DE10230273B3 - Wind turbine tower has flanged cylindrical coupling piece for attaching upper cylindrical steel section to lower cylindrical concrete section - Google Patents

Wind turbine tower has flanged cylindrical coupling piece for attaching upper cylindrical steel section to lower cylindrical concrete section Download PDF

Info

Publication number
DE10230273B3
DE10230273B3 DE10230273A DE10230273A DE10230273B3 DE 10230273 B3 DE10230273 B3 DE 10230273B3 DE 10230273 A DE10230273 A DE 10230273A DE 10230273 A DE10230273 A DE 10230273A DE 10230273 B3 DE10230273 B3 DE 10230273B3
Authority
DE
Germany
Prior art keywords
flange
cylindrical
concrete
tower
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10230273A
Other languages
German (de)
Inventor
Eberhard Prof. Künzel
Matthias Dr.-Ing. Kott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Fertigteiltechnik und Fertigbau Weimar eV
Original Assignee
Institut fuer Fertigteiltechnik und Fertigbau Weimar eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Fertigteiltechnik und Fertigbau Weimar eV filed Critical Institut fuer Fertigteiltechnik und Fertigbau Weimar eV
Priority to DE10230273A priority Critical patent/DE10230273B3/en
Application granted granted Critical
Publication of DE10230273B3 publication Critical patent/DE10230273B3/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/085Details of flanges for tubular masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/12Structures made of specified materials of concrete or other stone-like material, with or without internal or external reinforcements, e.g. with metal coverings, with permanent form elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/16Prestressed structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Wind Motors (AREA)

Abstract

The tower has a cylindrical coupling piece (2) between a lower cylindrical concrete section (3) and an upper cylindrical steel section (1), with an annular flange (8,10) at either end of the coupling piece. The upper flange is in 2 parts for forming a T with the cylindrical wall (13) of the coupling piece and attached via fixing screws (5) to a flange (6) of the steel section on one side of the cylindrical wall and secured via anchoring rods (7) on the opposite side of the cylindrical rod, passing through the lower flange and embedded in the concrete section.

Description

Die Erfindung bezieht sich auf einen Turm einer Windkraftanlage mit einem Verbindungsstück zwischen einem unteren rohrförmigen Spannbetonteil und einem oberen rohrförmigen Stahlteil. Ausgegangen wird also von einem Turm, der – vereinfacht gesehen – aus zwei Teilen besteht, einem Turmfuß aus vorgespanntem Stahlbeton und einem aufgesetzten Stahlturm.The invention relates to a Tower of a wind turbine with a connector between a lower tubular Prestressed concrete part and an upper tubular steel part. Went out is therefore made up of one tower, which - seen simply - from two Parts consists of a tower base prestressed concrete and an attached steel tower.

Nach dem gegenwärtigen Stand der Technik werden für Türme von Windkraftanlage Stahlrohrtürme, Stahlgittermasten oder Spannbetonrohrtürme angewendet. Stahlrohrtürme werden aus geschlossenen Ringen, die nach oben konisch verlaufen können, montiert. Dieses Konstruktionsprinzip, das auf der Verwendung der geschlossenen Ringe beruht, erreicht mit zunehmender Turmhöhe seine Grenze, da Türme mit größerem Ringdurchmesser erforderlich werden. Die zulässige Breite von Bauteilen, die auf der Straße transportiert werden, darf etwa vier Meter nicht überschreiten. Damit lässt dieses Konstruktionsprinzip keine unbegrenzte Vergrößerung der geometrischen Abmessungen zu.According to the current state of the art for towers Wind turbine steel tube towers, Steel lattice masts or prestressed concrete tube towers are used. Tubular steel towers of closed rings which may be tapered upwardly mounted. This design principle, based on the use of the closed Based rings, achieved with increasing tower height its limit, as towers with larger ring diameter become necessary. the permissible Width of components that can be transported on the road not exceed about four meters. With that leaves this design principle is not an unlimited enlargement of the geometric dimensions, increase.

Spannbetontürme werden vor Ort monolithisch gefertigt und vorgespannt oder werden aus Stahlbetonfertigteilen montiert, die miteinander verspannt werden. Nachteilig bei der Errichtung von Spannbetonrohrtürmen ist die lange Zeit für ihre Errichtung auf der Baustelle und der hohe Aufwand für das Aufbringen der Vorspannkraft. Bekannt sind Ausführungen in Fertigteilbauweise, bei der aufeinandergestapelte ringförmige Stahlbetonteile vertikal mit Litzenspanngliedern verbunden und verspannt werden.Prestressed concrete towers become monolithic on site manufactured and prestressed or are made of precast reinforced concrete mounted, which are clamped together. A disadvantage in the construction of prestressed concrete tube towers is the long time for their construction on the construction site and the high effort for the installation the biasing force. Designs in prefabricated construction are known, with the stacked ring-shaped reinforced concrete parts vertically connected and tensioned with strand tendons.

