanmeldung EP 303 520 (Kao Corp.) Bleichmittelzusammensetzungen, welche ein Peroxid und eine Persäure-Vorstufe enthalten, die mindestens eine Gruppe N+-CH2-CN oder eine N+(CH2CN)2 enthalten. Wasch- und Reinigungsmittelformkörper werden in dieser Schrift nicht erwähnt.
  • Kationische Nitrile der allgemeinen Formel R1R11R111N+CR1R2-CN und ihr Einsatz als Bleichaktivator werden in der europäischen Patentanmeldung EP 464 880 (Unilever) beschrieben. Auch in dieser Schrift fehlt jegliche Angabe zu Wasch- und Reinigungsmittelformkörpern und Teilchengrößen der Aktivatoren.
  • Die europäische Patentanmeldung EP 458 396 (Unilever) beschreibt ebenfalls Bleichmittelzusammensetzungen, welche ein Peroxy-Bleichmittel und einen Persäurevorläufer mit mindestens einer Gruppe N+-CH2-CN oder N+(CH2CN)2 enthalten. Auch in dieser Schrift werden weder Teilchengrößen noch Wasch- und Reinigungsmittelformkörper erwähnt.
  • Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, Wasch- oder Reinigungsmittel, insbesondere maschinelle Geschirrspülmittel, in Tablettenform bereitzustellen, die Nitrilquats enthalten und die vorstehend genannten Stabilitätsprobleme nicht aufweisen.
  • Es wurde nun gefunden, daß die langzeitlagerstabile Einarbeitung von Nitrilquats in Wasch- oder Reinigungsmitteltabletten, insbesondere Reinigungsmitteltabletten für das maschinelle Geschirrspülen gelingt, wenn die Nitrilquats - vorzugsweise in Partikelform mit bestimmter Teilchengrößenverteilung in Hohlräume eingearbeitet werden, welche von einer Tablette und einer wasserlöslichen Folie gebildet werden.
  • Gegenstand der vorliegenden Erfindung sind in einer ersten Ausführungsform Wasch- und Reinigungsmitteltabletten, enthaltend mindestens ein kationisches Nitril der Formel (I)


    in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist, wobei der Formkörper mindestens eine Kavität aufweist, deren Öffnung(en) mit einer Folie verschlossen ist/sind und das/die kationische(n) Nitril(e) der Formel (I) in der Kavität enthalten sind.
  • Die erfindungsgemäßen Formkörper können die kationischen Nitrile der allgemeinen Formel (I) in variierenden Mengen enthalten, wobei die Menge vom Einsatzzweck der Formkörper abhängt. So enthalten Waschmitteltabletten und Reinigungsmitteltabletten für das maschinelle Geschirrspülen üblicherweise weniger Bleichaktivator als beispielsweise Bleichmitteltabletten, die zu großen Teilen aus Bleichmittel und Bleichaktivator bestehen. Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß sie das kationische Nitril der Formel (I) in Mengen von 0,1 bis 20 Gew.-%, vorzugsweise von 0,25 bis 15 Gew.-% und insbesondere von 0,5 bis 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
  • Besonders bevorzugt ist es, wenn die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper das kationische Nitril der Formel (I) in gröberer Form enthalten. In bevorzugten Wasch- und Reinigungsmittelformkörpern weisen mindestens 90 Gew.-% der Teilchen des kationischen Nitrils der Formel (I) eine Teilchengröße oberhalb 0,2 mm auf.
  • Es ist im Rahmen der vorliegenden Erfindung bevorzugt, wenn die Teilchen des kationischen Nitrils nicht nur zu mehr als 90 Gew.-% Teilchen mit Größen oberhalb 0,2 mm aufweisen, sondern zu einem hohen Anteil noch gröbere Teilchen enthalten. Bevorzugte Wasch- und Reinigungsmittelformkörper sind dabei dadurch gekennzeichnet, daß mindestens 40 Gew.-%, vorzugsweise mindestens 50 Gew.-% und insbesondere mindestens 60 Gew.-%, der Teilchen des kationischen Nitrils der Formel (I) eine Teilchengröße oberhalb 0,4 mm aufweisen.
  • Der Anteil an Teilchen mit Größen oberhalb 200 µm soll vorzugsweise mehr als 90 Gew.-%, bezogen auf die Gesamtheit der Teilchen des kationischen Nitrils, betragen. Um eine vorteilhafte homogene Teilchengrößenverteilung zu besitzen, sollten die eingesetzten Bleichaktivatoren insbesondere frei von zu feinen bzw. Staub-Anteilen sein, also besonders bevorzugt gar keine Teilchen unter 0,2 mm Durchmesser enthalten. In besonders bevorzugten Wasch- und Reinigungsmittelformkörpern sind die kationischen Nitrile substantiell frei von Teilchen mit Größen unterhalb 0,2 mm. Unter "substantiell frei" werden im Rahmen der vorliegenden Erfindung Gehalte unter 2 Gew.-%, vorzugsweise unter 1 Gew.-% und insbesondere unter 0,5 Gew.-%, jeweils bezogen auf die Gesamtheit der Teilchen, verstanden.
  • In besonders bevorzugten Wasch- und Reinigungsmittelformkörpern weist das kationische Nitril der Formel (I) eine mittlere Teilchengröße oberhalb von 400 µm, vorzugsweise oberhalb von 500 µm, besonders bevorzugt oberhalb von 600 µm und insbesondere oberhalb von 700 µm auf.
  • Zusammenfassend sind erfindungsgemäße Wasch- oder Reinigungsmitteltabletten bevorzugt, bei denen das/die in der Kavität enthaltene(n) kationische(n) Nitril(e) der Formel (I) partikelförmig sind, wobei vorzugsweise mindestens 90 Gew.-% der Teilchen des kationischen Nitrils der Formel (I) eine Teilchengröße oberhalb 0,2 mm aufweisen, besonders bevorzugt mindestens 40 Gew.-%, vorzugsweise mindestens 50 Gew.-% und insbesondere mindestens 60 Gew.-%, der Teilchen des kationischen Nitrils der Formel (I) eine Teilchengröße oberhalb 0,4 mm aufweisen und das kationische Nitril der Formel (I) insbesondere bevorzugt eine mittlere Teilchengröße oberhalb von 400 µm, vorzugsweise oberhalb von 500 µm, besonders bevorzugt oberhalb von 600 µm und insbesondere oberhalb von 700 µm aufweist.
  • Unter die allgemeine Formel (I) fällt eine Vielzahl von kationischen Nitrilen, die im Rahmen der vorliegenden Erfindung einsetzbar sind. Mit besonderem Vorteil enthalten die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper dabei kationische Nitrile, in denen R1 für Methyl, Ethyl, Propyl, Isopropyl oder einen n-Butyl, n-Hexyl, n-Octyl, n-Decyl, n-Dodecyl, n-Tetradecyl, n-Hexadecyl oder n-Octadecylrest steht. R2 und R3 sind vorzugsweise ausgewählt aus Methyl, Ethyl, Propyl, Isopropyl und Hydroxyethyl, wobei einer oder beide Reste vorteilhaft auch noch ein Cyanomethylenrest sein kann. In der folgenden Tabelle sind erfindungsgemäß bevorzugte kationische Nitrile der Formel (I) durch ihre Reste R1, R2 und R3 charakterisiert:






  • Aus Gründen der leichteren Synthese sind Verbindungen bevorzugt, in denen die Reste R1 bis R3 identisch sind, beispielsweise (CH3)3N(+)CH2-CN X-, (CH3CH2)3N(+)CH2-CN X-, (CH3CH2CH2)3N(+)CH2- CN X-, (CH3CH(CH3))3N(+)CH2-CN X-, oder (HO-CH2-CH2)3N(+)CH2-CN X-. Ein- oder mehrphasige Wasch- und Reinigungsmitteltabletten, die als kationisches Nitril der Formel (I) ein kationisches Nitril der Formel (Ia)


    enthalten, in der R4, R5 und R6 unabhängig voneinander ausgewählt sind aus -CH3, -CH2-CH3, -CH2- CH2-CH3, -CH(CH3)-CH3, wobei R4 zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R5 = R6 = -CH3 und insbesondere R4 = R5 = R6 = -CH3 gilt, sind erfindungsgemäß besonders bevorzugt.
  • Wasch- und Reinigungsmitteltabletten, die als kationisches Nitril (CH3)3N(+)CH2-CN X- enthalten, wobei X- für ein Anion steht, das aus der Gruppe Chlorid, Bromid, Iodid, Hydrogensulfat, Methosulfat, p- Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, sind erfindungsgemäß besonders bevorzugt.
  • Die vorstehend beschriebenen Nitrilquats werden in flüssiger, gelförmiger, pastöser oder fester Zubereitungsform (vorzugsweise in partikelförmiger Zubereitung gemäß den vorstehenden Angaben) in eine Kavität eines vorverpreßten Formkörpers eingebracht und die Kavität mit einer Folie abgedichtet. Auf diese Weise wird der Kontakt des Nitrilquats zu den übrigen Inhaltsstoffen auch ohne Coatingschichten minimiert und der genannte Aufgabenkomplex gelöst.
  • Die Kavität der Formkörper kann dabei jedwede Form aufweisen. Sie kann den Formkörper durchteilen, d. h. eine Öffnung an Ober- und Unterseite des Formkörpers aufweisen, sie kann aber auch eine nicht durch den gesamten Formkörper gehende Kavität sein, deren Öffnung nur an einer Formkörperseite sichtbar ist.
  • Die erfindungsgemäßen Formkörper können jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weisen die erfindungsgemäßen Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.
  • Selbstverständlich können die erfindungsgemäßen Formkörper auch mehrphasig hergestellt werden. Aus Gründen der Verfahrensökonomie haben sich hier zweischichtige Formkörper besonders bewährt.
  • Auch die Form der Kavität kann in weiten Grenzen frei gewählt werden. Aus Gründen der Verfahrensökonomie haben sich durchgehende Löcher, deren Öffnungen an einander gegenüberliegenden Flächen der Formkörper liegen, und Mulden mit einer Öffnung an einer Formkörperseite bewährt. In bevorzugten Wasch- und Reinigungsmittelformkörpern weist die Kavität die Form eines durchgehenden Loches auf, dessen Öffnungen sich an zwei gegenüberliegenden Formkörperflächen befinden. Die Form eines solchen durchgehenden Lochs kann frei gewählt werden, wobei Formkörper bevorzugt sind, in denen das durchgehende Loch kreisrunde, ellipsenförmige, dreieckige, rechteckige, quadratische, fünfeckige, sechseckige, siebeneckige oder achteckige Horizontalschnitte aufweist. Auch völlig irreguläre Lochformen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Formkörpern sind im Falle von eckigen Löchern solche mit abgerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefaßten Kanten bevorzugt.
  • Die vorstehend genannten geometrischen Realisierungsformen lassen sich beliebig miteinander kombinieren. So können Formkörper mit rechteckiger oder quadratischer Grundfläche und kreisrunden Löchern ebenso hergestellt werden wie runde Formkörper mit achteckigen Löchern, wobei der Vielfalt der Kombinationsmöglichkeiten keine Grenzen gesetzt sind. Aus Gründen der Verfahrensökonomie und des ästhetischen Verbraucherempfindens sind Formkörper mit Loch besonders bevorzugt, bei denen die Formkörpergrundfläche und der Lochquerschnitt die gleiche geometrische Form haben, beispielsweise Formkörper mit quadratischer Grundfläche und zentral eingearbeitetem quadratischem Loch. Besonders bevorzugt sind hierbei Ringformkörper, d. h. kreisrunde Formkörper mit kreisrundem Loch.
  • Bevorzugt erfindungsgemäße Wasch- und Reinigungsmitteltabletten sind dadurch gekennzeichnet, daß die Kavität die Form eines durchgehenden Loches aufweist, dessen Öffnungen sich an zwei gegenüberliegenden Formkörperflächen befinden.
  • Wenn das o. g. Prinzip des an zwei gegenüberliegenden Formkörperseiten offenen Lochs auf eine Öffnung reduziert wird, gelangt man zu Muldenformkörpern. Erfindungsgemäße Wasch- und Reinigungsmittelformkörper, bei denen die Kavität die Form einer Mulde aufweist, sind ebenfalls bevorzugt. VVIe bei den "Lochformkörpern" können die erfindungsgemäßen Formkörper auch bei dieser Ausführungsform jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weist der Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefaßten") Kanten bevorzugt.
  • Zusammenfassend sind erfindungsgemäße Wasch- und Reinigungsmitteltabletten bevorzugt, bei denen die Kavität die Form einer Mulde aufweist.
  • Die Größe der Mulde oder des durchgehenden Loches im Vergleich zum gesamten Formkörper richtet sich nach dem gewünschten Verwendungszweck der Formkörper. Je nachdem, ob die Kavität mit weiterer Aktivsubstanz befüllt werden soll und ob eine geringere oder größere Menge an Aktivsubstanz enthalten sein soll, kann die Größe der Kavität variieren. Unabhängig vom Verwendungszweck sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen das Volumenverhältnis von Formkörper zu Kavität 2 : 1 bis 100 : 1, vorzugsweise 3 : 1 bis 80 : 1, besonders bevorzugt 4 : 1 bis 50 : 1 und insbesondere 5 : 1 bis 30 : 1, beträgt. Das Volumenverhältnis errechnet sich dabei aus dem Volumen des erfindungsgemäßen fertigen Formkörpers, d. h. des Formkörpers, der die Kavität aufweist, die mit der Folie verschlossen ist und dem Volumen der Kavität. Die Differenz beider Volumina ergibt das Volumen des Formkörpers mit Kavität, bei dem die Kavität nicht mit Folie verschlossen ist. In anderen Worten: weist der Formkörper beispielsweise eine orthorhombische Form mit den Seitenlängen 2, 3 und 4 cm auf und besitzt eine Mulde mit einem Volumen von 2 cm3, so beträgt das Volumen dieses "Basisformkörpers" 22 cm3. Das zur Berechnung des Verhältnisses benutzte Volumen beträgt 24 cm3, da die Mulde mit Folie verschlossen ist und dadurch nach außen ein orthorhombischer Formkörper ohne Mulde vorliegt. In diesem Beispiel liegt das Verhältnis der Volumina also bei 12 : 1. Bei Volumenverhältnissen Formkörper: Kavität unterhalb von 2 : 1, die erfindungsgemäß selbstverständlich auch realisierbar sind, kann die Instabilität der Wandungen ansteigen.
  • Ähnliche Aussagen lassen sich zu den Oberflächenanteilen machen, die der Formkörper mit der Kavität ("Basisformkörper") bzw. die Öffnungsfläche der Kavität an der Gesamtoberfläche des Formkörpers ausmachen. Hier sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen die Fläche der Öffnung(en) der Kavität(en) 1 bis 25%, vorzugsweise 2 bis 20%, besonders bevorzugt 3 bis 15% und insbesondere 4 bis 10% der Gesamtoberfläche des Formkörpers ausmacht. Die Gesamtoberfläche des Formkörpers entspricht hierbei wieder der Gesamtoberfläche des Formkörpers mit verschlossener Kavität, im obigen Beispiel also ungeachtet der Öffnungsfläche der Mulde 52 cm2. Die Öffnung(en) der Kavität weist/weisen bei einem solchen beispielhaften Formkörper in bevorzugten Ausführungsformen der vorliegenden Erfindung also eine Fläche von 0,52 bis 13 cm2, vorzugsweise von 1,04 bis 10,4 cm2, besonders bevorzugt 1,56 bis 7,8 cm2 und insbesondere 2,08 bis 5,2 cm2 auf.
  • Die erfindungsgemäßen Formkörper mit Kavität sind dadurch gekennzeichnet, daß die Öffnung(en) der Kavität(en) mit Folie verschlossen sind. Dabei ist im Rahmen der vorliegenden Erfindung unter dem Begriff "verschlossen" zu verstehen, daß die Folie, die die Öffnung der Kavität(en) verschließt, haftfest mit dem Formkörper verbunden ist. Eine Verpackung, in die der Formkörper eingelegt wird, erfüllt daher nicht das erfindungsgemäße Kriterium des "Verschließens".
  • Die Folie, die die Öffnung(en) der Kavität(en) verschließt, wird auf die Oberfläche des Formkörpers aufgebracht und haftfest mit dieser verbunden, was beispielsweise durch Ankleben, partielles Aufschmelzen oder durch chemische Reaktion erfolgen kann. Es ist möglich, die Folie auf alle Formkörperoberflächen aufzubringen und haftfest mit diesen zu verbinden, so daß die Folie eine Beschichtung, ein "Coating" des gesamten Formkörpers ausmacht. Bevorzugte Wasch- und Reinigungsmittelformkörper sind allerdings dadurch gekennzeichnet, daß die Folie nicht den gesamten Formkörper umschließt.
  • Aus Gründen der Verfahrensökonomie und des ästhetischen Eindrucks ist es bevorzugt, daß die Folie nur auf die Formkörperoberflächen aufgebracht wird, wo sie eine Funktion erfüllt, d. h. dem Verschließen von Kavitäten dient. Wasch- und Reinigungsmittelformkörper, bei denen die Folie nur die Flächen des Formkörpers bedeckt, in denen sich Öffnungen der Kavität(en) befinden, sind demnach bevorzugt.
  • Die kavitätsverschließende Folie kann selbstverständlich auch ein Laminat aus mehreren unterschiedlich zusammengesetzten Folien sein, über unterschiedliche Zusammensetzungen einzelner Folienschichten kann die Öffnung der Kavität zu bestimmten Zeitpunkten im Wasch- und Reinigungsgang freigegeben werden, was insbesondere dann von Vorteil ist, wenn die verschlossene Kavität weitere Aktivsubstanz enthält.
  • Bevorzugte Folienmaterialien sind die aus dem Stand der Technik bekannten Polymere. Insbesondere sind Wasch- und Reinigungsmitteltabletten bevorzugt, bei denen die Folie aus einem Polymer mit einer Molmasse zwischen 5000 und 500.000 Dalton, vorzugsweise zwischen 7500 und 250.000 Dalton und insbesondere zwischen 10.000 und 100.000 Dalton, besteht. Im Hinblick auf die Medien, in die Wasch- und Reinigungsmittel üblicherweise eingebracht werden, sind insbesondere Wasch- und Reinigungsmittelftabletten bevorzugt, bei denen die Folie aus einem wasserlöslichen Polymer besteht.
  • Solche bevorzugten Polymere können synthetischen oder natürlichen Ursprungs sein. Werden Polymere auf nativer oder teilnativer Basis als Folienmaterial eingesetzt, so sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen das Folienmaterial ausgewählt ist aus einem oder mehreren Stoffen aus der Gruppe Carrageenan, Guar, Pektin, Xanthan, Cellulose und ihren Derivate, Stärke und ihren Derivaten sowie Gelatine.
  • Carrageenan ist ein nach dem irischen Küstenort Carragheen benannter, gebildeter und ähnlich wie Agar aufgebauter Extrakt aus nordatlantischen, zu den Florideen zählenden Rotalgen. Das aus dem Heißwasserextrakt der Algen ausgefällte Carrageenan ist ein farbloses bis sandfarbenes Pulver mit Molmassen von 100000-800000 und einem Sulfat-Gehalt von ca. 25%, das in warmem Wasser sehr leicht löslich ist. Beim Carrageenan unterscheidet man drei Hauptbestandteile: Die gelbbildende ƒ- Fraktion besteht aus D-Galaktose-4-sulfat und 3,6-Anhydro-□-D-galaktose, die abwechselnd in 1,3- und 1,4-Stellung glycosidisch verbunden sind (Agar enthält demgegenüber 3,6-Anhydro-□-L- galaktose). Die nicht gelierende 1-Fraktion ist aus 1,3-glykosidisch verknüpften D-Galaktose-2-sulfat und 1,4-verbundenen D-Galaktose-2,6-disulfat-Resten zusammengesetzt und in kaltem Wasser leicht löslich. Das aus D-Galaktose-4-sulfat in 1,3-Bindung und 3,6-Anhydro-a-D-galaktose-2-sulfat in 1,4- Bindung aufgebaute i-Carrageenan ist sowohl wasserlöslich als auch gelbildend. Weitere Carrageenan-Typen werden ebenfalls mit griechischen Buchstaben bezeichnet: α, β, γ, µ, ν, ξ, π, ω, χ. Auch die Art vorhandener Kationen (K, NH4, Na, Mg, Ca) beeinflußt die Löslichkeit der Carrageenane. Halbsynthetische Produkte, die nur eine Ionen-Sorte enthalten und im Rahmen der vorliegenden Erfindung ebenfalls als Folienmaterialien einsetzbar sind, werden auch Carrag(h)eenate genannt.
  • Das im Rahmen der vorliegenden Erfindung als Folienmaterial einsetzbare Guar, auch Guar-Mehl genannt, ist ein grauweißes Pulver, das durch Mahlen des Endosperms der ursprünglich im indischen und pakistanischen Raum endemischen, inzwischen auch in anderen Ländern, z. B. im Süden der USA, kultivierten, zur Familie der Leguminosen gehörenden Guarbohne (Cyamopsis tetragonobolus) gewonnen wird. Hauptbestandteil des Guar ist mit bis zu ca. 85 Gew.-% der Trockensubstanz Guaran (Guar-Gummi, Cyamopsis-Gummi); Nebenbestandteile sind Proteine, Lipide und Cellulose. Guaran selbst ist ein Polygalactomannan, d. h. ein Polysaccharid, dessen lineare Kette aus nichtsubstituierten (siehe Formel I) und in der C6-Position mit einem Galactose-Rest substituierten (siehe Formel (II) Mannose-Einheiten in □-D-(1→4)-Verknüpfung aufgebaut ist.