Bei nicht vorgespannten Stahlbetonrohrtürmen würden infolge der Einwirkungen aus Wind und der maschinentechnischen Anlage der Windkraftanlage horizontale Risse auftreten, da der Beton keine Zugspannungen aufnehmen kann. Diese Einwirkungen variieren zusätzlich in ihrer Richtung je nach Stellung des Rotors und der Windrichtung, sodass sich im Turmquerschnitt an jeder Stelle Zugspannungen in zeitlicher Abfolge einstellen. Um diese Zugbeanspruchungen, die zu einer bisher nicht quantifizierbaren Ermüdung des Betons führt, zu vermeiden, wird nach gegenwärtigem Stand der Technik für Türme von Windkraftanlagen zugspannungsfreier Beton im Zustand der Gebrauchstauglichkeit verlangt.With non-prestressed reinforced concrete tube towers would result the effects of wind and the mechanical engineering of the Wind turbine horizontal cracks occur because the concrete has no tensile stress can record. These actions also vary in their direction the position of the rotor and the wind direction, so that the tower cross-section set tensile stresses in chronological order at every point. To these tensile stresses, which led to a previously unquantifiable fatigue the concrete leads, to avoid, according to current The art of towers of Wind turbines zugspannungsfreier concrete in the state of serviceability required.

Vorspannkräfte werden über Verankerungen konzentriert in den Beton eingeleitet. Bei Einleitung senkrecht verlaufender Vorspannkräfte über Verankerungskörper am Kopf des Betonschafts eines Spannbetonrohrturms treten quer zur Spannrichtung in einem Verankerungsbereich Zugkräfte im Beton auf. Die Kombination mit wechselnden Einwirkungen aus Wind und maschinentechnischer Anlage kann zu Ermüdungserscheinungen im Beton und somit zu Zerstörungen führen. Prestressing forces are concentrated via anchors introduced into the concrete. Upon initiation of vertically extending Preload forces on anchoring body on The head of the concrete shaft of a prestressed concrete tube tower tread across Tensioning direction in an anchoring region of tensile forces in the concrete to. The combination with changing effects from wind and machine technology can cause signs of fatigue in the concrete and thus to destruction to lead.

Im Gegensatz zum Turm aus Beton kann ein Stahlturm Zug- und Druckspannungen gleichermaßen aufnehmen. Wird ein Stahlrohr mit Hilfe von Schrauben verbunden auf einen Betonturm gesetzt, werden die im Stahlrohr auftretende Zugspannungen an den Verbindungspunkten konzentriert in der Hauptbeanspruchungsrichtung vertikal in den Beton übertragen, was zu den oben beschriebenen Schädigungen des Betons führen wird. Beim unmittelbaren Verbinden des Stahlrohrs durch Vorspannglieder mit dem Betonturm werden Zugspannungen im Betonturm in der Hauptbeanspruchungsrichtung vermieden, jedoch können durch die konzentrierte Krafteinleitung über die Verbindungen quergerichtete Zugspannungen im Beton auftreten.Unlike the concrete tower a steel tower absorb tensile and compressive stresses equally. A steel pipe is connected to a concrete tower using screws are set, the tensile stresses occurring in the steel tube at the Connection points concentrated in the main stress direction vertically transferred to the concrete, which will lead to the damage to the concrete described above. When connecting the steel pipe directly with tendons with the concrete tower tensile stresses in the concrete tower in the main direction of stress avoided, but can through the concentrated application of force across the connections Tensile stresses occur in the concrete.

Aus der DE 198 23 650 C2 ist ein Verfahren zum Herstellen von hohen, hohlen, turmartigen Bauwerken, insbesondere von Türmen für Windkraftanlagen, bekannt. Dieses Verfahren beruht auf der Vorfertigung von transportfähigen, komplett vorbehandelten, fertigen Einzelschalungsteilen. Dabei kann die Bewehrung entweder komplett an der Außen- und/oder an der Innenschalung fabrikmäßig angeordnet sein. Die Montage vor Ort erfolgt zum Beispiel durch einfache Schraub-Steckverbindungen. Dabei werden die fabrikmäßigen vorgefertigten Modul-Einzelschalungsteile vor Ort zu Schalungsrohrschüssen für die Innen- und Außenschalung zusammengebaut und dadurch eine verlorene Schalung gebildet, in der sich die vorgefertigte Stahlarmierung befindet. Die einzelnen Schalungsrohrschüsse der Innen- und Außenschalung werden z.B. sektionsweise übereinandergestülpt und miteinander verbunden, bis die angestrebte Höhe in dieser Bauweise erreicht ist. Abschnittsweise wird der Ringraum zwischen den äußeren Schalungsrohrschüssen und den inneren Schalungsrohrschüssen mit Fertigbeton verfüllt.From the DE 198 23 650 C2 is a method for producing high hollow tower-like buildings, particularly of towers for wind turbines, known. This method is based on the prefabrication of transportable, completely pretreated, finished single formwork parts. Here, the reinforcement either be disposed completely on the outside and / or on the inner formwork factory default. On-site assembly is carried out, for example, using simple screw plug connections. The original producer prefabricated module-individual formwork parts are assembled on site to form pipe sections of the inner and outer formwork, thereby forming a permanent formwork, the prefabricated steel reinforcement is in the. The individual formwork pipe sections of the inner and outer formwork are, for example, slipped over each other and connected to each other until the desired height is reached in this construction. Section, the annular space between the outer casing pipe sections and the inner formwork pipe sections is filled with ready-mixed concrete.

Aufgabe vorliegender Erfindung ist die Kombination der Stahl- und Betonbauweise in einem Turm für eine Windkraftanlage durch eine konstruktive Anordnung, die die Nachteile des zugbeanspruchten Betons vermeidet.The object of the present invention is the combination of steel and concrete construction in a tower for a wind turbine by a constructive arrangement, which the disadvantages of the tensile Concrete avoids.