  • Das Verhältnis von 1 : 11 beträgt ca. 2 : 1; die II-Einheiten sind entgegen ursprünglicher Annahmen nicht streng alternierend, sondern in Paaren oder Tripletts im Polygalactomannan-Molekül angeordnet. Angaben zur Molmasse des Guarans variieren mit Werten von ca. 2,2.105-2,2.106 g/mol in Abhängigkeit vom Reinheitsgrad des Polysaccharids - der hohe Wert wurde an einem hochgereinigten Produkt ermittelt - signifikant und entsprechen ca. 1350-13500 Zucker- Einheiten/Makromolekül. In den meisten organischen Lösungsmitteln ist Guaran unlöslich.
  • Die ebenfalls als Folienmaterial einsetzbaren Pektine sind hochmolekulare glykosidische Pflanzenstoffe, die in Früchten, Wurzeln und Blättern sehr verbreitet sind. Die Pektine bestehen im wesentlichen aus Ketten von 1,4-□-glykosid verbundenen Galacturonsäure-Einheiten, deren Säuregruppen zu 20-80% mit Methanol verestert sind, wobei man zwischen hochveresterten (> 50%) und niedrigveresterten Pektinen (< 50%) unterscheidet. Die Pektine haben eine Faltblattstruktur und stehen damit in der Mitte Stärke- und Cellulose-Molekülen. Ihre Makromoleküle enthalten noch etwas Glucose, Galactose, Xylose und Arabinose und weisen schwach saure Eigenschaften auf.


  • Obst-Pektin enthält 95%, Rüben-Pektin bis 85% Galacturonsäure. Die Molmassen der verschiedenen Pektine variieren zwischen 10000 und 500000. Auch die Struktureigenschaften sind stark vom Polymerisationsgrad abhängig; so bilden z. B. die Obst-Pektine in getrocknetem Zustand asbestartige Fasern, die Flachs-Pektine dagegen feine, körnige Pulver.
  • Die Pektine werden durch Extraktion mit verdünnten Säuren vorwiegend aus den inneren Anteilen von Citrusfruchtschalen, Obstresten oder auch Zuckerrübenschnitzeln hergestellt.
  • Auch Xanthan ist als Folienmaterial erfindungsgemäß einsetzbar. Xanthan ist ein mikrobielles anionisches Heteropolysaccharid, das von Xanthomonas campestris und einigen anderen Species unter aeroben Bedingungen produziert wird und eine Molmasse von 2 bis 15 Millionen Dalton aufweist. Xanthan wird aus einer Kette mit β-1,4-gebundener Glucose (Cellulose) mit Seitenketten gebildet. Die Struktur der Untergruppen besteht aus Glucose, Mannose, Glucuronsäure, Acetat und Pyruvat, wobei die Anzahl der Pyruvat-Einheiten die Viskosität des Xanthans bestimmt. Xanthan läßt sich durch folgende Formel beschreiben: Grundeinheit von Xanthan

  • Die Cellulosen und ihre Derivate sind ebenfalls als Folienmaterialien geeignet. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein p-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Folienmaterial auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.
  • Neben Cellulose und Cellulosederivaten können auch (modifizierte) Dextrine, Stärke und Stärkederivate als Folienmaterialien eingesetzt werden.
  • Als nichtionische organische Folienmaterialien geeignet sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.
  • Auch Stärke kann als Folienmaterial für die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper eingesetzt werden. Stärke ist ein Homoglykan, wobei die Glucose- Einheiten α-glykosidisch verknüpft sind. Stärke ist aus zwei Komponenten unterschiedlichen Molekulargewichts aufgebaut: Aus ca. 20-30% geradkettiger Amylose (MG. ca. 50.000-150.000) und 70-80% verzweigtkettigem Amylopektin (MG. ca. 300.000-2.000.000), daneben sind noch geringe Mengen Lipide, Phosphorsäure und Kationen enthalten. Während die Amylose infolge der Bindung in 1,4-Stellung lange, schraubenförmige, verschlungene Ketten mit etwa 300-1200 Glucose-Molekülen bildet, verzweigt sich die Kette beim Amylopektin nach durchschnittlich 25 Glucose-Bausteinen durch 1,6-Bindung zu einem astähnlichen Gebilde mit etwa 1500-12000 Molekülen Glucose. Neben reiner Stärke sind als Folienmaterialien im Rahmen der vorliegenden Erfindung auch Stärke-Derivate, die durch polymeranaloge Reaktionen aus Stärke erhältlich sind, geeignet. Solche chemisch modifizierten Stärken umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Stärken, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Stärke-Derivate einsetzen. In die Gruppe der Stärke-Derivate fallen beispielsweise Alkalistärken, Carboxymethylstärke (CMS), Stärkeester und -ether sowie Aminostärken.
  • Unter den Proteinen und modifizierten Proteinen hat Gelatine als Folienmaterial eine herausragende Bedeutung. Gelatine ist ein Polypeptid (Molmasse: ca. 15.000->250.000 g/mol), das vornehmlich durch Hydrolyse des in Haut und Knochen von Tieren enthaltenen Kollagens unter sauren oder alkalischen Bedingungen gewonnen wird. Die Aminosäuren-Zusammensetzung der Gelatine entspricht weitgehend der des Kollagens, aus dem sie gewonnen wurde, und variiert in Abhängigkeit von dessen Provenienz. Die Verwendung von Gelatine als wasserlösliches Hüllmaterial ist insbesondere in der Pharmazie in Form von Hart- oder Weichgelatinekapseln äußerst weit verbreitet.
  • Weitere als Folienmaterialien einsetzbare Polymere sind synthetische Polymere, die vorzugsweise wasserquellbar und/oder wasserlöslich sind. Solche Polymere auf synthetischer Basis können für die gewünschte Foliendurchlässigkeit bei Lagerung und Auflösung der Folie bei Anwendung "maßgeschneidert" werden. Besonders bevorzugte erfindungsgemäße Wasch- und Reinigungsmitteltabletten sind dadurch gekennzeichnet, daß das Folienmaterial ausgewählt ist aus einem Polymer oder Polymergemisch, wobei das Polymer bzw. mindestens 50 Gew.-% des Polymergemischs ausgewählt ist aus
    • a) wasserlöslichen nichtionischen Polymeren aus der Gruppe der
      • 1. Polyvinylpyrrolidone,
      • 2. VinylpyrrolidonlVinylester-Copolymere,
      • 3. Celluloseether
    • b) wasserlöslichen amphoteren Polymeren aus der Gruppe der
      • 1. Alkylacrylamid/Acrylsäure-Copolymere
      • 2. Alkylacrylamid/Methacrylsäure-Copolymere
      • 3. Alkylacrylamid/Methylmethacrylsäure-Copolymere
      • 4. Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure- Copolymere
      • 5. Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure- Copolymere
      • 6. Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure- Copolymere
      • 7. Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere
      • 8. Copolymere aus
        • 1. ungesättigten Carbonsäuren
        • 2. kationisch derivatisierten ungesättigten Carbonsäuren
        • 3. gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    • c) wasserlöslichen zwitterionischen Polymeren aus der Gruppe der
      • 1. Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
      • 2. Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
      • 3. Methacroylethylbetain/Methacrylat-Copolymere
    • d) wasserlöslichen anionischen Polymeren aus der Gruppe der
      • 1. Vinylacetat/Crotonsäure-Copolymere
      • 2. VinylpyrrolidonNinylacrylat-Copolymere
      • 3. Acrylsäure/Ethylacrylat/N-tert.-Butylacrylamid-Terpolymere
      • 4. Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
      • 5. gepropften und vernetzten Copolymeren aus der Copolymerisation von
        • 1. mindesten einem Monomeren vom nicht-ionischen Typ,
        • 2. mindestens einem Monomeren vom ionischen Typ,
        • 3. von Polyethylenglycol und
        • 4. einem Vernetzer
      • 6. durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere:
        • 1. Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
        • 2. ungesättigte Carbonsäuren,
        • 3. Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe d6ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols
      • 7. Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester
      • 8. Tetra- und Pentapolymere aus
        • 1. Crotonsäure oder Allyloxyessigsäure
        • 2. Vinylacetat oder Vinylpropionat
        • 3. verzweigten Allyl- oder Methallylestern
        • 4. Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
      • 9. Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinymethylether, Acrylamid und deren wasserlöslicher Salze
      • 10. Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in □-Stellung verzweigten Monocarbonsäure
    • e) wasserlöslichen kationischen Polymeren aus der Gruppe der
      • 1. quaternierten Cellulose-Derivate
      • 2. Polysiloxane mit quaternären Gruppen
      • 3. kationischen Guar-Derivate
      • 4. polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure
      • 5. Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats
      • 6. Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere
      • 7. quaternierter Polyvinylalkohol
      • 8. unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegebenen Polymere.
  • Wasserlösliche Polymere im Sinne der Erfindung sind solche Polymere, die bei Raumtemperatur in Wasser zu mehr als 2,5 Gew.-% löslich sind.
  • Die Folien der erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können dabei aus einzelnen der vorstehend genannten Polymere hergestellt sein, es können aber auch Mischungen oder mehrlagige Schichtaufbauten aus den Polymeren verwendet werden. Die Polymere werden nachfolgend näher beschrieben.
  • Erfindungsgemäß bevorzugte wasserlösliche Polymere sind nichtionisch. Geeignete nichtionogene Polymere sind beispielsweise:
    • - Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden. Polyvinylpyrrolidone sind bevorzugte nichtionische Polymere im Rahmen der Erfindung.
      Polyvinylpyrrolidone [Poly(1-vinyl-2-pyrrolidinone)], Kurzzeichen PVP, sind Polymere der allg. Formel (III)