Die Erfindung löst die Aufgabe bei einem Turm der eingangs genannten Art dadurch, dass das Verbindungsstück rohrförmig ausgebildet ist sowie am oberen und unteren Ende jeweils mit einem kreisförmigen Flansch versehen ist, dass der obere Flansch des Verbindungsstücks zweiseitig ausgebildet ist, und damit mit der Rohrwand des Verbindungsstücks ein T bildet, dass der obere Flansch ferner auf einer Seite der Rohrwand durch Schrauben mit einem Flansch des oberen rohrförmigen Stahlteils verbunden ist und dass auf der gegenüberliegenden Seite der Rohrwand im oberen Flansch gleichmäßig verteilt in Ringrichtung Spannglieder verankert sind, die durch Bohrungen im unteren Flansch des Verbindungsstücks senkrecht in das untere rohrförmige Spannbetonteil ihre aufgebrachte Spannkraft abtragen.The invention solves the problem in a tower of the type mentioned in that the connecting piece is tubular and is provided with a circular flange at the upper and lower end, that the upper flange of the connecting piece is formed on two sides, and thus with the tube wall of the the connecting piece forms a T, that the upper flange is also connected to one side of the tube wall by screws to a flange of the upper tubular steel part and that evenly distributed on the opposite side of the pipe wall in the upper flange anchored in the annular direction tendons, the lower through bores in the Flange of the connecting piece perpendicularly ablate their tensile force applied in the lower tubular part pre-stressed concrete.

In das Verbindungsstück werden am oberen Ende Vorspannkräfte eingeleitet und in den Betonteil des Turms geführt, so dass das Verbindungsstück durch die Abstützung auf dem oberen Rand des unten liegenden Betonteils des Turms unter Druck in vertikaler Richtung gesetzt wird. Es wird die Wirkung erzielt, dass sich die Spannkräfte auf den unteren Flansch durch die Kraftausbreitung in der Rohrwand verteilen und einen radial gleichmäßig verteilten senkrechten Druck auf die Wand des unteren Betonteils ausüben.Be in the connector prestressing forces at the upper end initiated and led into the concrete part of the tower, so that the connecting piece by the support on the upper edge of the concrete part of the tower below Pressure is set in the vertical direction. The effect is achieved that the clamping forces spread over the bottom flange by the power distribution in the pipe wall and a radially evenly distributed vertical Apply pressure to the wall of the lower part of the concrete.

Zweckmäßige Ausgestaltungen sind in den Unteransprüchen 2 und 3 angegeben.Appropriate configurations are in the subclaims 2 and 3 specified.

Nachführend werden Anwendung und Ausführungsbeispiele näher erläutert, die in der Zeichnung dargestellt sind.Accurate tracking application and be embodiments explained in more detail the are shown in the drawing.

Es zeigt:It shows:

1 in vereinfachter Darstellung den Turm der Windkraftanlage mit einem unteren Teil (3) aus vorgespanntem Beton, mit einem oberen Teil (1) aus Stahl, auf den die maschinentechnische Anlage (4) montiert ist, und mit einem Verbindungsstück (3), das beide Teile verbindet, 1 in a simplified representation the tower of the wind turbine with a lower part ( 3 ) made of prestressed concrete, with an upper part ( 1 ) made of steel, on which the mechanical system ( 4 ) Is mounted, and with a connecting piece ( 3 ) that connects both parts,

2 einen Abschnitt aus dem Turm als Teilschnitt links von der Symmetrieachse SA, der die Verbindung des Spannbetonteils und des Stahlteils durch das Verbindungsstück enthält, 2 a section from the tower as a partial section to the left of the axis of symmetry SA, which contains the connection of the prestressed concrete part and the steel part through the connecting piece,

3 einen Abschnitt aus dem Turm als Teilschnitt links von der Symmetrieachse SA, der eine Variante der Verbindung entsprechend 2 enthält, 3 a section of the tower as a partial section to the left of the axis of symmetry SA, according to a variant of the connection 2 contains

4 das Verbindungsstück. 4 the connector.

Die Teile (1), (2) und (3) sind rohrförmig ausgebildet. Das Verbindungsstück (2) ist oben mit einem Flansch (8) versehen, der mit der Wand (13) ein T bildet. Auf der einen Seite des Flanschs (8) wird das Verbindungsstück mit dem Flansch (8) des oberen Stahlteils (1) durch Schrauben (5) verbunden. An der anderen Seite des Flanschs (8) bezogen auf die Wand (13) werden Vorspannkräfte durch Spannglieder (7), die außerhalb des Verbindungsstücks (2) in die Wand (14) des Spannbetonteils (3) des Turms geführt werden, eingeleitet. Die Spannglieder (7) werden horizontal in gleichen Abständen auf den ringförmigen Flansch verteilt. Im Spannbetonteil (3) verlaufen die Spannglieder (7) in Spanngliedhülsen (11). Die Vorspannkräfte können am Flansch (8) oder an einer Spannstelle in der Wand (14) des Spannbetonteils (3) des Turms durch Spannpressen erzeugt werden. Ebenso kann die Vorspannkraft durch Vorspannen am Flansch (8) oder an einer Spannstelle in der Wand (14) gleichzeitig aufgebracht werden. Die Vorspannkräfte verteilen sich von der Verankerung am oberen Flansch (8) in der Wand (13) des Verbindungsstücks (2). Am unteren Flansch (10) des Verbindungsstücks (2) wirken die Vorspannkräfte als gleichmäßig verteilter Druck auf den oberen Abschluss der Wand (14) des Spannbetonteils (3) des Turms.The parts ( 1 ), ( 2 ) and ( 3 ) are tubular. The link ( 2 ) is at the top with a flange ( 8th ) provided with the wall ( 13 forming) a T. On one side of the flange ( 8th ) The connecting piece with the flange ( 8th ) of the upper steel part ( 1 ) by screwing ( 5 ) connected. On the other side of the flange ( 8th ) Relative to the wall ( 13 ) preload forces are created by tendons ( 7 ) Outside of the connector ( 2 ) in the wall ( 14 ) of the prestressed concrete part ( 3 ) of the tower. The tendons ( 7 ) are distributed horizontally at equal intervals on the annular flange. In prestressed concrete part ( 3 ) the tendons run ( 7 ) in tendon sleeves ( 11 ). The preload forces can be 8th ) Or at a clamping point in the wall ( 14 ) of the prestressed concrete part ( 3 be generated) of the tower by means of clamping presses. The preload force can also be adjusted by preloading the flange ( 8th ) or at a clamping point in the wall ( 14 are applied simultaneously). The prestressing forces are distributed from the anchoring to the upper flange ( 8th ) in the wall ( 13 ) Of the connector ( 2 ). At the bottom flange ( 10 ) Of the connector ( 2 ) the prestressing forces act as an evenly distributed pressure on the upper end of the wall ( 14 ) Of the reinforced concrete part ( 3 ) Of the tower.

Um eine Verbiegung des oberen Flansches (8) und ein Beulen der Wand (13) des Verbindungsstücks (2) zu verhindern, können senkrechte Bleche. (9) angeordnet werden.A bending of the upper flange ( 8th ) and a bump in the wall ( 13 ) of the connector ( 2 ) prevent vertical plates can. are placed (9).

Das Spannen der Spannglieder (7) kann mit einer der drei folgenden Varianten erfolgen, und zwar Tensioning the tendons ( 7 ) can be done with one of the three following variants

  • – dass die Spannglieder (7) durch Spannvorrichtungen, die am oberen Flansch (8) angeordnet werden, gespannt werden, im unteren Betonteil (3) des Turms verankert sind und am Flansch nach Erzeugen der Vorspannkraft verankert werden;- that the tendons ( 7 ) by means of clamping devices attached to the upper flange ( 8th ) can be arranged, tensioned, in the lower concrete part ( 3 ) Of the tower are anchored and be anchored to the flange by generating the biasing force;
  • – oder dass die Spannglieder (7) an einer Stelle im unteren Betonteil (3) des Turms durch Spannvorrichtungen mechanisch gespannt werden und am oberen Flansch (8) verankert sind und nach Erzeugen der Vorspannkraft im Betonteil (3) verankert werden;- or that the tendons ( 7 ) at one point in the lower concrete part ( 3 be mechanically stretched) of the tower by means of clamping devices and at the upper flange ( 8th are anchored), and after generating the preload force in the concrete part ( 3 be anchored);
  • – oder dass die Spannglieder (7) an einer Stelle im unteren Betonteil (3) des Turms und am oberen Flansch (8) durch Spannvorrichtungen mechanisch gespannt werden und am oberen Flansch (8) und im Betonbauteil (3) verankert werden.- or that the tendons ( 7 ) at one point in the lower concrete part ( 3 ) of the tower and on the upper flange ( 8th ) are mechanically clamped by clamping devices and on the upper flange ( 8th ) and in the concrete component ( 3 be anchored).

Claims (3)