      die durch radikalische Polymerisation von 1-Vinylpyrrolidon nach Verfahren der Lösungs- oder Suspensionspolymerisation unter Einsatz von Radikalbildnern (Peroxide, Azo-Verbindungen) als Initiatoren hergestellt werden. Die ionische Polymerisation des Monomeren liefert nur Produkte mit niedrigen Molmassen. Handelsübliche Polyvinylpyrrolidone haben Molmassen im Bereich von ca. 2500-750000 g/mol, die über die Angabe der K-Werte charakterisiert werden und - K-Wert-abhängig - Glasübergangstemperaturen von 130-175° besitzen. Sie werden als weiße, hygroskopische Pulver oder als wäßrige Lösungen angeboten. Polyvinylpyrrolidone sind gut löslich in Wasser und einer Vielzahl von organischen Lösungsmitteln (Alkohole, Ketone, Eisessig, Chlorkohlenwasserstoffe, Phenole u. a.).
    • - Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind besonders bevorzugte nichtionische Polymere.
  • Die Vinylester-Polymere sind aus Vinylestern zugängliche Polymere mit der Gruppierung der Formel (IV)


    als charakteristischem Grundbaustein der Makromoleküle. Von diesen haben die Vinylacetat- Polymere (R = CH3) mit Polyvinylacetaten als mit Abstand wichtigsten Vertretern die größte technische Bedeutung.
  • Die Polymerisation der Vinylester erfolgt radikalisch nach unterschiedlichen Verfahren (Lösungspolymerisation, Suspensionspolymerisation, Emulsionspolymerisation, Substanzpolymerisation.). Copolymere von Vinylacetat mit Vinylpyrrolidon enthalten Monomereinheiten der Formeln (III) und (IV)
    • - Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden.
  • Celluloseether lassen sich durch die allgemeine Formel (V) beschreiben,


    in R für H oder einen Alkyl-, Alkenyl-, Alkinyl-, Aryl- oder Alkylarylrest steht. In bevorzugten Produkten steht mindestens ein R in Formel (III) für -CH2CH2CH2-OH oder -CH2CH2-OH. Celluloseether werden technisch durch Veretherung von Alkalicellulose (z. B. mit Ethylenoxid) hergestellt. Celluloseether werden charakterisiert über den durchschnittlichen Substitutionsgrad DS bzw. den molaren Substitutionsgrad MS, die angeben, wieviele Hydroxy-Gruppen einer Anhydroglucose-Einheit der Cellulose mit dem Veretherungsreagens reagiert haben bzw. wieviel Mol des Veretherungsreagens im Durchschnitt an eine Anhydroglucose-Einheit angelagert wurden. Hydroxyethylcellulosen sind ab einem DS von ca. 0,6 bzw. einem MS von ca. 1 wasserlöslich. Handelsübliche Hydroxyethyl- bzw. Hydroxypropylcellulosen haben Substitutionsgrade im Bereich von 0,85-1,35 (DS) bzw. 1,5-3 (MS). Hydroxyethyl- und -propylcellulosen werden als gelblich-weiße, geruch- und geschmacklose Pulver in stark unterschiedlichen Polymerisationsgraden vermarktet. Hydroxyethyl- und -propylcellulosen sind in kaltem und heißem Wasser sowie in einigen (wasserhaltigen) organischen Lösungsmitteln löslich, in den meisten (wasserfreien) organischen Lösungsmitteln dagegen unlöslich; ihre wäßrigen Lösungen sind relativ unempfindlich gegenüber Änderungen des pH-Werts oder Elektrolyt-Zusatz.
  • Polyvinylalkohole, kurz als PVAL bezeichnet, sind Polymere der allgemeinen Struktur

    [-CH2-CH(OH)-]n

    die in geringen Anteilen auch Struktureinheiten des Typs

    [-CH2-CH(OH)-CH(OH)-CH2]

    enthalten. Da das entsprechende Monomer, der Vinylalkohol, in freier Form nicht beständig ist, werden Polyvinylalkohole über polymeranaloge Reaktionen durch Hydrolyse, technisch insbesondere aber durch alkalisch katalysierte Umesterung von Polyvinylacetaten mit Alkoholen (vorzugsweise Methanol) in Lösung hergestellt. Durch diese technischen Verfahren sind auch PVAL zugänglich, die einen vorbestimmbaren Restanteil an Acetatgruppen enthalten.
  • Handelsübliche PVAL (z. B. Mowiol®-Typen der Firma Hoechst) kommen als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 500-2500 (entsprechend Molmassen von ca. 20.000-100.000 g/mol) in den Handel und haben unterschiedliche Hydrolysegrade von 98-99 bzw. 87-89 Mol%. Sie sind also teilverseifte Polyvinylacetate mit einem Restgehalt an Acetyl- Gruppen von ca. 1-2 bzw. 11-13 Mol-%.
  • Die Wasserlöslichkeit von PVAL kann durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure, Borax verringern und so gezielt auf gewünschte Werte einstellen.
  • Weitere erfindungsgemäß geeignete Polymere sind wasserlösliche Amphopolymere. Unter dem Oberbegriff Amphopolymere sind amphotere Polymere, d. h. Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO-- oder -SO3 --Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H- Gruppen und quartäre Ammoniumgruppen enthalten. Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymer aus tert.-Butylaminoethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt. Ebenfalls bevorzugte Amphopofymere setzen sich aus ungesättigten Carbonsäuren (z. B. Acryl- und Methacrylsäure), kationisch derivatisierten ungesättigten Carbonsäuren (z. B. Acrylamidopropyl-trimethyl-ammoniumchlorid) und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren zusammen, wie beispielsweise in der deutschen Offenlegungsschrift 39 29 973 und dem dort zitierten Stand der Technik zu entnehmen sind. Terpolymere von Acrylsäure, Methylacrylat und Methacrylamidopropyltrimoniumchlorid, wie sie unter der Bezeichnung Merquat® 2001 N im Handel erhältlich sind, sind erfindungsgemäß besonders bevorzugte Ampho-Polymere. Weitere geeignete amphotere Polymere sind beispielsweise die unter den Bezeichnungen Amphomer® und Amphomer® LV-71 (DELFT NATIONAL) erhältlichen Octylacrylamid/Methylmethacrylat/tert.- Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere.
  • Acrylamidopropyltrimethylammoniumchlorid/Acrylsäure- bzw. -Methacrylsäure-Copolymerisate und deren Alkali- und Ammoniumsalze sind bevorzugte zwitterionische Polymere. Weiterhin geeignete zwitterionische Polymere sind Methacroylethylbetain/Methacrylat-Copolymere, die unter der Bezeichnung Amersette® (AMERCHOL) im Handel erhältlich sind.
  • Erfindungsgemäß geeignete anionische Polymere sind u. a.:
    • - Vinylacetat/Crotonsäure-Copolymere, wie sie beispielsweise unter den Bezeichnungen Resyn® (NATIONAL STARCH), Luviset® (BASF) und Gafset® (GAF) im Handel sind.
  • Diese Polymere weisen neben Monomereinheiten der vorstehend genannten Formel (IV) auch Monomereinheiten der allgemeinen Formel (VI) auf:

    [-CH(CH3)-CH(COOH)-]n (VI)
    • - Vinylpyrrolidon/Vinylacrylat-Copolymere, erhältlich beispielsweise unter dem Warenzeichen Luviflex® (BASF). Ein bevorzugtes Polymer ist das unter der Bezeichnung Luviflex® VBM-35 (BASF) erhältliche Vinylpyrrolidon/Acrylat-Terpolymere.
    • - Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere, die beispielsweise unter der Bezeichnung Ultrahold® strong (BASF) vertrieben werden.
    • - Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen.
  • Solche gepfropften Polymere von Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch mit anderen copolymerisierbaren Verbindungen auf Polyalkylenglycolen werden durch Polymerisation in der Hitze in homogener Phase dadurch erhalten, daß man die Polyalkylenglycole in die Monomeren der Vinylester, Ester von Acrylsäure oder Methacrylsäure, in Gegenwart von Radikalbildnern einrührt.
  • Als geeignete Vinylester haben sich beispielsweise Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylbenzoat und als Ester von Acrylsäure oder Methacrylsäure diejenigen, die mit aliphatischen Alkoholen mit niedrigem Molekulargewicht, also insbesondere Ethanol, Propanol, Isopropanol, 1- Butanol, 2-Butanol, 2-Methy-1-Propanol, 2-Methyl-2-Propanol, 1-Pentanol, 2-Pentanol, 3-Pentanol, 2,2-Dimethyl-1-Propanol, 3-Methyl-1-butanol; 3-Methyl-2-butanol, 2-Methyl-2-butanol, 2-Methyl-1- Butanol, 1-Hexanol, erhältlich sind, bewährt.
  • Als Polyalkylenglycole kommen insbesondere Polyethylenglycole und Polypropylenglycole in Betracht. Polymere des Ethylenglycols, die der allgemeinen Formel VII

    H-(O-CH2-CH2)n-OH (VII)

    genügen, wobei n Werte zwischen 1 (Ethylenglycol) und mehreren tausend annehmen kann. Für Polyethylenglycole existieren verschiedene Nomenklaturen, die zu Verwirrungen führen können. Technisch gebräuchlich ist die Angabe des mittleren relativen Molgewichts im Anschluß an die Angabe "PEG", so daß "PEG 200" ein Polyethylenglycol mit einer relativen Molmasse von ca. 190 bis ca. 210 charakterisiert. Für kosmetische Inhaltsstoffe wird eine andere Nomenklatur verwendet, in der das Kurzzeichen PEG mit einem Bindestrich versehen wird und direkt an den Bindestrich eine Zahl folgt, die der Zahl n in der oben genannten Formel V entspricht. Nach dieser Nomenklatur (sogenannte INCI-Nomenklatur, CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997) sind beispielsweise PEG-4, PEG-6, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14 und PEG-16 einsetzbar. Kommerziell erhältlich sind Polyethylenglycole beispielsweise unter den Handelsnamen Carbowax® PEG 200 (Union Carbide), Emkapol® 200 (ICI Americas), Lipoxol® 200 MED (HÜLS America), Polyglycol® E-200 (Dow Chemical), Alkapol® PEG 300 (Rhone-Poulenc), Lutrol® E300 (BASF) sowie den entsprechenden Handelnamen mit höheren Zahlen.
  • Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel VIII


    genügen, wobei n Werte zwischen 1 (Propylenglycol) und mehreren tausend annehmen kann. Technisch bedeutsam sind hier insbesondere Di-, Tri- und Tetrapropylenglycol, d. h. die Vertreter mit n = 2, 3 und 4 in Formel VI.
  • Insbesondere können die auf Polyethylenglycole gepfropften Vinylacetatcopolymeren und die auf Polyethylenglycole gepfropften Polymeren von Vinylacetat und Crotonsäure eingesetzt werden.
  • Gepfropfte und vernetzte Copolymere aus der Copolymerisation von
    • a) mindestens einem Monomeren vom nicht-ionischen Typ,
    • b) mindestens einem Monomeren vom ionischen Typ,
    • c) von Polyethylenglycol und
    • d) einem Vernetzer
  • Das verwendete Polyethylenglycol weist ein Molekulargewicht zwischen 200 und mehreren Millionen, vorzugsweise zwischen 300 und 30.000, auf.
  • Die nicht-ionischen Monomeren können von sehr unterschiedlichem Typ sein und unter diesen sind folgende bevorzugt: Vinylacetat, Vinylstearat, Vinyllaurat, Vinylpropionat, Allylstearat, Allyllaurat, Diethylmaleat, Allylacetat, Methylmethacrylat, Cetylvinylether, Stearylvinylether und 1-Hexen.
  • Die nicht-ionischen Monomeren können gleichermaßen von sehr unterschiedlichen Typen sein, wobei unter diesen besonders bevorzugt Crotonsäure, Allyloxyessigsäure, Vinylessigsäure, Maleinsäure, Acrylsäure und Methacrylsäure in den Pfropfpolameren enthalten sind.
  • Als Vernetzer werden vorzugsweise Ethylenglycoldimethacrylat, Diallylphthalat, ortho-, meta- und para-Divinylbenzol, Tetraallyloxyethan und Polyallylsaccharosen mit 2 bis 5 Allylgruppen pro Molekül Saccharin.
  • Die vorstehend beschriebenen gepfropften und vernetzten Copoymere werden vorzugsweise gebildet aus:
    • a) 5 bis 85 Gew.-% mindestens eine Monomeren vom nicht-ionischen Typ,
    • b) 3 bis 80 Gew.-% mindestens eines Monomeren vom ionischen Typ,
    • c) 2 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-% Polyethylenglycol und
    • d) 0,1 bis 8 Gew.-% eines Vernetzers, wobei der Prozentsatz des Vernetzers durch das Verhältnis der Gesamtgewichte von i), ii) und iii) ausgebildet ist.
  • Durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltene Copolymere:
    • a) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
    • b) ungesättigte Carbonsäuren, iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C6-18-Alkohol
  • Unter kurzkettigen Carbonsäuren bzw. Alkoholen sind dabei solche mit 1 bis 8 Kohlenstoffatomen zu verstehen, wobei die Kohlenstoffketten dieser Verbindungen gegebenenfalls durch zweibindige Heterogruppen wie -O-, -NH-, -S- unterbrochen sein können.
    • - Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester:
      Diese Terpolymere enthalten Monomereinheiten der allgemeinen Formeln (II) und (IV) (siehe oben) sowie Monomereinheiten aus einem oder mehreren Allyl- oder Methallyestern der Formel IX:


    worin R3 für -H oder -CH3, R2 für -CH3 oder -CH(CH3)2 und R1 für -CH3 oder einen gesättigten geradkettigen oder verzweigten C1-6-Alkylrest steht und die Summe der Kohlenstoffatome in den Resten R1 und R2 vorzugsweise 7, 6, 5, 4, 3 oder 2 ist.
  • Die vorstehend genannten Terpolymeren resultieren vorzugsweise aus der Copolymerisation von 7 bis 12 Gew.-% Crotonsäure, 65 bis 86 Gew.-%, vorzugsweise 71 bis 83 Gew.-% Vinylacetat und 8 bis 20 Gew.-%, vorzugsweise 10 bis 17 Gew.-% Allyl- oder Methallylester der Formel IX.
    • - Tetra- und Pentapolymere aus
      • a) Crotonsäure oder Allyloxyessigsäure
      • b) Vinylacetat oder Vinylpropionat
      • c) verzweigten Allyl- oder Methallylestern
      • d) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern;
    • - Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinymethylether, Acrylamid und deren wasserlöslicher Salze,
    • - Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure.
  • Als Folienmaterialien bieten sich bei den anionischen Polymeren insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Polyasparaginsäure, Polyacetale und Dextrine an, die nachfolgend beschrieben werden.
  • Brauchbare organische Folienmaterialien sind beispielsweise die in Form ihrer Natriumsalze aber auch in freier Form einsetzbaren Polycarbonsäuren. Polymere Polycarboxylate sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere als Folienmaterialien bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte copolymere Folienmaterialien sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
  • Ebenso sind als weitere bevorzugte Folienmaterialien polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
  • Weitere geeignete Folienmaterialien sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere, bevorzugt als Folienmaterialien einsetzbare Polymere sind kationische Polymere. Unter den kationischen Polymeren sind dabei die permanent kationischen Polymere bevorzugt. Als "permanent kationisch" werden erfindungsgemäß solche Polymeren bezeichnet, die unabhängig vom pH-Wert der Mittels (also sowohl der Folie als auch des übrigen Wasch- und Reinigungsmittelformkörpers) eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten.
  • Bevorzugte kationische Polymere sind beispielsweise
    • - quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR® 400 sind bevorzugte quaternierte Cellulose-Derivate;
    • - Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller Dow Corning; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino-modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquaternäre Polydimethylsiloxane, Quaternium-80);
    • - Kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosmedia®Guar und Jaguar® vertriebenen Produkte;
    • - Polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammoniumchlorid- Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere;
    • - Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und - methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinylpyrrolidon- Dimethylaminomethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich;
    • - Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere, wie sie unter der Bezeichnung Luviquat® angeboten werden;
    • - quaternierter Polyvinylalkohol;
    sowie die unter den Bezeichnungen
    • - Polyquaternium 2,
    • - Polyquaternium 17,
    • - Polyquaternium 18 und
    • - Polyquaternium 27;
    bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette. Die genannten Polymere sind dabei nach der sogenannten INCI-Nomenklatur bezeichnet, wobei sich detaillierte Angaben im CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997, finden, auf die hier ausdrücklich Bezug genommen wird.
  • Erfindungsgemäß bevorzugte kationische Polymere sind quaternisierte Cellulose-Derivate sowie polymere Dimethyldiallylammoniumsalze und deren Copolymere. Kationische Cellulose-Derivate, insbesondere das Handelsprodukt Polymer®JR 400, sind ganz besonders bevorzugte kationische Polymere.
  • In bevorzugten erfindungsgemäßen Wasch- oder Reinigungsmitteltabletten ist das Folienmaterial ausgewählt aus der Gruppe (gegebenenfalls acetalisierter) Polyvinylalkohol (PVAL) und/oder PVAL- Copolymere, Polyvinylpyrrolidon, Polyethylenoxid, Polyethylenglykol, Gelatine, Cellulose und deren Derivate, insbesondere MC, HEC, HPC, HPMC und/oder CMC, und/oder Copolymere sowie deren Mischungen. Gegebenenfalls können den Umhüllungen dem Fachmann bekannte Weichmacher zur Erhöhung der Flexibilität des Materials beigemischt sein.
  • Im Rahmen der vorliegenden Erfindung sind Polyvinylalkohole als wasserlösliche Polymere besonders bevorzugt. "Polyvinylalkohole" (Kurzzeichen PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur


    die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs


    enthalten.
  • Handelsübliche Polyvinylalkohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten werden, haben Hydrolysegrade von 98-99 bzw. 87-89 Mol%, enthalten also noch einen Restgehalt an Acetyl-Gruppen. Charakterisiert werden die Polyvinylalkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangspolymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.
  • Polyvinylalkohole sind abhängig vom Hydrolysegrad löslich in Wasser und wenigen stark polaren organischen Lösungsmitteln (Formamid, Dimethylformamid, Dimethylsulfoxid); von (chlorierten) Kohlenwasserstoffen, Estern, Fetten und Ölen werden sie nicht angegriffen. Polyvinylalkohole werden als toxikologisch unbedenklich eingestuft und sind biologisch zumindest teilweise abbaubar. Die Wasserlöslichkeit kann man durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure od. Borax verringern. Polyvinylalkohol ist weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, läßt jedoch Wasserdampf hindurchtreten.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- oder Reinigungsmitteltabletten sind dadurch gekennzeichnet, daß das Folienmaterial Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren Hydrolysegrad 70 bis 100 Mol%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.
  • Vorzugsweise werden Polyvinylalkohole eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäße Wasch- oder Reinigungsmitteltabletten bevorzugt sind, bei denen das Folienmaterial Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren Molekulargewicht im Bereich von 3.500 bis 100.000 gmol-1, vorzugsweise von 10.000 bis 90.000 gmol-1, besonders bevorzugt von 12.000 bis 80.000 gmol-1 und insbesondere von 13.000 bis 70.000 gmol-1 liegt.
  • Der Polymerisationsgrad solcher bevorzugten Polyvinylalkohole liegt zwischen ungefähr 200 bis ungefähr 2100, vorzugsweise zwischen ungefähr 220 bis ungefähr 1890, besonders bevorzugt zwischen ungefähr 240 bis ungefähr 1680 und insbesondere zwischen ungefähr 260 bis ungefähr 1500.
  • Erfindungsgemäß bevorzugte Wasch- oder Reinigungsmitteltabletten sind dadurch gekennzeichnet, daß das Folienmaterial Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren durchschnittlicher Polymerisationsgrad zwischen 80 und 700, vorzugsweise zwischen 150 und 400, besonders bevorzugt zwischen 180 bis 300 liegt und/oder deren Molekulargewichtsverhältnis MG(50%) zu MG(90%) zwischen 0,3 und 1, vorzugsweise zwischen 0,4 und 0,8 und insbesondere zwischen 0,45 und 0,6 liegt.
  • Die vorstehend beschriebenen Polyvinylalkohole sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Mowiol® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88 sowie Mowiol® 8-88.
  • Weitere als Material für die wasserlösliche Umhüllung besonders geeignete Polyvinylalkohole sind der nachstehenden Tabelle zu entnehmen:


  • Weitere als Material für die wasserlösliche Umhüllung geeignete Polyvinylalkohole sind ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (Warenzeichen der Du Pont), ALCOTEX® 72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 (Warenzeichen der Harlow Chemical Co.), Gohsenol® NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Warenzeichen der Nippon Gohsei K.K). Auch geeignet sind ERKOL-Typen von Wacker.
  • Bevorzugte erfindungsgemäße Wasch- oder Reinigungsmitteltabletten sind dadurch gekennzeichnet, daß die wasserlösliche Umhüllung Hydroxypropylmethylcellulose (HPMC) umfaßt, die einen Substitutionsgrad (durchschnittliche Anzahl von Methoxygruppen pro Anhydroglucose-Einheit der Cellulose) von 1,0 bis 2,0, vorzugsweise von 1,4 bis 1,9, und eine molare Substitution (durchschnittliche Anzahl von Hydroxypropoxylgruppen pro Anhydroglucose-Einheit der Cellulose) von 0,1 bis 0,3, vorzugsweise von 0,15 bis 0,25, aufweist.
  • Unabhängig von der chemischen Zusammensetzung der Folie sind erfindungsgemäße Wasch- und Reinigungsmittelformkörper bevorzugt, die dadurch gekennzeichnet sind, daß die Folie, die die Kavität verschließt, eine Dicke von 1 bis 150 µm, vorzugsweise von 2 bis 100 µm, besonders bevorzugt von 5 bis 75 µm und insbesondere von 10 bis 50 µm, aufweist.
  • Zusammen mit dem Formkörper, der mindestens eine Kavität aufweist, bildet die mit dem Formkörper haftfest verbundene Folie die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper. Im Falle von verschlossenen Muldenformkörpern erinnert der Aufbau der erfindungsgemäßen Formkörper an eine "Trommel", bei der eine Kavität durch eine Folie verschlossen ist. Es ist erfindungsgemäß möglich, die Kavität unbefüllt zu lassen und lediglich den optischen Reiz solcher Formkörper zu nutzen, bevorzugte Wasch- und Reinigungsmittelformkörper sind aber dadurch gekennzeichnet, daß in dem durch die Folie und den Formkörper umschlossenen Raum weitere Aktivsubstanz enthalten ist.
  • Auf diese Weise umfaßt ein erfindungsgemäßer Formkörper zwei Bereiche, in denen unterschiedliche Inhaltsstoffe enthalten sein oder unterschiedliche Freisetzungsmechanismen und Lösekinetiken verwirklicht werden können. Die in der Kavität enthaltene Aktivsubstanz kann dabei jedweden Aggregatzustand oder jedwede Darbietungsform annehmen. Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten die weitere Aktivsubstanz in flüssiger, gelförmiger, pastöser oder fester Form.
  • Bei der Einarbeitung flüssiger, gelförmiger oder pastöser Aktivsubstanzen oder Aktivsubstanzgemische muß die Zusammensetzung des Formkörpers und der Folie auf die Füllung abgestimmt werden, um eine vorzeitige Zerstörung der Folie oder einen Verlust an Aktivsubstanz durch den Formkörper hindurch zu vermeiden. Dies ist bei der Einarbeitung fester Substanzen in die Kavität nur in untergeordnetem Maße (chemische Unverträglichkeiten) erforderlich, so daß bevorzugte Wasch- und Reinigungsmittelformkörper weitere Aktivsubstanz in Partikelform, vorzugsweise in pulverförmiger, granularer, extrudierter, pelletierter, geprillter, geschuppter oder tablettierter Form, enthalten.
  • Die durch die Folie verschlossene Kavität kann dabei vollständig mit weiterer Aktivsubstanz gefüllt sein. Es ist aber ebenfalls möglich, die Kavität vor dem Verschließen nur teilweise zu füllen, um auf diese Weise eine Bewegung der eingefüllten Partikel oder Flüssigkeiten innerhalb der Kavität zu ermöglichen. Besonders bei der Befüllung mit regelmäßig geformten größeren Partikeln lassen sich reizvolle optische Effekte verwirklichen. Hierbei sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen das Volumenverhältnis von dem durch die Folie und den Formkörper umschlossenen Raum zu der in diesem Raum enthaltenen Aktivsubstanz 1 : 1 bis 100 : 1, vorzugsweise 1,1 : 1 bis 50 : 1, besonders bevorzugt 1,2 : 1 bis 25 : 1 und insbesondere 1,3 : 1 bis 10 : 1 beträgt. In dieser Terminologie bedeutet ein Volumenverhältnis von 1 : 1, daß die Kavität vollständig ausgefüllt ist.
  • In Abhängigkeit von der Größe der Kavität, der Dichte des Formkörpers, der Dichte der Aktivsubstanz in der Kavität und des Füllgrades der Kavität kann der Anteil der weiteren Aktivsubstanz in der Kavität unterschiedliche Anteile am Gesamtformkörper ausmachen. Hierbei sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen das Gewichtsverhältnis von Formkörper zu der in dem durch die Folie und den Formkörper umschlossenen Raum enthaltenen Aktivsubstanz 1 : 1 bis 100 : 1, vorzugsweise 2 : 1 bis 80 : 1, besonders bevorzugt 3 : 1 bis 50 : 1 und insbesondere 4 : 1 bis 30 : 1 beträgt. Bei dem vorstehend definierten Gewichtsverhältnis handelt es sich um das Verhältnis der Masse des unbefüllten Formkörpers ("Basisformkörpers") zur Masse der Füllung. Die Masse der Folie wird bei dieser Berechnung nicht mit berücksichtigt.
  • Durch geeignete Konfektionierung von Formkörper und Folienmaterial kann der Zeitpunkt, zu dem die in der Kavität enthaltene Substanz freigesetzt wird, vorbestimmt werden. Beispielsweise kann die Folie quasi schlagartig löslich sein, so daß die in der Kavität enthaltene Aktivsubstanz gleich zu Beginn des Wasch- oder Reinigungsgangs in die Wasch- bzw. Reinigungsflotte dosiert wird. Alternativ hierzu kann die Folie so schlecht löslich sein, daß erst der Formkörper aufgelöst wird und die in der Kavität enthaltene Aktivsubstanz hierdurch freigesetzt wird.
  • Abhängig von diesem Freisetzungsmechanismus lassen sich beispielsweise Formkörper realisieren, bei denen die in der Kavität enthaltene Aktivsubstanz in der Reinigungsflotte gelöst vorliegt, bevor die Bestandteile des Formkörpers gelöst sind, oder nachdem dies geschehen ist. So sind einerseits Wasch- und Reinigungsmittelformkörper bevorzugt, die dadurch gekennzeichnet sind, daß sich die in dem durch die Folie und den Formkörper umschlossenen Raum enthaltene Aktivsubstanz schneller löst als der Basisformkörper.
  • Aber auch Wasch- und Reinigungsmittelformkörper, bei denen sich die in dem durch die Folie und den Formkörper umschlossenen Raum enthaltene Aktivsubstanz langsamer löst als der Basisformkörper, sind bevorzugte Ausführungsformen der vorliegenden Erfindung.
  • Die erfindungsgemäßen Formkörper bestehen aus einem Basisformkörper, der eine oder mehrere Kavitäten aufweist, Folie(n), die diese Kavität(en) verschließt/verschließen sowie optional in der/den Kavität(en) enthaltenen Aktivsubstanz(en). Die Folienmaterialien und bevorzugte physikalische Parameter der Folien wurden bereits vorstehend beschrieben. Es folgt nun eine Beschreibung der Inhaltsstoffe des Basisformkörpers, die gleichzeitig Aktivsubstanzen, welche in der Kavität enthalten sind, sein können sowie eine Aufzählung bevorzugter physikalischer Parameter für Basisformkörper und Füllung der Kavität. Durch Inkorporation bestimmter Bestandteile kann einerseits die Löslichkeit der Füllung der Kavität gezielt beschleunigt werden, andererseits kann die Freisetzung bestimmter Inhaltsstoffe aus dieser Füllung zu Vorteilen im Wasch- bzw. Reinigungsprozeß führen. Inhaltsstoffe, die bevorzugt zumindest anteilig in der Kavität lokalisiert sind, sind beispielsweise die weiter unten beschriebenen Tenside, Enzyme, soil-release-Polymere, Gerüststoffe, Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, optischen Aufheller Silberschutzmittel usw.
  • Der Basisformkörper besitzt in bevorzugten Ausführungsformen der vorliegenden Erfindung ein hohes spezifisches Gewicht. Wasch- und Reinigungsmittelformkörper, die dadurch gekennzeichnet sind, daß der Basisformkörper eine Dichte oberhalb von 1000 kgdm-3, vorzugsweise oberhalb von 1025 kgdm-3, besonders bevorzugt oberhalb von 1050 kgdm-3 und insbesondere oberhalb von 1100 kgdm-3 aufweist, sind erfindungsgemäß bevorzugt.
  • Weitere Einzelheiten zu physikalischen Parametern des Basisformkörpers bzw. der fertigen Wasch- und Reinigungsmittelformkörper sowie Angaben zur Herstellung finden sich weiter unten. Es folgt eine Darstellung der bevorzugten Inhaltsstoffe des Basisformkörpers.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittel Formkörper sind dadurch gekennzeichnet, daß der Basisformkörper Gerüststoffe in Mengen von 1 bis 100 Gew.-%, vorzugsweise von 5 bis 95 Gew.-%, besonders bevorzugt von 10 bis 90 Gew.-% und insbesondere von 20 bis 85 Gew.-%, jeweils bezogen auf das Gewichts des Basisformkörpers, enthält.
  • In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern können alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen - auch die Phosphate.
  • Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt.
  • Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharten Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß der Basisformkörper Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
  • Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel

    nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5,5)H2O

    beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
  • Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
  • Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
  • Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3 Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
  • Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z. B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
  • Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3 , Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf > 200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
  • Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
  • Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:

    (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
  • Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß der Basisformkörper Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% uns insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
  • Als weitere Bestandteile können Alkaliträger zugegen sein. Als Alkaliträger gelten beispielsweise Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallsesquicarbonate, die genannten Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat.
  • In besonders bevorzugten Wasch- und Reinigungsmittelformkörpern enthält der Basisformkörper Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonate, besonders bevorzugt Natriumcarbonat, in Mengen von 5 bis 50 Gew.-%, vorzugsweise von 7,5 bis 40 Gew.-% und insbesondere von 10 bis 30 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers.
  • Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
  • Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.
  • Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
  • Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa- Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
  • Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
  • Die Menge an Gerüststoff beträgt üblicherweise zwischen 10 und 70 Gew.-%, vorzugsweise zwischen 15 und 60 Gew.-% und insbesondere zwischen 20 und 50 Gew.-%, jeweils bezogen auf den Basisformkörper. Wiederum ist die Menge an eingesetzten Buildern abhängig vom Verwendungszweck, so daß Bleichmitteltabletten höhere Mengen an Gerüststoffen aufweisen können (beispielsweise zwischen 20 und 70 Gew.-%, vorzugsweise zwischen 25 und 65 Gew.-% und insbesondere zwischen 30 und 55 Gew.-%), als beispielsweise Waschmitteltabletten (üblicherweise 10 bis 50 Gew.-%, vorzugsweise 12,5 bis 45 Gew.-% uns insbesondere zwischen 17,5 und 37,5 Gew.-%).
  • Neben Gerüststoff(en) können die erfindungsgemäßen Mittel vorzugsweise in der Basistablette darüberhinaus als Tensidkomponente anionische, nichtionische, kationische und/oder amphotere Tenside enthalten, wobei nichtionische Tenside aufgrund ihres Schaumvermögens bevorzugt sind.
  • Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsulfonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
  • Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
  • Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
  • Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
  • Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2- Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise ir Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18 -Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (X),


    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
  • Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (XI),


    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
  • [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N- Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Als bevorzugte Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten die erfindungsgemäßen Reinigungsmittel für das maschinellen Geschirrspülen nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2- Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18 -Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Insbesondere bevorzugt sind erfindungsgemäße Geschirrpülmittel, die ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Demzufolge sind bevorzugte Geschirrspülmittel dadurch gekennzeichnet, daß sie nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, enthalten.
  • Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperatur hochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pa.s, vorzugsweise oberhalb von 35 Pa.s und insbesondere oberhalb 40 Pa.s aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
  • Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)- Niotenside zeichnen sich darüberhinaus durch gute Schaumkontrolle aus.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
  • Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-20-Alkohol), vorzugsweise einem C18- Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten "narrow range ethoxylates" (siehe oben) besonders bevorzugt.
  • Demnach enthalten besonders bevorzugte erfindungsgemäße Geschirrspülmittel ethoxylierte(s) Niotensid(e), das/die aus C6-20-Monohydroxyalkanolen oder C6-20-Alkylphenolen oder C16-20- Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurde(n).
  • Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Geschirrspülmittel sind dadurch gekennzeichnet, daß sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen, enthalten.
  • Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen- Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block- Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
  • Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
  • Ein weiter bevorzugtes erfindungsgemäßes Geschirrspülmittel enthält nichtionische Tenside der Formel

    R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2],

    in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht.
  • Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel

    R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2

    in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C- Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
  • Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
  • Insbesondere bevorzugte endgruppenverschlossene Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu

    R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2

    vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
  • Faßt man die letzgenannten Aussagen zusammen, sind erfindungsgemäße Geschirrspülmittel bevorzugt, die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel

    R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2

    enthalten, in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, wobei Tenside des Typs

    R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2

    in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18 steht, besonders bevorzugt sind.
  • Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Erfindung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die als nichionische(s) Tensid(e) Tenside der allgemeinen Formel XII enthalten


    in der R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -CH3; -CH2CH3, -CH2CH2-CH3, CH(CH3)2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
  • Die bevorzugten Niotenside der Formel XII lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R1-OH und Ethylen- bzw. Alkylenoxid herstellen. Der Rest R1 in der vorstehenden Formel X kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R1 eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzeigt, wobei die linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, bevorzugt sind. Aus synthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylverzweigte bzw. lineare und methylverzweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Unabhängig von der Art des zur Herstellung der erfindungsgemäß in den Mitteln enthaltenen Niotenside eingesetzten Alkohols sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, bei denen R1 in Formel I für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.
  • Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R2 bzw. R3 unabhängig voneinander ausgewählt sind aus -CH2CH2-CH3 bzw. CH(CH3)2 sind geeignet. Bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß R2 bzw. R3 für einen Rest -CH3, w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen.
  • Zusammenfassend sind zum Einsatz in den erfindungsgemäßen Mitteln insbesondere nichtionische Tenside bevorzugt, die einen C9-15-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten aufweisen. Diese Tenside weisen in wäßriger Lösung die erforderliche niedrige Viskosität auf und sind erfindungsgemäß mit besonderem Vorzug einsetzbar.
  • Die angegebenen C-Kettenlängen sowie Ethoxylierungsgrade bzw. Alkoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C- Kettenlängen als auch für die Ethoxylierungsgrade bzw. Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können.
  • An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden.
  • Als kationische Aktivsubstanzen können die erflndungsgemäßen Mittel beispielsweise kationische Verbindungen der Formeln XIII, XIV oder XV enthalten:


    worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus C1-6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8-28-Alkyl- oder -Alkenylgruppen; R3 = R1 oder (CH2)n-T-R2; R4 = R1 oder R2 oder (CH2)n-T-R2; T = -CH2-, -O-CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.
  • Zusammenfassend sind erfindungsgemäße maschinelle Wasch- oder Reinigungsmitteltabletten bevorzugt, die Tensid(e), vorzugsweise nichtionische(s) Tensid(e) und insbesondere nichtionische(s) Tensid(e) aus der Gruppe der alkoxylierten Alkohole; in Mengen von 0; 1 bis 60 Gew.-%, vorzugsweise von 0,5 bis 50 Gew.-%, besonders bevorzugt von 1 bis 40 Gew.-%, und insbesondere von 2 bis 30 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten. Besonders bevorzugte erfindungsgemäße maschinelle Wasch- oder Reinigungsmitteltabletten sind dadurch gekennzeichnet, daß sie 5 bis 25 Gew.-%, vorzugsweise 6 bis 22,5 Gew.-%, besonders bevorzugt 7,5 bis 20 Gew.-% und insbesondere 8 bis 17,5 Gew.-% nichtionische(s) Tensid(e) enthalten.
  • Neben den Gerüststoffen sind insbesondere Bleichmittel, Bleichaktivatoren, Enzyme, Silberschutzmittel, Farb- und Duftstoffe usw. bevorzugte Inhaltsstoffe von erfindungsgemäßen Wasch- oder Reinigungsmitteltabletten. Daneben können weitere Inhaltsstoffe zugegen sein, wobei erfindungsgemäße Wasch- oder Reinigungsmitteltabletten bevorzugt sind, die zusätzlich einen oder mehrere Stoffe aus der Gruppe der Acidifizierungsmittel oder der Chelatkomplexbildner enthalten.
  • Als Acidifizierungsmittel bieten sich sowohl anorganische Säuren als auch organische Säuren an, sofern diese mit den übrigen Inhaltsstoffen verträglich sind. Aus Gründen des Verbraucherschutzes und der Handhabungssicherheit sind insbesondere die festen Mono-, Oligo- und Polycarbonsäuren einsetzbar. Aus dieser Gruppe wiederum bevorzugt sind Citronensäure, Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Auch die Anhydride dieser Säuren können als Acidifizierungsmittel eingesetzt werden, wobei insbesondere Maleinsäureanhydrid und Bernsteinsäureanhydrid kommerziell verfügbar sind. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidiflzierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
  • Eine weitere mögliche Gruppe von Inhaltsstoffen stellen die Chelatkomplexbildner dar. Chelatkomplexbildner sind Stoffe, die mit Metallionen cyclische Verbindungen bilden, wobei ein einzelner Ligand mehr als eine Koordinationsstelle an einem Zentralatom besetzt, d. h. mind. "zweizähnig" ist. In diesem Falle werden also normalerweise gestreckte Verbindungen durch Komplexbildung über ein Ion zu Ringen geschlossen. Die Zahl der gebundenen Liganden hängt von der Koordinationszahl des zentralen Ions ab.
  • Gebräuchliche und im Rahmen der vorliegenden Erfindung bevorzugte Chelatkomplexbilder sind beispielsweise Polyoxycarbonsäuren, Polyamine, Ethylendiamintetraessigsäure (EDTA) und Nitrilotriessigsäure (NTA). Auch komplexbildende Polymere, also Polymere, die entweder in der Hauptkette selbst oder seitenständig zu dieser funktionelle Gruppen tragen, die als Liganden wirken können und mit geeigneten Metall-Atomen in der Regel unter Bildung von Chelat-Komplexen reagieren, sind erfindungsgemäß einsetzbar. Die Polymer-gebundenen Liganden der entstehenden Metall-Komplexe können dabei aus nur einem Makromolekül stammen oder aber zu verschiedenen Polymerketten gehören. Letzteres führt zur Vernetzung des Materials, sofern die komplexbildenden Polymere nicht bereits zuvor über kovalente Bindungen vernetzt waren.
  • Komplexierende Gruppen (Liganden) üblicher komplexbildender Polymere sind Iminodi-essigsäure-, Hydroxychinolin-, Thioharnstoff-, Guanidin-, Dithiocarbamat-, Hydroxamsäure-, Amidoxim-, Aminophosphorsäure-, (cycl.) Polyamino-, Mercapto-, 1,3-Dicarbonyl- und Kronenether-Reste mit z. T. sehr spezif. Aktivitäten gegenüber Ionen unterschiedlicher Metalle. Basispolymere vieler auch kommerziell bedeutender komplexbildender Polymere sind Polystyrol, Polyacrylate, Polyacrylnitrile, Polyvinylalkohole, Polyvinylpyridine und Polyethylenimine. Auch natürliche Polymere wie Cellulose, Stärke od. Chitin sind komplexbildende Polymere. Darüber hinaus können diese durch polymeranaloge Umwandlungen mit weiteren Ligand-Funktionalitäten versehen werden.
  • Besonders bevorzugt sind im Rahmen der vorliegenden Erfindung Wasch- oder Reinigungsmitteltabletten, insbesondere maschinelle Geschirrspülmitteltabletten, die ein oder mehrere Chelatkomplexbildner aus den Gruppen der
    • a) Polycarbonsäuren, bei denen die Summe der Carboxyl- und gegebenenfalls Hydroxylgruppen mindestens 5 beträgt,
    • b) stickstoffhaltigen Mono- oder Polycarbonsäuren,
    • c) geminalen Diphosphonsäuren,
    • d) Aminophosphonsäuren,
    • e) Phosphonopolycarbonsäuren,
    • f) Cyclodextrine
    in Mengen oberhalb von 0,1 Gew.-%, vorzugsweise oberhalb von 0,5 Gew.-%, besonders bevorzugt oberhalb von 1 Gew.-% und insbesondere oberhalb von 2,5 Gew.-%, jeweils bezogen auf das Gewicht des Geschirrspülmittels, enthalten.
  • Im Rahmen der vorliegenden Erfindung können alle Komplexbildner des Standes der Technik eingesetzt werden. Diese können unterschiedlichen chemischen Gruppen angehören. Vorzugsweise werden einzeln oder im Gemisch miteinander eingesetzt:
    • a) Polycarbonsäuren, bei denen die Summe der Carboxyl- und gegebenenfalls Hydroxylgruppen mindestens 5 beträgt wie Gluconsäure,
    • b) stickstoffhaltige Mono- oder Polycarbonsäuren wie Ethylendiamintetraessigsäure (EDTA), N- Hydroxyethylethylendiamintriessigsäure, Diethylentriaminpentaessigsäure, Hydroxyethyliminodiessigsäure, Nitridodiessigsäure-3-propionsäure, Isoserindiessigsäure, N,N- Di-(β-hydroxyethyl)-glycin, N-(1,2-Dicarboxy-2-hydroxyethyl)-glycin, N-(1,2-Dicarboxy-2- hydroxyethyl)-asparaginsäure oder Nitrilotriessigsäure (NTA),
    • c) geminale Diphosphonsäuren wie 1-Hydroxyethan-1,1-diphosphonsäure (HEDP), deren höhere Homologe mit bis zu 8 Kohlenstoffatomen sowie Hydroxy- oder Aminogruppen-haltige Derivate hiervon und 1-Aminoethan-1,1-diphosphonsäure, deren höhere Homologe mit bis zu 8 Kohlenstoffatomen sowie Hydroxy- oder Aminogruppen-haltige Derivate hiervon,
    • d) Aminophosphonsäuren wie Ethylendiamintetra(methylenphosphonsäure), Diethylentriaminpenta(methylenphosphonsäure) oder Nitrilotri(methylenphosphonsäure),
    • e) Phosphonopolycarbonsäuren wie 2-Phosphonobutan-1,2,4-tricarbonsäure sowie
    • f) Cyclodextrine.
  • Als Polycarbonsäuren a) werden im Rahmen dieser Patentanmeldung Carbonsäuren - auch Monocarbonsäuren - verstanden, bei denen die Summe aus Carboxyl- und den im Molekül enthaltenen Hydroxylgruppen mindestens 5 beträgt. Komplexbildner aus der Gruppe der stickstoffhaltigen Polycarbonsäuren, insbesondere EDTA, sind bevorzugt. Bei den erfindungsgemäß erforderlichen alkalischen pH-Werten der Behandlungslösungen liegen diese Komplexbildner zumindest teilweise als Anionen vor. Es ist unwesentlich, ob sie in Form der Säuren oder in Form von Salzen eingebracht werden. Im Falle des Einsatzes als Salze sind Alkali-, Ammonium- oder Alkylammoniumsalze, insbesondere Natriumsalze, bevorzugt.
  • Das maschinelle Reinigen von Geschirr in Haushaltsgeschirrspülmaschinen umfaßt üblicherweise einen Vorspülgang, einen Hauptspülgang und einen Klarspülgang, die von Zwischenspülgängen unterbrochen werden. Bei den meisten Maschinen ist der Vorspülgang für stark verschmutzes Geschirr zuschaltbar, wird aber nur in Ausnahmefällen vom Verbraucher gewählt, so daß in den meisten Maschinen ein Hauptspülgang, ein Zwischenspülgang mit reinem Wasser und ein Klarspülgang durchgeführt werden. Die Temperatur des Hauptspülgangs variiert dabei je nach Maschinentyp und Programmstufenwahl zwischen 40 und 65°C. Im Klarspülgang werden aus einem Dosiertank in der Maschine Klarspülmittel zugegeben, die üblicherweise als Hauptbestandteil nichtionische Tenside enthalten. Solche Klarspüler liegen in flüssiger Form vor und sind im Stand der Technik breit beschrieben. Ihre Aufgabe besteht vornehmlich darin, Kalkflecken und Beläge auf dem gereinigten Geschirr zu verhindern. Neben Wasser und schwachschäumenden Niotensiden enthalten diese Klarspüler oft auch Hydrotope, pH-Stellmittel wie Citronensäure oder belagsinhibierende Polymere.
  • Der Vorratstank in der Geschirrspülmaschine muß in regelmäßigen Abständen mit Klarspüler aufgefüllt werden, wobei eine Füllung je nach Maschinentyp für 10 bis 50 Spülgänge ausreicht. Wird das Auffüllen des Tanks vergessen, so werden insbesondere Gläser durch Kalkflecken und Beläge unansehnlich. Im Stand der Technik existieren daher einige Lösungsvorschläge, einen Klarspüler in das Reinigungsmittel für das maschinelle Geschirrspülen zu integrieren. "2in1"-Produkte, welche Reiniger und Klarspüler in sich vereinen, sind mittlerweile auch im Markt etabliert.
  • Eine weitere Entwicklung geht dahin, auch das Auffüllen des Regeneriersalzbehälters der Geschirrspülmaschine entbehrlich zu machen. Auch sogenannte "3in1"-Reiniger, die die drei Funktionen des Reinigens, des Klarspülens und der Wasserenthärtung in einer einzigen Reinigerformulierung vereinen, so daß für den Verbraucher auch das Nachfüllen von Salz bei Wasserhärten von 1 bis 3 überflüssig wird, sind mittlerweile im Markt. Zur Wasserenthärtung enthalten diese Reiniger üblicherweise Natriumtripolyphosphat und/oder als Enthärter wirksame Polymere.
  • Erfindungsgemäße Reinigungsmitteltabletten für das maschinelle Geschirrspülen können deshalb zusätzlich - vorzugsweise in der Basistablette - als Enthärter wirksame Polymere enthalten. Mit besonderem Vorzug werden dabei Sulfonsäuregruppen-haltige Polymere eingesetzt, die nachstehend beschrieben werden.
  • Besonders bevorzugt als Suldonsäuregruppen-haltige Polymere einsetzbar sind Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
  • Im Rahmen der vorliegenden Erfindung sind ungesättigte Carbonsäuren der Formel XVI als Monomer bevorzugt,