Turm einer Windkraftanlage mit einem Verbindungsstück (2) zwischen einem unteren rohrförmigen Spannbetonteil (3) und einem oberen rohrförmigen Stahlteil (1), dadurch gekennzeichnet, dass das Verbindungsstück (2) rohrförmig ausgebildet ist sowie am oberen und unteren Ende jeweils mit einem kreisförmigen Flansch (8 bzw. 10) versehen ist, dass der obere Flansch (8) des Verbindungsstücks (2) zweiseitig ausgebildet ist und damit mit der Rohrwand (13) des Verbindungsstücks (2) ein T bildet, dass der obere Flansch (8) ferner auf einer Seite der Rohrwand (13) durch Schrauben (5) mit einem Flansch (6) des oberen rohrförmigen Stahlteils (1) verbunden ist und dass auf der gegenüberliegenden Seite der Rohrwand (13) im oberen Flansch (8) gleichmäßig verteilt in Ringrichtung Spannglieder (7) verankert sind, die durch Bohrungen (12) im unteren Flansch (10) des Verbindungsstücks (2) senkrecht in das untere rohrförmige Spannbetonteil (3) ihre aufgebrachte Spannkraft abtragen.Tower of a wind turbine with a link ( 2 ) between a lower tubular prestressed concrete part ( 3 ) And an upper tubular steel part ( 1 ), Characterized in that the connecting piece ( 2 is) of a tubular configuration and at the upper and lower end with a circular flange ( 8th or 10) is provided, that the upper flange ( 8th ) of the connector ( 2 ) is double-sided and thus with the pipe wall ( 13 ) of the connector ( 2 ) A T, is that the upper flange ( 8th ) further on one side of the pipe wall ( 13 ) by screwing ( 5 ) with a flange ( 6 ) Of the upper tubular steel part ( 1 ) is connected and that on the opposite side of the pipe wall ( 13 ) In the upper flange ( 8th uniformly) distributed in the annular direction tendons ( 7 are anchored) passing through bores ( 12 ) In the lower flange ( 10 ) of the connector ( 2 ) vertically into the lower tubular prestressed concrete part ( 3 ) Ablate their tensile force applied. Turm nach Anspruch 1, dadurch gekennzeichnet, dass eine Seite des oberen Flansches (8) durch Bleche (9) ausgesteift ist, die mit dem oberen Flansch (8), der Rohrwand (13) und dem unteren Flansch (10) verbunden sind.Tower according to claim 1, characterized in that one side of the upper flange ( 8th ) By plates ( 9 ) which is braced with the upper flange ( 8th ), The tube wall ( 13 ) And the lower flange ( 10 ) are connected. Turm nach Anspruch 1, dadurch gekennzeichnet, dass der Flansch (6) des oberen Stahlteils (1) an den oberen Flansch (8) des Verbindungsstücks (2) geschweißt ist.Tower according to claim 1, characterized net, that the flange ( 6 ) of the upper steel part ( 1 ) to the upper flange ( 8th ) of the connector ( 2 ) is welded.
DE10230273A 2002-07-05 2002-07-05 Wind turbine tower has flanged cylindrical coupling piece for attaching upper cylindrical steel section to lower cylindrical concrete section Expired - Fee Related DE10230273B3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10230273A DE10230273B3 (en) 2002-07-05 2002-07-05 Wind turbine tower has flanged cylindrical coupling piece for attaching upper cylindrical steel section to lower cylindrical concrete section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10230273A DE10230273B3 (en) 2002-07-05 2002-07-05 Wind turbine tower has flanged cylindrical coupling piece for attaching upper cylindrical steel section to lower cylindrical concrete section

Publications (1)

Publication Number Publication Date
DE10230273B3 true DE10230273B3 (en) 2004-02-12

Family

ID=30128076

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10230273A Expired - Fee Related DE10230273B3 (en) 2002-07-05 2002-07-05 Wind turbine tower has flanged cylindrical coupling piece for attaching upper cylindrical steel section to lower cylindrical concrete section

Country Status (1)

Country Link
DE (1) DE10230273B3 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032945A1 (en) * 2004-07-07 2006-02-02 Aloys Wobben Device for producing and / or assembling goods
DE202005003425U1 (en) * 2005-03-03 2006-07-20 Oevermann Gmbh & Co. Kg Foundation e.g. for offshore wind energy plant has cross tubes, rim tubes and head struts, which are clamped between stop surfaces on base joint elements, head joint elements and shaft foot joint elements
EP1729007A2 (en) 2005-06-03 2006-12-06 Gamesa Eolica, S.A.U. Tower for wind energy turbines
WO2007059768A1 (en) * 2005-11-24 2007-05-31 Vestas Wind Systems A/S A wind turbine tower, connection means for assembling a wind turbine tower and methods hereof
EP2009202A2 (en) 2007-06-28 2008-12-31 Nordex Energy GmbH Wind farm tower
DE102007060379A1 (en) * 2007-12-12 2009-06-25 Repower Systems Ag Connecting body e.g. load distribution element, for erecting steel tower of wind turbine, has upper and lower contact surfaces for tower and foundation body, respectively, where connecting body is arranged between tower and foundation body
EP2239376A2 (en) 2009-04-08 2010-10-13 Nordex Energy GmbH Anchoring component for a wind farm tower
ES2350135A1 (en) * 2008-07-04 2011-01-19 STRUCTURAL CONCRETE & STEEL, S.L Connection system for mixed towers of wind turbines (Machine-translation by Google Translate, not legally binding)
WO2011158095A2 (en) * 2010-06-16 2011-12-22 Cortina Innovations, S. A. De C. V. Flange for wind power generators
WO2011157476A3 (en) * 2010-06-14 2012-02-16 Max Bögl Bauunternehmung GmbH & Co. KG Tower comprising an adapter piece and method for producing a tower comprising an adapter piece
WO2012122976A2 (en) 2011-03-14 2012-09-20 Ed. Züblin Ag Device and method for the transition between a steel tower section and a pre-stressed concrete tower section
DE102011076648A1 (en) * 2011-05-27 2012-11-29 Max Bögl Wind AG Method for erecting a wind turbine
DE102011085947A1 (en) * 2011-11-08 2013-05-08 Wobben Properties Gmbh Tower foot section of a wind turbine
WO2013098086A1 (en) * 2011-12-30 2013-07-04 Werner Rolf J Tower-shaped supporting structure
DE102012001109A1 (en) * 2012-01-23 2013-07-25 Drössler GmbH Umwelttechnik hybrid tower
US8511044B2 (en) 2009-05-21 2013-08-20 Alstom Wind, S.L.U. Composite connection for a wind turbine tower structure
CN104018724A (en) * 2014-06-13 2014-09-03 湖南大学 Connecting device of prestress concrete tower section and steel tower section of combination wind power tower
DE102013108692A1 (en) 2013-08-12 2015-02-12 Max Bögl Wind AG Tower with at least one tower section with fiber tendons
US20150143765A1 (en) * 2012-02-28 2015-05-28 Ms Enertech, S.L. Connection between a wind turbine tower and its foundation
WO2015082631A1 (en) 2013-12-06 2015-06-11 Wobben Properties Gmbh Wind turbine comprising a segmented tower and foundation
EP2620644B1 (en) 2012-01-30 2015-06-17 Siemens Aktiengesellschaft Improvements to a wind turbine assembly
DE102013226536A1 (en) * 2013-12-18 2015-06-18 Wobben Properties Gmbh Arrangement with a concrete foundation and a tower and method for erecting a tower
DE102014001996A1 (en) * 2013-12-12 2015-06-18 Rwe Innogy Gmbh Connection profile of a building structure as an offshore or onshore structure and flange connection to such a building structure and method for establishing a building structure using the connection profile
EP2330263B1 (en) 2009-12-01 2016-03-16 Siemens Aktiengesellschaft Concrete tower
US20160169209A1 (en) * 2013-06-21 2016-06-16 Wobben Properties Gmbh Wind turbine and wind turbine foundation
RU2621234C1 (en) * 2013-08-19 2017-06-01 Воббен Пропертиз Гмбх Wind turbine foundation and wind turbine
EP2574711B1 (en) 2003-08-25 2017-07-19 Senvion GmbH Tower for a wind energy facility
DE102016203526A1 (en) * 2016-01-20 2017-07-20 Ventur GmbH Adapter device for a tower and method of manufacture
EP2094969B2 (en) 2006-11-27 2019-02-20 Senvion GmbH Tower of a wind power station
DE102017125060A1 (en) 2017-10-26 2019-05-02 Wobben Properties Gmbh Annular console for external tensioning of a tower segment, external tensioning system of a hybrid tower, tower section of a hybrid tower, hybrid tower, wind energy plant and assembly process of an external tensioning system for a hybrid tower
WO2019193388A1 (en) * 2018-04-03 2019-10-10 Cortina Cordero Alejandro Transition flange for a hybrid concrete–steel tower for wind turbines
CN111663837A (en) * 2020-06-11 2020-09-15 陈如请 Reinforcing structure for junction of offshore wind power installation framework
CN113914700A (en) * 2021-10-21 2022-01-11 重庆大学 Reinforced structure for concrete transfer section of wind turbine generator and construction method
WO2023287401A1 (en) 2021-07-13 2023-01-19 General Electric Company Wind turbine tower structure with transition system between sections thereof
WO2023104268A1 (en) * 2021-12-07 2023-06-15 Stiesdal Offshore A/S An offshore wind turbine installation with a concrete-cast transition piece between the wind turbine tower and its support
CN116906273A (en) * 2023-07-24 2023-10-20 湖南大学 Concrete-steel mixing tower section of thick bamboo changeover portion connecting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823650C2 (en) * 1998-05-27 2001-05-23 Wilfried Arand Method and device for producing tall, hollow, tower-like structures of up to two hundred meters in height and more, in particular towers for wind turbines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823650C2 (en) * 1998-05-27 2001-05-23 Wilfried Arand Method and device for producing tall, hollow, tower-like structures of up to two hundred meters in height and more, in particular towers for wind turbines

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574711B1 (en) 2003-08-25 2017-07-19 Senvion GmbH Tower for a wind energy facility
EP2574711B2 (en) 2003-08-25 2023-07-12 Siemens Gamesa Renewable Energy Service GmbH Tower for a wind energy facility
US7845121B2 (en) 2004-07-07 2010-12-07 Aloys Wobben Facility used for the production and/or assembly of goods
DE102004032945A1 (en) * 2004-07-07 2006-02-02 Aloys Wobben Device for producing and / or assembling goods
DE202005003425U1 (en) * 2005-03-03 2006-07-20 Oevermann Gmbh & Co. Kg Foundation e.g. for offshore wind energy plant has cross tubes, rim tubes and head struts, which are clamped between stop surfaces on base joint elements, head joint elements and shaft foot joint elements
EP1729007A2 (en) 2005-06-03 2006-12-06 Gamesa Eolica, S.A.U. Tower for wind energy turbines
WO2007059768A1 (en) * 2005-11-24 2007-05-31 Vestas Wind Systems A/S A wind turbine tower, connection means for assembling a wind turbine tower and methods hereof
US8225576B2 (en) 2005-11-24 2012-07-24 Vestas Wind Systems A/S Wind turbine tower, connection means for assembling a wind turbine tower and methods thereof
EP2094969B2 (en) 2006-11-27 2019-02-20 Senvion GmbH Tower of a wind power station
US7694473B2 (en) 2007-06-28 2010-04-13 Nordex Energy Gmbh Wind energy plant tower
EP2009202A3 (en) * 2007-06-28 2010-02-03 Nordex Energy GmbH Wind farm tower
DE102007031065B4 (en) * 2007-06-28 2011-05-05 Nordex Energy Gmbh Wind turbine tower
DE102007031065A1 (en) 2007-06-28 2009-01-02 Nordex Energy Gmbh Wind turbine tower
EP2009202A2 (en) 2007-06-28 2008-12-31 Nordex Energy GmbH Wind farm tower
DE102007060379C5 (en) * 2007-12-12 2018-11-15 Senvion Gmbh Anchoring a tower of a wind turbine
DE102007060379A1 (en) * 2007-12-12 2009-06-25 Repower Systems Ag Connecting body e.g. load distribution element, for erecting steel tower of wind turbine, has upper and lower contact surfaces for tower and foundation body, respectively, where connecting body is arranged between tower and foundation body
DE102007060379B4 (en) * 2007-12-12 2014-02-13 Repower Systems Se Anchoring a tower of a wind turbine
ES2350135A1 (en) * 2008-07-04 2011-01-19 STRUCTURAL CONCRETE & STEEL, S.L Connection system for mixed towers of wind turbines (Machine-translation by Google Translate, not legally binding)
EP2239376A3 (en) * 2009-04-08 2012-06-20 Nordex Energy GmbH Anchoring component for a wind farm tower
EP2239376A2 (en) 2009-04-08 2010-10-13 Nordex Energy GmbH Anchoring component for a wind farm tower
DE102009016893A1 (en) 2009-04-08 2010-10-14 Nordex Energy Gmbh Anchoring component for a wind turbine tower
US8272173B2 (en) 2009-04-08 2012-09-25 Nordex Energy Gmbh Anchoring assembly part for a tower of a wind turbine
DE102009016893B4 (en) * 2009-04-08 2011-12-08 Nordex Energy Gmbh Anchoring component for a wind turbine tower
US8511044B2 (en) 2009-05-21 2013-08-20 Alstom Wind, S.L.U. Composite connection for a wind turbine tower structure
EP2330263B1 (en) 2009-12-01 2016-03-16 Siemens Aktiengesellschaft Concrete tower
US9243418B2 (en) 2010-06-14 2016-01-26 Max Bogl Bauunternehmung Gmbh & Co. Kg Tower comprising an adapter piece and method for producing a tower comprising an adapter piece
WO2011157476A3 (en) * 2010-06-14 2012-02-16 Max Bögl Bauunternehmung GmbH & Co. KG Tower comprising an adapter piece and method for producing a tower comprising an adapter piece
RU2564328C2 (en) * 2010-06-14 2015-09-27 МАКС БОГЛ БАУУНТЕРНЕМУНГ ГМБХ унд КО. КГ Tower with transitional part and method of fabrication of tower with transitional part
CN102947524A (en) * 2010-06-14 2013-02-27 马克斯·博格建筑两合公司 Tower comprising an adapter piece and method for producing a tower comprising an adapter piece
US9091095B2 (en) 2010-06-14 2015-07-28 Max Bogl Bauunternehmung Gmbh & Co. Kg Tower of a wind power plant and method for producing a tower of a wind power plant
CN102947524B (en) * 2010-06-14 2016-10-12 马克斯·博格建筑两合公司 A kind of tower with adaptor and for manufacturing the method for tower with adaptor
AU2011267375B2 (en) * 2010-06-14 2014-10-30 Max Bogl Bauunternehmung Gmbh And Co. Kg Tower comprising an adapter piece and method for producing a tower comprising an adapter piece
WO2011158095A3 (en) * 2010-06-16 2012-03-08 Cortina Innovations, S. A. De C. V. Flange for wind power generators
WO2011158095A2 (en) * 2010-06-16 2011-12-22 Cortina Innovations, S. A. De C. V. Flange for wind power generators
DE102011001250A1 (en) 2011-03-14 2012-09-20 Strabag Offshore Wind Gmbh Apparatus and method for the transition between a steel tower section and a prestressed concrete tower section
WO2012122976A2 (en) 2011-03-14 2012-09-20 Ed. Züblin Ag Device and method for the transition between a steel tower section and a pre-stressed concrete tower section
DE102011076648A1 (en) * 2011-05-27 2012-11-29 Max Bögl Wind AG Method for erecting a wind turbine
DE102011085947A1 (en) * 2011-11-08 2013-05-08 Wobben Properties Gmbh Tower foot section of a wind turbine
AU2012334092B2 (en) * 2011-11-08 2016-06-09 Wobben Properties Gmbh Foundation for a wind turbine
US9322396B2 (en) 2011-11-08 2016-04-26 Wobben Properties Gmbh Foundation for a wind turbine
CN103930623B (en) * 2011-11-08 2017-08-25 乌本产权有限公司 The pedestal of wind energy plant
CN103930623A (en) * 2011-11-08 2014-07-16 乌本产权有限公司 Foundation for a wind turbine
WO2013098086A1 (en) * 2011-12-30 2013-07-04 Werner Rolf J Tower-shaped supporting structure
WO2013110448A1 (en) 2012-01-23 2013-08-01 Drössler GmbH Umwelttechnik Hybrid tower
DE102012001109A1 (en) * 2012-01-23 2013-07-25 Drössler GmbH Umwelttechnik hybrid tower
EP2620644B1 (en) 2012-01-30 2015-06-17 Siemens Aktiengesellschaft Improvements to a wind turbine assembly
US20150143765A1 (en) * 2012-02-28 2015-05-28 Ms Enertech, S.L. Connection between a wind turbine tower and its foundation
US10626573B2 (en) 2013-06-21 2020-04-21 Wobben Properties Gmbh Wind turbine and wind turbine foundation
US20160169209A1 (en) * 2013-06-21 2016-06-16 Wobben Properties Gmbh Wind turbine and wind turbine foundation
DE102013108692A1 (en) 2013-08-12 2015-02-12 Max Bögl Wind AG Tower with at least one tower section with fiber tendons
RU2621234C1 (en) * 2013-08-19 2017-06-01 Воббен Пропертиз Гмбх Wind turbine foundation and wind turbine
WO2015082631A1 (en) 2013-12-06 2015-06-11 Wobben Properties Gmbh Wind turbine comprising a segmented tower and foundation
DE102013225128A1 (en) * 2013-12-06 2015-06-11 Wobben Properties Gmbh Wind turbine and wind turbine tower
DE102014001996A1 (en) * 2013-12-12 2015-06-18 Rwe Innogy Gmbh Connection profile of a building structure as an offshore or onshore structure and flange connection to such a building structure and method for establishing a building structure using the connection profile
WO2015090861A1 (en) * 2013-12-18 2015-06-25 Wobben Properties Gmbh Arrangement with a concrete foundation and a tower and method for erecting a tower
CN105829624A (en) * 2013-12-18 2016-08-03 乌本产权有限公司 Arrangement With A Concrete Foundation And A Tower And Method For Erecting A Tower
DE102013226536A1 (en) * 2013-12-18 2015-06-18 Wobben Properties Gmbh Arrangement with a concrete foundation and a tower and method for erecting a tower
US10704220B2 (en) 2013-12-18 2020-07-07 Wobben Properties Gmbh Arrangement with a concrete foundation and a tower and a method for erecting a tower
CN104018724A (en) * 2014-06-13 2014-09-03 湖南大学 Connecting device of prestress concrete tower section and steel tower section of combination wind power tower
DE102016203494A1 (en) * 2016-01-20 2017-07-20 Ventur GmbH Adapter device for a tower and method of manufacture
WO2017125216A1 (en) * 2016-01-20 2017-07-27 Ventur GmbH Adapter device for a tower and method for production
DE102016203526A1 (en) * 2016-01-20 2017-07-20 Ventur GmbH Adapter device for a tower and method of manufacture
DE102017125060A1 (en) 2017-10-26 2019-05-02 Wobben Properties Gmbh Annular console for external tensioning of a tower segment, external tensioning system of a hybrid tower, tower section of a hybrid tower, hybrid tower, wind energy plant and assembly process of an external tensioning system for a hybrid tower
WO2019081491A1 (en) 2017-10-26 2019-05-02 Wobben Properties Gmbh Annular bracket for externally loading a tower segment, external loading system of a hybrid tower, tower section of a hybrid tower, hybrid tower, wind turbine, and assembly method of an external loading system for a hybrid tower
US11136780B2 (en) 2017-10-26 2021-10-05 Wobben Properties Gmbh Annular bracket for externally loading a tower segment, external loading system of a hybrid tower, tower section of a hybrid tower, hybrid tower, wind turbine, and assembly method of an external loading system for a hybrid tower
WO2019193388A1 (en) * 2018-04-03 2019-10-10 Cortina Cordero Alejandro Transition flange for a hybrid concrete–steel tower for wind turbines
CN111663837B (en) * 2020-06-11 2022-01-04 乐风新能(北京)科技有限公司 Reinforcing structure for junction of offshore wind power installation framework
CN111663837A (en) * 2020-06-11 2020-09-15 陈如请 Reinforcing structure for junction of offshore wind power installation framework
WO2023287401A1 (en) 2021-07-13 2023-01-19 General Electric Company Wind turbine tower structure with transition system between sections thereof
CN113914700A (en) * 2021-10-21 2022-01-11 重庆大学 Reinforced structure for concrete transfer section of wind turbine generator and construction method
WO2023104268A1 (en) * 2021-12-07 2023-06-15 Stiesdal Offshore A/S An offshore wind turbine installation with a concrete-cast transition piece between the wind turbine tower and its support
CN116906273A (en) * 2023-07-24 2023-10-20 湖南大学 Concrete-steel mixing tower section of thick bamboo changeover portion connecting device

Similar Documents

Publication Publication Date Title
DE10230273B3 (en) Wind turbine tower has flanged cylindrical coupling piece for attaching upper cylindrical steel section to lower cylindrical concrete section
EP3516121B1 (en) Foundation for a wind turbine
DE102007031065B4 (en) Wind turbine tower
EP3821083B1 (en) Foundation for a wind motor
EP3036378B1 (en) Wind turbine foundation and wind turbine
AT519189B1 (en) Foundation for a windmill
EP2744955B1 (en) Device and method for the transition between a rising tower section and a pre-stressed concrete tower section
EP2108836B1 (en) Anchoring a tower of a wind energy device
DE102008053454B4 (en) Hybrid tower construction
EP0960986A2 (en) Process and device for the construction of tall, hollow, towerlike structures of two hundred meters height and more, specially wind generator towers
EP3405630A1 (en) Adapter device for a tower and method for production
EP2729621A1 (en) Arrangement for supporting a brace, in particular a stay cable, transversely to the longitudinal extent thereof
WO2020012346A1 (en) Foundation for a wind turbine
WO2020174334A1 (en) Foundation for a wind turbine
WO2013098086A1 (en) Tower-shaped supporting structure
DE102013100176B4 (en) Tower, especially for power lines
EP2676031B1 (en) Foundation for a tower of a wind turbine

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
8322 Nonbinding interest in granting licences declared
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20110201