    R1(R2)C=C(R3)COOH (XVI),

    in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
  • Unter den ungesättigten Carbonsäuren, die sich durch die Formel XVI beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
  • Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel XVII bevorzugt,

    R5(R6)C=C(R7)-X-SO3H (XVII),

    in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Unter diesen Monomeren bevorzugt sind solche der Formeln XVIIa, XVIIb und/oder XVIIc,

    H2C=CH-X-SO3H (XVIIa),

    H2C=C(CH3)-X-SO3H (XVIIb),

    HO3S-X-(R6)C=C(R7)-X-SO3H (XVIIc),

    in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure (X = -C(O)NH-CH(CH2CH3) in Formel XVIIa), 2-Acrylamido-2-propansulfonsäure (X = -C(O)NH-C(CH3)2 in Formel XVIIa), 2-Acrylamido-2-methyl-1-propansulfonsäure (X = -C(O)NH- CH(CH3)CH2- in Formel XVIIa), 2-Methacrylamido-2-methyl-1-propansulfonsäure (X = -C(O)NH- CH(CH3)CH2- in Formel XVIIb), 3-Methacrylamido-2-hydroxy-propansulfonsäure (X = -C(O)NH- CH2CH(OH)CH2- in Formel XVIIb), Allylsulfonsäure (X = CH2 in Formel XVIIa), Methallylsulfonsäure (X = CH2 in Formel XVIIb), Allyloxybenzolsulfonsäure (X = -CH2-O-C6H4- in Formel XVIIa), Methallyloxybenzolsulfonsäure (X = -CH2-O-C6H4- in Formel XVIIb), 2-Hydroxy-3-(2- propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure (X = CH2 in Formel XVIIb), Styrolsulfonsäure (X = C6H4 in Formel XVIIa), Vinylsulfonsäure (X nicht vorhanden in Formel XVIIa), 3- Sulfopropylacrylat (X = -C(O)NH-CH2CH2CH2- in Formel XVIIa), 3-Sulfopropylmethacrylat (X = -C(O)NH-CH2CH2CH2- in Formel XVIIb), Sulfomethacrylamid (X = -C(O)NH- in Formel XVIIb), Sulfomethylmethacrylamid (X = -C(O)NH-CH2- in Formel XVIIb) sowie wasserlösliche Salze der genannten Säuren.
  • Als weitere ionische oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der erfindungsgemäß eingesetzten Polymere an Monomeren der Gruppe iii) weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Gruppen i) und ii).
  • Zusammenfassend sind Copolymere aus
    • a) ungesättigten Carbonsäuren der Formel XVI.

      R1(R2)C=C(R3)COOH (XVI),

      in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist,
    • b) Sulfonsäuregruppen-haltigen Monomeren der Formel XVII

      R5(R6)C=C(R7)-X-SO3H (XVII),

      in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-
    • c) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    besonders bevorzugte Inhaltsstoffe der erfindungsgemäßen Wasch- oder Reinigungsmitteltabletten.
  • Besonders bevorzugte Copolymere bestehen aus
    • a) einer oder mehrerer ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure
    • b) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln XVIIa, XVIIb und/oder XVIIc:

      H2C=CH-X-SO3H (XVIIa),

      H2C=C(CH3)-X-SO3H (XVIIb),

      HO3S-X-(R6)C=C(R7)-X-SO3H (XVIIc),

      in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-
    • c) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
  • Die Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
  • So sind beispielsweise erfindungsgemäße Wasch- oder Reinigungsmitteltabletten bevorzugt, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XVIII

    -[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (XVIII),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH- CH(CH2CH3)- steht, bevorzugt sind.
  • Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppenhaltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz in den erfindungsgemäßen Wasch- oder Reinigungsmitteltabletten ebenfalls bevorzugt und dadurch gekennzeichnet ist, daß die Wasch- oder Reinigungsmitteltabletten ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XIX

    -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p- (XIX),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH- CH(CH2CH3)- steht, bevorzugt sind.
  • Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen-haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind erfindungsgemäße Wasch- oder Reinigungsmitteltabletten, die ein oder mehrere Copolymere enthalten, welche Struktureinheiten der Formel XX

    -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (XX),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH- CH(CH2CH3)- steht, bevorzugt sind, ebenfalls eine bevorzugte Ausführungsform der vorliegenden Erfindung, genau wie auch Wasch- oder Reinigungsmitteltabletten bevorzugt sind, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XXI

    -[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (XXI),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH- CH(CH2CH3)- steht, bevorzugt sind.
  • Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Wasch- oder Reinigungsmitteltabletten, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XXII

    -[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (XXII),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH- CH(CH2CH3)- steht, bevorzugt sind und zu Wasch- oder Reinigungsmitteltabletten, welche dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XXIII

    -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p- (XXIII),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH- CH(CH2CH3)- steht, bevorzugt sind.
  • Zusammenfassend sind erfindungsgemäße Wasch- oder Reinigungsmitteltabletten bevorzugt, die ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formeln XVIII und/oder XIX und/oder XX und/oder XXI und/oder XXII und/oder XXIII

    -[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (XVIII),

    -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p- (XIX),

    -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (XX),

    -[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (XXI),

    -[HOOCCH-CHCOOH]m-(CH2-CHC(O)-Y-SO3H]p- (XXII),

    -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p- (XXIII),

    enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH- CH(CH2CH3)- steht, bevorzugt sind.
  • In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d. h. daß das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Entsprechende Wasch- oder Reinigungsmitteltabletten, die dadurch gekennzeichnet sind, daß die Sulfonsäuregruppen im Copolymer teil- oder vollneutralisiert vorliegen, sind erflndungsgemäß bevorzugt.
  • Die Monomerenverteilung der in den erfindungsgemäßen Wasch- oder Reinigungsmitteltabletten eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
  • Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
  • Die Molmasse der in den erfindungsgemäßen Wasch- oder Reinigungsmitteltabletten eingesetzten vorstehend beschriebenen Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Wasch- oder Reinigungsmitteltabletten sind dadurch gekennzeichnet, daß die Copolymere Molmassen von 2000 bis 200.000 gmol-1, vorzugsweise von 4000 bis 25.000 gmol-1 und insbesondere von 5000 bis 15.000 gmol-1 aufweisen.
  • Zusätzlich zu den Stoffen aus den genannten Stoffklassen können die erfindungsgemäßen Mittel weitere übliche Inhaltsstoffe von Reinigungsmitteln enthalten, wobei insbesondere Bleichmittel, Enzyme, Silberschutzmittel, Farb- und Duftstoffe von Bedeutung sind. Diese Stoffe werden nachstehend beschrieben.
  • Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Erfindungsgemäße Reinigungsmittel können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphthoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, s-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o- Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N- nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12- Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
  • Als Bleichmittel in den efindungsgemäßen Wasch- oder Reinigungsmitteltabletten können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
  • Bevorzugte erfindungsgemäße Wasch- oder Reinigungsmitteltabletten enthalten zusätzlich Bleichmittel in Mengen von 1 bis 40 Gew.-%, vorzugsweise von 2,5 bis 30 Gew.-% und insbesondere von 5 bis 20 Gew.-%, jeweils bezogen auf das gesamte Mittel.
  • Ein Bleichaktivator, der die Wirkung der Bleichmittel unterstützt, ist erfindungsgemäß in der folienverschlossenen Kavität enthalten. Es ist möglich, daß die Füllung der Kavität und/oder die Basistablette weitere(n) Bleichaktivator(en) enthalten. Mögliche weitere Bleichaktivatoren, die nicht bereits vorstehend als Nitrilquats beschrieben wurden, sind beispielsweise Verbindungen, die eine oder mehrere N- bzw. O-Acylgruppen enthalten, wie Substanzen aus der Klasse der Anhydride, der Ester, der Imide und der acylierten Imidazole oder Oxime. Beispiele sind Tetraacetylethylendiamin TAED, Tetraacetylmethylendiamin TAMD und Tetraacetylhexylendiamin TAHD, aber auch Pentaacetylglucose PAG, 1,5-Diacetyl-2,2-dioxohexahydro-1,3,5-triazin DADHT und Isatosäureanhydrid ISA.
  • Als Bleichaktivatoren können weiterhin Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C- Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5- Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n-Methyl- Morpholinium-Acetonitril-Methylsulfat (MMA) sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Die Bleichaktivatoren werden in maschinellen Geschirrspülmitteln üblicherweise in Mengen von 0,1 bis 20 Gew.-%, vorzugsweise von 0,25 bis 15 Gew.-% und insbesondere von 1 bis 10 Gew.-%, jeweils bezogen auf das Mittel, eingesetzt. Im Rahmen der vorliegenden Erfindung beziehen sich die genannten Mengenanteile auf das Gewicht des Basisformkörpers.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in dis Aktivsubstanzpartikel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
  • Sofern neben den Nitrilquats weitere Bleichaktivatofren eingesetzt werden sollen, werden bevorzugt Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-% bezogen auf den Basisformkörper gesamte Mittel, eingesetzt.
  • Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)- Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das gesamte Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden.
  • Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in die Basisformkörper einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
  • Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
  • Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formkörpergewicht. Enthält nur der Basisformkörper Desintegrationshilfsmittel, so beziehen sich die genannten Angaben nur auf das Gewicht des Basisformkörpers.
  • Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β- 1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
  • Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
  • Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper enthalten zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht.
  • Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können darüber hinaus sowohl im Basisformkörper als auch in der Kavität ein gasentwickelndes Brausesystem enthalten. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.
  • Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate bevorzugt sein.
  • In bevorzugten Wasch- und Reinigungsmittelformkörpern werden als Brausesystem 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% eines Alkalimetallcarbonats oder -hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 und insbesondere 3 bis 10 Gew.-% eines Acidifizierungsmittels, jeweils bezogen auf den gesamten Formkörper, eingesetzt.
  • Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihydrogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
  • Bevorzugt sind im Rahmen der vorliegenden Erfindung Wasch- und Reingungsmittelformkörper, bei denen als Acidifizierungsmittel im Brausesystem ein Stoff aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische aus diesen eingesetzt werden.
  • Die erfindungsgemäßen Reinigungsmittelformkörper können insbesondere im Basisformkörper zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)- Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
  • Neben den genannten Bestandteilen Builder, Tensid, Desintegrationshilfsmittel Bleichmittel und Bleichaktivator können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper weitere in Wasch- und Reinigungsmitteln übliche Inhaltsstoffe aus der Gruppe der Farbstoffe, Duftstoffe, optischen Aufheller, Enzyme, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten.
  • Erfindungsgemäße Mittel können zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung Enzyme enthalten, wobei prinzipiell alle im Stand der Technik für diese Zwecke etablierten Enzyme einsetzbar sind. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Erfindungsgemäße Mittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 × 10-6 bis 5 Gewichts-Prozent bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren oder dem Biuret-Verfahren bestimmt werden.
  • Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase® von der Firma Novozymes A/S, Bagsvaerd, Dänemark, erhältlich. Die Subtilisine 147 und 309 werden unter den Handelsnamen Esperase®, beziehungsweise Savinase® von der Firma Novozymes vertrieben. Von der Protease aus Bacillus lentus DSM 5483 leiten sich die unter der Bezeichnung BLAP® geführten Varianten ab.
  • Weitere brauchbare Proteasen sind beispielsweise die unter den Handelsnamen Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® und Ovozymes® von der Firma Novozymes, die unter den Handelsnamen, Purafect®, Purafect® OxP und Properase® von der Firma Genencor, das unter dem Handelsnamen Protosol® von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi® von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather® und Protease P® von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K-16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme.
  • Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus B. amyloliquefaciens oder aus B. stearothermophilus sowie deren für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus B. licheniformis ist von der Firma Novozymes unter dem Namen Termamyl® und von der Firma Genencor unter dem Namen Purastar®ST erhältlich. Weiterentwicklungsprodukte dieser α-Amylase sind von der Firma Novozymes unter den Handelsnamen Duramyl® und Termamyl®ultra, von der Firma Genencor unter dem Namen Purastar®OxAm und von der Firma Daiwa Seiko Inc., Tokyo, Japan, als Keistase® erhältlich. Die α- Amylase von B. amyloliquefaciens wird von der Firma Novozymes unter dem Namen BAN® vertrieben, und abgeleitete Varianten von der α-Amylase aus B. stearothermophilus unter den Namen BSG® und Novamyl®, ebenfalls von der Firma Novozymes.
  • Desweiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus B. agaradherens (DSM 9948) hervorzuheben.
  • Darüber hinaus sind die unter den Handelsnamen Fungamyl® von der Firma Novozymes erhältlichen Weiterentwicklungen der α-Amylase aus Aspergillus niger und A. oryzae geeignet. Ein weiteres Handelsprodukt ist beispielsweise die Amylase-LT®.
  • Erfindungsgemäße Mittel können Lipasen oder Cutinasen, insbesondere wegen ihrer Triglyceridspaltenden Aktivitäten enthalten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der Firma Novozymes unter den Handelsnamen Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® und Lipex® vertrieben. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Ebenso brauchbare Lipasen sind von der Firma Amano unter den Bezeichnungen Lipase CE®, Lipase P®, Lipase B®, beziehungsweise Lipase CES®, Lipase AKG®, Bacillis sp. Lipase®, Lipase AP®, Lipase M-AP® und Lipase AML® erhältlich. Von der Firma Genencor sind beispielsweise die Lipasen, beziehungsweise Cutinasen einsetzbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades vertriebenen Präparationen M1 Lipase® und Lipomax® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30®, Lipase OF® und Lipase PL® vertriebenen Enzyme zu erwähnen, ferner das Produkt Lumafast® von der Firma Genencor.
  • Erfindungsgemäße Mittel können weitere Enzyme enthalten, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (= Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (= Xylahasen), Pullulanasen und β- Glucanasen. Geeignete Mannanasen sind beispielsweise unter den Namen Gamanase® und Pektinex AR® von der Firma Novozymes, unter dem Namen Rohapec® B1L von der Firma AB Enzymes und unter dem Namen Pyrolase® von der Firma Diversa Corp., San Diego, CA, USA erhältlich. Die aus B. subtilis gewonnene β-Glucanase ist unter dem Namen Cereflo® von der Firma Novozymes erhältlich.
  • Zur Erhöhung der bleichenden Wirkung können erfindungsgemäße Wasch- und Reinigungsmittel Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) enthalten. Als geeignete Handelsprodukte sind Denilite® 1 und 2 der Firma Novozymes zu nennen. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluß zu gewährleisten (Mediatoren).
  • Die in erfindungsgemäßen Mitteln eingesetzten Enzyme stammen entweder ursprünglich aus Mikroorganismen, etwa der Gattungen Bacillus, Streptomyces, Humicola, oder Pseudomonas, und/oder werden nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, etwa durch transgene Expressionswirte der Gattungen Bacillus oder filamentöse Fungi.
  • Die Aufreinigung der betreffenden Enzyme erfolgt günstigerweise über an sich etablierte Verfahren, beispielsweise über Ausfällung, Sedimentation, Konzentrierung, Filtration der flüssigen Phasen, Mikrofiltration, Ultrafiltration, Einwirken von Chemikalien, Desodorierung oder geeignete Kombinationen dieser Schritte.
  • Erfindungsgemäßen Mitteln können die Enzyme in jeder nach dem Stand der Technik etablierten Form zugesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.
  • Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem, vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale- Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
  • Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so daß ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
  • Ein in einem erfindungsgemäßen Mittel enthaltenes Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Erfindungsgemäße Mittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.
  • Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden Benzamidin- Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester verwendet, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-substituierte, meta-substituierte und parasubstituierte Phenylboronsäuren, beziehungsweise deren Salze oder Ester. Als peptidische Proteaseinhibitoren sind unter anderem Ovomucoid und Leupeptin zu erwähnen; eine zusätzliche Option ist die Bildung von Fusionsproteinen aus Proteasen und Peptid-Inhibitoren.
  • Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu C12, wie Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäureamidalkoxylate sind geeignet. Bestimmte als Builder eingesetzte organische Säuren vermögen zusätzlich ein enthaltenes Enzym zu stabilisieren.
  • Niedere aliphatische Alkohole, vor allem aber Polyole, wie beispielsweise Glycerin, Ethylenglykol, Propylenglykol oder Sorbit sind weitere häufig eingesetzte Enzymstabilisatoren. Ebenso werden Calciumsalze verwendet, wie beispielsweise Calciumacetat oder Calcium-Formiat, und Magnesiumsalze.
  • Polyamid-Oligomere oder polymere Verbindungen wie Lignin, wasserlösliche Vinyl-Copolymere oder Cellulose-Ether, Acryl-Polymere und/oder Polyamide stabilisieren die Enzym-Präparation unter anderem gegenüber physikalischen Einflüssen oder pH-Wert-Schwankungen. Polyamin-N-Oxid- enthaltende Polymere wirken als Enzymstabilisatoren. Andere polymere Stabilisatoren sind die linearen C8-C18-Polyoxyalkylene. Alkylpolyglycoside können die enzymatischen Komponenten des erfindungsgemäßen Mittels stabilisieren und sogar in ihrer Leistung steigern. Vernetzte N-haltige Verbindungen wirken ebenfalls als Enzym-Stabilisatoren.
  • Reduktionsmittel und Antioxidantien erhöhen die Stabilität der Enzyme gegenüber oxidativem Zerfall. Ein schwefelhaltiges Reduktionsmittel ist beispielsweise Natrium-Sulfit.
  • Bevorzugt werden Kombinatonen von Stabilisatoren verwendet, beispielsweise aus Polyofen, Borsäure und/oder Borax, die Kombination von Borsäure oder Borat, reduzierenden Salzen und Bernsteinsäure oder anderen Dicarbonsäuren oder die Kombination von Borsäure oder Borat mit Polyolen oder Polyaminoverbindungen und mit reduzierenden Salzen. Die Wirkung von Peptid- Aldehyd-Stabilisatoren wird durch die Kombination mit Borsäure und/oder Borsäurederivaten und Polyolen gesteigert und durch die zusätzliche Verwendung von zweiwertigen Kationen, wie zum Beispiel Calcium-Ionen weiter verstärkt.
  • Bevorzugte erfindungsgemäße maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß sie zusätzlich ein oder mehrere Enzyme und/oder Enzymzubereitungen, vorzugsweise feste und/oder flüssige Protease-Zubereitungen und/oder Amylase-Zubereitungen, in Mengen von 1 bis 5 Gew.-%, vorzugsweise von 1,5 bis 4,5 und insbesondere von 2 bis 4 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Farb- und Duftstoffe können den erfindungsgemäßen maschinellen Geschirrspülmitteln zugesetzt werden, um den ästhetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang- Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
  • Die Duftstoffe können direkt in die erfindungsgemäßen Reinigungsmittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die durch eine langsamere Duftfreisetzung für langanhaltenden Duft sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
  • Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, kann es (oder Teile davon) mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den Mitteln zu behandelnden Substraten wie Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.
  • Die erfindungsgemäßen Wasch- und Reinigungsmitteltabletten lösen sich im Wasch- bzw. Reinigungsgang vollständig auf, wobei es - wie oben erwähnt - Vorteile haben kann, wenn die unterschiedlichen Regionen unterschiedliche Lösegeschwindigkeiten aufweisen. Bedingt durch die unterschiedlichen Lösegeschwindigkeiten können neben der Freisetzung bestimmter Inhaltsstoffe zu bestimmten Zeitpunkten auch die Eigenschaften der Wasch- oder Reinigungsflotte gezielt verändert werden. So sind beispielsweise Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen der pH- Wert einer 1 Gew.-%-igen Lösung des Basisformkörpers in Wasser im Bereich von 8 bis 12, vorzugsweise von 9 bis 11 und insbesondere von 9,5 bis 10, liegt.
  • Zusätzlich hierzu sind Wasch- und Reinigungsmitteltabletten bevorzugt, bei denen der pH-Wert einer 1 Gew.-%-igen Lösung des gesamten Formkörpers in Wasser im Bereich von 7 bis 11, vorzugsweise von 7,5 bis 10 und insbesondere von 8 bis 9,5, liegt.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Wasch- und Reinigungsmitteltabletten, das durch die Schritte
    • a) Verpressen eines teilchenförmigen Vorgemischs zu einem verpreßten Teil (Basistablette), der mindestens eine Kavität aufweist,
    • b) Einfüllen mindestens eines kationische Nitrils der Formel (I)


      in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist, in flüssiger, gelförmiger, pastöser oder fester Form in die besagte(n) Kavität(en),
    • c) optionales Aufbringen eines oder mehrerer Haftvermittler auf ein oder mehrere Flächen des Formkörpers
    • d) Verschließen der Öffnungen der (befüllten) Kavitäten mit einer Folie
    • e) optionale Nachbehandlung einzelner Formkörperflächen oder des gesamten Formkörpers
    gekennzeichnet ist.
  • Bezüglich der Inhaltsstoffe der einzelnen Bereiche der erfindungsgemäßen Formkörper bzw. ihrer teilchenförmigen Vorgemische bzw. Zusammensetzungen, die die unterschiedlichen Bereiche des Formkörpers ergeben, gilt analog das vorstehend für die erfindungsgemäßen Formkörper Ausgeführte.
  • Es hat sich als vorteilhaft erwiesen, wenn das in Schritt a) zu Basisformkörpern verpreßte Vorgemisch bestimmten physikalischen Kriterien genügt. Bevorzugte Verfahren sind beispielsweise dadurch gekennzeichnet, daß das teilchenförmige Vorgemisch in Schritt a) ein Schüttgewicht von mindestens 500 g/l,, vorzugsweise mindestens 600 g/l, und insbesondere mindestens 700 g/l, aufweist.
  • Auch die Partikelgröße des in Schritt a) verpreßten Vorgemischs genügt vorzugsweise bestimmten Kriterien: Verfahren, bei denen das teilchenförmige Vorgemisch in Schritt a) Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400 µm, aufweist, sind erfindungsgemäß bevorzugt. Eine weiter eingeengte Partikelgröße in den zu verpressenden Vorgemischen kann zur Erlangung vorteilhafter Formkörpereigenschaften eingestellt werden. In bevorzugten Varianten für des erfindungsgemäßen Verfahrens weist das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung auf, bei der weniger als 10 Gew.-%, vorzugsweise weniger als 7,5 Gew.-% und insbesondere weniger als 5 Gew.-% der Teilchen größer als 1600 µm oder kleiner als 200 µm sind. Hierbei sind engere Teilchengrößenverteilungen weiter bevorzugt. Besonders vorteilhafte Verfahrensvarianten sind dabei dadurch gekennzeichnet, daß das in Schritt a) verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung aufweist, bei der mehr als 30 Gew.-%, vorzugsweise mehr als 40 Gew.-% und insbesondere mehr als 50 Gew.-% der Teilchen eine Teilchengröße zwischen 600 und 1000 µm aufweisen.
  • Bei der Durchführung des Verfahrensschritts a) ist das erfindungsgemäße Verfahren nicht darauf beschränkt, daß lediglich ein teilchenförmiges Vorgemisch zu einem Formkörper verpreßt wird. Vielmehr läßt sich der Verfahrensschritt a) auch dahingehend erweitern, daß man in an sich bekannter Weise mehrschichtige Formkörper herstellt, indem man zwei oder mehrere Vorgemische bereitet, die aufeinander verpreßt werden. Hierbei wird das zuerst eingefüllte Vorgemisch leicht vorverpreßt, um eine glatte und parallel zum Formkörperboden verlaufende Oberseite zu bekommen, und nach Einfüllen des zweiten Vorgemischs zum fertigen Formkörper endverpreßt. Bei drei- oder mehrschichtigen Formkörpern erfolgt nach jeder Vorgemisch-Zugabe eine weitere Vorverpressung, bevor nach Zugabe des letzten Vorgemischs der Formkörper endverpreßt wird. Vorzugsweise ist die vorstehend beschriebene Kavität im Basisformkörper ein Mulde, so daß bevorzugte Ausführungsformen des ersten erfindungsgemäßen Verfahrens dadurch gekennzeichnet sind, daß in Schritt a) mehrschichtige Formkörper, die eine Mulde aufweisen, in an sich bekannter Weise hergestellt werden, indem mehrere unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden.
  • Die Herstellung der erfindungsgemäßen Formkörper erfolgt in Schritt a) zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein können, und anschließendes Informbringen, insbesondere Verpressen zu Tabletten, wobei auf herkömmliche Verfahren zurückgegriffen werden kann. Zur Herstellung der erfindungsgemäßen Formkörper wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
  • Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
  • Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
  • Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
  • Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
  • Bei der Tablettierung mit Rundläuferpressen hat es sich als vorteilhaft erwiesen, die Tablettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
    • - Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
    • - Geringe Umdrehungszahl des Rotors
    • - Große Füllschuhe
    • - Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
    • - Füllschuh mit konstanter Pulverhöhe
    • - Entkopplung von Füllschuh und Pulvervorlage
  • Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik bekannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteilhaft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
  • Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druckschienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht werden, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elastische Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg eingesetzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Verfahren sind dadurch gekennzeichnet, daß die Verpressung in Schritt a) bei Preßdrücken von 0,01 bis 50 kNcm-2, vorzugsweise von 0,1 bis 40 kNcm-2 und insbesondere von 1 bis 25 kNcm-2 erfolgt.
  • Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Horn & Noack Pharmatechnik GmbH, Worms, IMA Verpackungssysteme GmbH Viersen, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, sowie Romaco GmbH, Worms. Weitere Anbieter sind beispielsweise Dr. Herbert Pete, Wien (AU), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy N.V., Halle (BE/LU) sowie Mediopharm Kamnik (SI). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D. Tablettierwerkzeuge sind beispielsweise von den Firmen Adams Tablettierwerkzeuge, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber % Söhne GmbH, Hamburg, Hofer GmbH, Weil, Horn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharmatechnik GmbH, Hamburg, Romaco, GmbH, Worms und Notter Werkzeugbau, Tamm erhältlich. Weitere Anbieter sind z. B. die Senss AG, Reinach (CH) und die Medicopharm, Kamnik (SI).
  • In Schritt b) wird die Kavität optional mit Aktivsubstanz(en), Aktivsubstanzgemischen oder Aktivsubstanz-Zubereitungen befüllt. Sofern die Kavität mehr als eine Öffnung aufweist, ist es verfahrenstechnisch zweckmäßig, die zweite, dritte und eventuelle weitere Öffnungen zu verschließen, um auf diese Weise das Einfüllen technisch einfacher zu gestalten. Zwar ist es prinzipiell möglich, auch einen Ringformkörper erst zu befüllen, dann die obere Öffnung des Lochs zu verschließen, den Formkörper samt Füllung umzudrehen und auch das zweite Loch zu verschließen, doch erfordert dies mechanische Vorrichtungen, die das Herausfallen der Füllung verhindern. Weist also die Kavität des in Schritt a) hergestellten Formkörpers mehr als eine Öffnung auf, ist es bevorzugt, den optionalen Schritt b) - das Befüllen - erst nach (n-1)-maliger Durchführung der Schritte c) und d) durchzuführen, wenn die Zahl der Öffnungen n ist. Das Verschließen der letzten Öffnung entspricht dann der letztmaligen Durchführung der Verfahrensschritte c) und d), an die sich ein Schritt e) anschließen kann.
  • Wie bereits vorstehend erwähnt, ist die optional in die Kavität einzubringende Füllung vorzugsweise fest, wobei partikelförmige Füllungen besonders bevorzugt sind. Werden die Kavitäten der Formkörper mit teilchenförmigen Zusammensetzungen befüllt, so sind Verfahren bevorzugt, bei denen die teilchenförmige(n) Zusammensetzung(en) in Schritt b) ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l, und insbesondere mindestens 700 g/l, aufweist/aufweisen.
  • In Schritt c) des erfindungsgemäßen Verfahrens werden optional Haftvermittler auf eine oder mehrere Flächen der Formkörper aufgebracht. Schritt c) ist insbesondere dann erforderlich, wenn die im nachfolgenden Schritt aufzubringenden Folien allein keine ausreichende Haftfähigkeit besitzen, um auf dem Formkörper zu verbleiben und den mechanischen Belastungen bei Verpackung, Transport und Handhabung ohne Freisetzen der Füllung zu widerstehen. Der Verfahrensschritt c) dient somit im Falle nicht ausreichend haftfähiger Folien dem "Ankleben" derselben.
  • Als Haftvermittler lassen sich Stoffe einsetzen die den Formkörperflächen, auf die sie aufgetragen werden, eine ausreichende Haftfähigkeit ("Klebrigkeit") verleihen, damit die im nachfolgenden Verfahrensschritt aufgebrachten Folien dauerhaft an der Fläche haften. Prinzipiell bieten sich hier die in der einschlägigen Klebstoffliteratur und insbesondere in den Monographien hierzu erwähnten Substanzen an, wobei im Rahmen der vorliegenden Erfindung dem Aufbringen von Schmelzen, welche bei erhöhter Temperatur haftvermittelnd wirken, nach Abkühlung aber nicht mehr klebrig, sondern fest sind, eine besondere Bedeutung zukommt.
  • Zu Verfahrensschritt d), dem Aufbringen der Folie auf einige oder alle Flächen des Formkörpers und dem damit verbundenen Verschließen der Kavität(en), wurden bereits weiter oben detaillierte Angaben gemacht, auf die hier verwiesen wird, um Redundanzen zu vermeiden.
  • Die erfindungsgemäß hergestellten Formkörper können - wie oben beschrieben - ganz oder teilweise mit einer Beschichtung versehen werden. Verfahren, in denen die Nachbehandlung in Schritt e) im Aufbringen einer Coatingschicht auf den gesamten Formkörper besteht, sind erfindungsgemäß bevorzugt.
  • Wie weiter oben erwähnt, lassen sich auch Reinigungsmitteltabletten für das maschinelle Geschirrspülen nach dem erfindungsgemäßen Verfahren herstellen. Dementsprechend ist ein Reinigungsverfahren zum Reinigen von Geschirr in einer Geschirrspülmaschine, das dadurch gekennzeichnet ist, daß man einen oder mehrere erfindungsgemäße(n) Wasch- und Reinigungsmittelformkörper in die Dosierkammer der Spülmaschine einlegt und ein Spülprogramm ablaufen läßt, in dessen Verlauf sich die Dosierkammer öffnet und der bzw. die Formkörper aufgelöst werden, ein weiterer Gegenstand der vorliegenden Erfindung.
  • Auch beim erfindungsgemäßen Reinigungsverfahren kann man auf die Dosierkammer verzichten und den bzw. die erfindungsgemäßen Formkörper beispielsweise in den Besteckkorb einlegen. Selbstverständlich ist aber auch hier der Einsatz einer Dosierhilfe, beispielsweise eines Körbchens, das im Spülraum angebracht wird, problemlos möglich. Dementsprechend ist ein Reinigungsverfahren zum Reinigen von Geschirr in einer Geschirrspülmaschine, bei dem man einen oder mehrere erfindungsgemäße(n) Wasch- und Reinigungsmittelformkörper mit oder ohne Dosierhilfe in den Spülraum der Spülmaschine einlegt und ein Spülprogramm ablaufen läßt, in dessen Verlauf der bzw. die Formkörper aufgelöst werden, ein weiterer Gegenstand der vorliegenden Erfindung.

Claims (20)

1. Wasch- und Reinigungsmitteltabletten, enthaltend mindestens ein kationisches Nitril der Formel (I)


in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2- CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist, dadurch gekennzeichnet, daß der Formkörper mindestens eine Kavität aufweist, deren Öffnung(en) mit einer Folie verschlossen ist/sind und das/die kationische(n) Nitril(e) der Formel (I) in der Kavität enthalten sind.
2. Wasch- und Reinigungsmitteltabletten nach Anspruch 1, dadurch gekennzeichnet, daß die Kavität die Form einer Mulde aufweist.
3. Wasch- und Reinigungsmitteltabletten nach Anspruch 1, dadurch gekennzeichnet, daß die Kavität die Form eines durchgehenden Loches aufweist, dessen Öffnungen sich an zwei gegenüberliegenden Formkörperflächen befinden.
4. Wasch- oder Reinigungsmitteltabletten nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das/die in der Kavität enthaltene(n) kationische(n) Nitril(e) der Formel (I) partikelförmig sind, wobei vorzugsweise mindestens 90 Gew.-% der Teilchen des kationischen Nitrils der Formel (I) eine Teilchengröße oberhalb 0,2 mm aufweisen, besonders bevorzugt mindestens 40 Gew.-%, vorzugsweise mindestens 50 Gew.-% und insbesondere mindestens 60 Gew.-%, der Teilchen des kationischen Nitrils der Formel (I) eine Teilchengröße oberhalb 0,4 mm aufweisen und das kationische Nitril der Formel (I) insbesondere bevorzugt eine mittlere Teilchengröße oberhalb von 400 µm, vorzugsweise oberhalb von 500 µm, besonders bevorzugt oberhalb von 600 µm und insbesondere oberhalb von 700 µm aufweist.
5. Wasch- oder Reinigungsmitteltabletten nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie als kationisches Nitril der Formel (I) ein kationisches Nitril der Formel (Ia)


enthalten, in der R4, R5 und R6 unabhängig voneinander ausgewählt sind aus -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, wobei R4 zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R5 = R6 = -CH3 und insbesondere R4 = R5 = R6 = -CH3 gilt und Verbindungen der Formeln (CH3)3N(+)CH2-CN X-, (CH3CH2)3N(+)CH2-CN X-, (CH3CH2CH2)3N(+)CH2-CN X-, (CH3CH(CH3))3N(+)CH2-CN X-, oder (HO-CH2-CH2)3N(+)CH2-CN X- besonders bevorzugt sind.
6. Wasch- und Reinigungsmitteltabletten nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie als kationisches Nitril (CH3)3N(+)CH2-CN X- enthalten, wobei X für ein Anion steht, das aus der Gruppe Chlorid, Bromid, Iodid, Hydrogensulfat, Methosulfat, p- Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist,
7. Wasch- und Reinigungsmitteltabletten nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Folie aus einem Polymer mit einer Molmasse zwischen 5000 und 500.000 Dalton, vorzugsweise zwischen 7500 und 250.000 Dalton und insbesondere zwischen 10.000 und 100.000 Dalton, besteht.
8. Wasch- und Reinigungsmitteltabletten nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Folie aus einem wasserlöslichen Polymer besteht.
9. Wasch- und Reinigungsmitteltabletten nach Anspruch 8, dadurch gekennzeichnet, daß das Folienmaterial ausgewählt ist aus einem oder mehreren Stoffen aus der Gruppe Carrageenan, Guar, Pektin, Xanthan, Cellulose und ihren Derivaten, Stärke und ihren Derivaten sowie Gelatine.
10. Wasch- und Reinigungsmitteltabletten nach Anspruch 8, dadurch gekennzeichnet, daß das Folienmaterial ausgewählt ist aus einem Polymer oder Polymergemisch, wobei das Polymer bzw. mindestens 50 Gew.-% des Polymergemischs ausgewählt ist aus
a) wasserlöslichen nichtionischen Polymeren aus der Gruppe der
1. Polyvinylpyrrolidone,
2. VinylpyrrolidonlVinylester-Copolymere,
3. Celluloseether
b) wasserlöslichen amphoteren Polymeren aus der Gruppe der
1. Alkylacrylamid/Acrylsäure-Copolymere
2. Alkylacrylamid/Methacrylsäure-Copolymere
3. Alkylacrylamid/Methylmethacrylsäure-Copolymere
4. Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere
5. Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure- Copolymere
6. Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure- Copolymere
7. Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere
8. Copolymere aus
9. ungesättigten Carbonsäuren
10. kationisch derivatisierten ungesättigten Carbonsäuren
11. gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
c) wasserlöslichen zwitterionischen Polymeren aus der Gruppe der
1. Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
2. Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
d) Methacroylethylbetain/Methacrylat-Copolymere
e) wasserlöslichen anionischen Polymeren aus der Gruppe der
1. Vinylacetat/Crotonsäure-Copolymere
2. Vinylpyrrolidon/Vinylacrylat-Copolymere
3. Acrylsäure/Ethylacrylat/N-tert.-Butylacrylamid-Terpolymere
4. Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
5. gepfropften und vernetzten Copolymere aus der Copolymerisation von
6. mindestens einem Monomeren vom nicht-ionischen Typ,
7. mindestens einem Monomeren vom ionischen Typ
8. von Polyethylenglycol und
9. einem Vernetzer
10. durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere:
11. Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
12. ungesättigte Carbonsäuren,
13. Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe d6ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols
14. Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester
15. Tetra- und Pentapolymere aus
16. Crotonsäure oder Allyloxyessigsäure
17. Vinylacetat oder Vinylpropionat
18. verzweigten Allyl- oder Methallylestern
19. Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
20. Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinymethylether, Acrylamid und deren wasserlöslicher Salze
21. Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in □-Stellung verzweigten Monocarbonsäure
f) wasserlöslichen kationischen Polymeren aus der Gruppe der
1. quaternierten Cellulose-Derivate
2. Polysiloxane mit quaternären Gruppen
3. kationischen Guar-Derivate
4. polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure
5. Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats
6. Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere
7. quaternierter Polyvinylalkohol
8. unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegebenen Polymere.
11. Wasch- und Reinigungsmitteltabletten nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Folienmaterial Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren Hydrolysegrad 70 bis 100 Mol%, vorzugsweise 80 bis 90 Mol%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.
12. Wasch- oder Reinigungsmitteltabletten nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Folienmaterial Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren Molekulargewicht im Bereich von 3.500 bis 100.000 gmol-1, vorzugsweise von 10.000 bis 90.000 gmol-1, besonders bevorzugt von 12.000 bis 80.000 gmol-1 und insbesondere von 13.000 bis 70.000 gmol-1 liegt.
13. Wasch- oder Reinigungsmitteltabletten nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Folienmaterial Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren durchschnittlicher Polymerisationsgrad zwischen 80 und 700, vorzugsweise zwischen 150 und 400, besonders bevorzugt zwischen 180 bis 300 liegt und/oder deren Molekulargewichtsverhältnis MG(50%) zu MG(90%) zwischen 0,3 und 1, vorzugsweise zwischen 0,4 und 0,8 und insbesondere zwischen 0,45 und 0,6 liegt.
14. Wasch- oder Reinigungsmitteltabletten nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die wasserlösliche Umhüllung Hydroxypropylmethylcellulose (HPMC) umfaßt, die einen Substitutionsgrad (durchschnittliche Anzahl von Methoxygruppen pro Anhydroglucose-Einheit der Cellulose) von 1,0 bis 2,0, vorzugsweise von 1,4 bis 1,9, und eine molare Substitution (durchschnittliche Anzahl von Hydroxypropoxylgruppen pro Anhydroglucose- Einheit der Cellulose) von 0,1 bis 0,3, vorzugsweise von 0,15 bis 0,25, aufweist.
15. Verfahren zur Herstellung von Wasch- und Reinigungsmitteltabletten gekennzeichnet durch die Schritte
a) Verpressen eines teilchenförmigen Vorgemischs zu einem verpreßten Teil (Basistablette), der mindestens eine Kavität aufweist,
b) Einfüllen mindestens eines kationischen Nitrils der Formel (I)


in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist, in flüssiger, gelförmiger, pastöser oder fester Form in die besagte(n) Kavität(en),
c) optionales Aufbringen eines oder mehrerer Haftvermittler auf ein oder mehrere Flächen des Formkörpers
d) Verschließen der Öffnungen der (befüllten) Kavitäten mit einer Folie
e) optionale Nachbehandlung einzelner Formkörperflächen oder des gesamten Formkörpers.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß das teilchenförmige Vorgemisch in Schritt a) ein Schüttgewicht von mindestens 500 g/l,, vorzugsweise mindestens 600 g/l, und insbesondere mindestens 700 g/l, aufweist.
17. Verfahren nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, daß das teilchenförmige Vorgemisch in Schritt a) Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400 µm, aufweist.
18. Verfahren nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, daß die teilchenförmige(n) Zusammensetzung(en) in Schritt b) ein Schüttgewicht von mindestens 500 g/l,, vorzugsweise mindestens 600 g/l, und insbesondere mindestens 700 g/l, aufweist/aufweisen.
19. Verfahren nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, daß die Verpressung in Schritt a) bei Preßdrücken von 0,01 bis 50 kNcm-2, vorzugsweise von 0,1 bis 40 kNcm-2 und insbesondere von 1 bis 25 kNcm-2 erfolgt.
20. Verfahren nach einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, daß die Nachbehandlung in Schritt e) im Aufbringen einer Coatingschicht auf den gesamten Formkörper besteht.
DE2002133832 2002-07-25 2002-07-25 MGSM mit speziell konfektionierten Bleichaktivatoren Ceased DE10233832A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2002133832 DE10233832A1 (de) 2002-07-25 2002-07-25 MGSM mit speziell konfektionierten Bleichaktivatoren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2002133832 DE10233832A1 (de) 2002-07-25 2002-07-25 MGSM mit speziell konfektionierten Bleichaktivatoren

Publications (1)

Publication Number Publication Date
DE10233832A1 true DE10233832A1 (de) 2003-07-17

Family

ID=7714795

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2002133832 Ceased DE10233832A1 (de) 2002-07-25 2002-07-25 MGSM mit speziell konfektionierten Bleichaktivatoren

Country Status (1)

Country Link
DE (1) DE10233832A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103337A1 (en) * 2003-05-19 2004-12-02 Bioprogress Plc Improvements in adhesives and their applications
GB2415200A (en) * 2004-06-19 2005-12-21 Reckitt Benckiser Nv Process for producing a detergent tablet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649375A1 (de) * 1996-11-29 1998-06-04 Henkel Kgaa Acetonitril-Derivate als Bleichaktivatoren in Reinigungsmitteln
DE19914353A1 (de) * 1999-03-31 2000-10-05 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit speziellen Bleichaktivatoren
DE19932765A1 (de) * 1999-07-14 2001-01-18 Henkel Kgaa Befüllte Wasch- und Reinigungsmittelformkörper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649375A1 (de) * 1996-11-29 1998-06-04 Henkel Kgaa Acetonitril-Derivate als Bleichaktivatoren in Reinigungsmitteln
DE19914353A1 (de) * 1999-03-31 2000-10-05 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit speziellen Bleichaktivatoren
DE19932765A1 (de) * 1999-07-14 2001-01-18 Henkel Kgaa Befüllte Wasch- und Reinigungsmittelformkörper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103337A1 (en) * 2003-05-19 2004-12-02 Bioprogress Plc Improvements in adhesives and their applications
GB2415200A (en) * 2004-06-19 2005-12-21 Reckitt Benckiser Nv Process for producing a detergent tablet
US8168581B2 (en) 2004-06-19 2012-05-01 Reckitt Benckiser N.V. Process for producing a multi-phase detergent tablet

Similar Documents

Publication Publication Date Title
EP1299517B1 (de) Maschinengeschirrspülmittel mit zusatznutzen
DE10223266C1 (de) Verwendung Einspülkammer-dosierbare Tabletten-Portionen
DE102004020720A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln
DE10254314B4 (de) Verfahren zur Herstellung befüllter Wasch- und Reinigungsmittelformkörper II
EP1606383A1 (de) Wasch- oder reinigungsmittel
WO2004046297A1 (de) Verfahren zur herstellung befüllter wasch- und reinigungsmittelformkörper
DE19932765A1 (de) Befüllte Wasch- und Reinigungsmittelformkörper
EP1606379A1 (de) Wasch- oder reinigungsmittel
WO2004013272A1 (de) Wasch-oder reinigungsmittelportionen mit umhüllung
EP1888736B1 (de) Wasch- oder reinigungsmittel dosiereinheit
DE10313454A1 (de) Wasch- oder Reinigungsmittel
DE102004040330A1 (de) Beschichteter Wasch- oder Reinigungsmittelformkörper
DE10233832A1 (de) MGSM mit speziell konfektionierten Bleichaktivatoren
DE19941266B4 (de) Formkörper mit speziell geformter Kavität, Verfahren zu dessen Herstellung und Wasch- und Reinigungsverfahren unter Einsatz dieses Formkörpers
DE19939992A1 (de) Wasch- oder Reinigungsmittelformkörper mit befülltem Hohlvolumen
EP1984252B1 (de) Verbessertes verfahren zur herstellung umhüllter wasch- oder reinigungsmittel-portionen
DE10314441A1 (de) Bleichaktivator-Compounds
EP1081218A2 (de) Formkörper mit speziell geformter Lochfüllung
DE10243819A1 (de) MGSM mit speziell konfektionierten Bleichaktivatoren II
DE10314442A1 (de) MGSM mit speziell konfektionierten Bleichaktivatoren III
DE10313456A1 (de) Formstabile Reinigungsmittelportion
WO2004029187A1 (de) Maschinelle geschirrspülmittellzusammensetzungen (mgsm) mit speziell konfektionierten bleichaktvatoren (iii)
WO2005019402A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteln
WO2004085599A1 (de) Formstabile reinignungsmittelportion
WO2005021381A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteln

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection