DE10203106A1 - Optical system, to gather solar energy, has linear Fresnel's lens focused at absorber, together with angled mirror assembly to bundle light towards absorber and increase solar density from all sun positions - Google Patents

Optical system, to gather solar energy, has linear Fresnel's lens focused at absorber, together with angled mirror assembly to bundle light towards absorber and increase solar density from all sun positions

Info

Publication number
DE10203106A1
DE10203106A1 DE10203106A DE10203106A DE10203106A1 DE 10203106 A1 DE10203106 A1 DE 10203106A1 DE 10203106 A DE10203106 A DE 10203106A DE 10203106 A DE10203106 A DE 10203106A DE 10203106 A1 DE10203106 A1 DE 10203106A1
Authority
DE
Germany
Prior art keywords
absorber
optical system
density
linear fresnel
mirror assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10203106A
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karl Jungbecker GmbH and Co
Original Assignee
Karl Jungbecker GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karl Jungbecker GmbH and Co filed Critical Karl Jungbecker GmbH and Co
Priority to DE10203106A priority Critical patent/DE10203106A1/en
Publication of DE10203106A1 publication Critical patent/DE10203106A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

The optical assembly to increase the density of solar rays has at least one focusing and transparent linear Fresnel's lens (2) of plastics or glass. A trough-shaped mirror system (4) bundles the incoming light (1) towards the absorber (3). The light can fall at right angles and also at an angle in the plane of the cylinder lens axis. The mirror angles can be adjusted to direct the maximum light on to the absorber surface.

Description

Die vorliegende Erfindung bezieht sich auf ein optisches System bestehend aus zwei oder mehreren optisch wirksamen Bauelementen und einem Verfahren zur Berechnung dieser Elemente, wobei die vorliegende Erfindung vornehmlich im Bereich der konzentrierenden Systeme in der Solartechnik eingesetzt wird. The present invention relates to an optical system consisting of two or several optically effective components and a method for calculating them Elements, the present invention primarily in the field of concentrating Systems used in solar technology.

Im Bereich der konzentrierenden Systeme in der Solartechnik sind verschiedene Lösungen bekannt, die die einfallende direkte solare Strahlung auf Absorber unterschiedlichster Art fokussiert. Anwendungsbezogen können die Absorber spezielle photovoltaisch arbeitende Halbleiter und Flüssigkeiten oder Gase zum Antrieb von Turbinen oder Stirlingmotoren oder zur Erzeugung von Nutzwärme sein. Die benötigte und von den optisch konzentrierenden Systemen erreichte geometrische Konzentration, also das Verhältnis der zur Verfügung stehenden Aperturfläche und der effektiven Absorberfläche liegt dabei zwischen 2 und 10000. Bis zu einer Konzentration von 100 können die optischen Systeme in einer Achse dem Sonnenlauf nachgeführt werden, darüber hinaus ist eine zweiachsige Nachführung, ähnlich der eines astronomischen Teleskops notwendig. There are various solutions in the field of concentrating systems in solar technology known that the incident direct solar radiation on absorbers of all kinds focused. Depending on the application, the absorbers can special photovoltaic Semiconductors and liquids or gases for driving turbines or Stirling engines or to generate useful heat. The required and from the optically concentrating Systems achieved geometric concentration, i.e. the ratio of the available standing aperture area and the effective absorber area is between 2 and 10,000. Up to a concentration of 100, the optical systems can move in one axis Sun tracking can be tracked, in addition is a biaxial tracking, similar to that an astronomical telescope.

Eingesetzt werden zum einen Reflexionskonzentratoren, wie Parabolrinnen, Hohlspiegel oder Heliostatenfelder und zum anderen Brechungskonzentratoren wie Sammellinsen, Zylinderlinsen oder Fresnellinsen. On the one hand, reflection concentrators such as parabolic troughs, concave mirrors or Heliostat fields and other refractive concentrators such as converging lenses, Cylindrical lenses or Fresnel lenses.

Beim Einsatz von zylindrischen Fresnellinsen, den linearen Fresnellinsen, die aus lang ausgestreckten Prismen mit unterschiedlichen Prismenwinkeln bestehen und deren Berechnung in der Literatur zu finden ist, wird häufig auf einachsige Nachführung des optischen Systems zurückgegriffen. Dabei wird das optische System dem Azimut oder der Elevation der Sonne nachgeführt, was einer Ausrichtung der linearen Strukturen in Nord-Süd-Richtung bzw. in Ost-West-Richtung entspricht. Die jeweils nicht nachgeführte Richtung des optischen Systems führt bei Veränderung des Sonnenstandes zu einem Schrägeinfall der Sonnenstrahlen auf die Aperturfläche, wobei die Strahlungseinfallswinkel parallel zu den linearen Strukturen der Fresnellinsen auftreten. When using cylindrical Fresnel lenses, the linear Fresnel lenses that come from long stretched prisms with different prism angles exist and their calculation in The literature found is often based on uniaxial tracking of the optical system resorted. The optical system becomes the azimuth or the elevation of the sun tracked what an alignment of the linear structures in the north-south direction or in East-West direction corresponds. The direction of the optical that is not tracked Systems causes the sun's rays to slant when the position of the sun changes the aperture area, the angle of incidence parallel to the linear structures of the Fresnel lenses occur.

Dieser Schrägeinfall führt immer zu einer Verschiebung des Fokalbereiches zur Linsenebene hin. This oblique incidence always leads to a shift of the focal area to the lens plane out.

In Fig. 1a, Fig. 1b, Fig. 2a und Fig. 2b wird diese Problematik erläutert. Fig. 1a zeigt den Strahlengang bei einer wie oben beschriebenen herkömmlichen Fresnellinse. Die einfallenden Sonnenstrahlen 1 werden von der Fresnellinse 2 in die Fokalebene mit dem Absorber 3 gebrochen. Fig. 1b zeigt die senkrecht dazu gehörenden Strahlverlauf. In Fig. 1a, Fig. 1b, Fig. 2a and Fig. 2b this problem will be explained. FIG. 1a shows the beam path at a conventional Fresnel lens as described above. The incident sun rays 1 are refracted by the Fresnel lens 2 into the focal plane with the absorber 3 . Fig. 1b shows the perpendicular beam path.

Die Änderung des Fokalbereiches führt dazu, dass der Absorber mechanisch aufwendig bei Schrägeinfall nachgeführt werden muss. Weiterhin ist eine gleichmäßige Bündelung wie im ursprünglichen Fokalbereich nicht mehr gegeben und somit die gewünschte Strahlungskonzentration geringer. Ebenso werden Strahlen aus den Randbereichen der Linse durch Totalreflexion und durch hohe Reflexionsgrade in den Raum der einfallenden Strahlen zurückreflektiert, was zu optisch bedingten Verlusten führt. Eine zweiachsige Nachführung wird dadurch notwendig. The change in the focal area means that the absorber is mechanically complex Inclined incidence must be tracked. Furthermore, an even bundling as in original focal area no longer exists and thus the desired one Radiation concentration lower. Rays from the edge areas of the lens are also transmitted Total reflection and high reflectance into the area of the incident rays reflected back, which leads to optical losses. This makes a two-axis tracking necessary.

Somit besteht die Aufgabe der Erfindung darin, mit einfachen Mitteln die aufwendige mechanische zusätzliche Nachführung des Absorbers zu ersetzen und gleichzeitig optische Verluste bei schrägem Einfall zu minimieren. Thus, the object of the invention is to use simple means the complex mechanical additional tracking of the absorber to replace and at the same time optical losses to minimize in oblique incidence.

Die Funktion des erfindungsgemäßen optischen Systems wird in Fig. 3a, Fig. 3b, Fig. 4a und Fig. 4b erläutert. Dabei werden die Prismenwinkel der erfindungsgemäßen Fresnellinse so ausgebildet, dass der in Kombination mit den an dem Absorber 3 angebrachten erfindungsgemäßen Spiegelplatten über den Tagesverlauf maximale Energieeintrag auf dem Absorber gewährleistet wird. Wie in Fig. 4a und Fig. 4b gezeigt, wird vornehmlich eine gleichmäßige und hohe Konzentration durch die Fresnellinse bei schrägem Einfall erreicht. Bei geradem Einfall der in Fig. 3a und Fig. 3b beschrieben wird, werden die einfallenden Strahlen 1 durch den erfindungsgemäßen optischen Aufbau der Fresnellinse 2 und der Spiegelplatten 4 ebenso maximal konzentriert. The function of the optical system according to the invention is shown in Fig. 3a, Fig. 3b, Fig. 4a and Fig. 4b explained. The prism angles of the Fresnel lens according to the invention are designed such that the maximum energy input on the absorber is ensured over the course of the day in combination with the mirror plates according to the invention attached to the absorber 3 . As shown in Fig. 4a and Fig. 4b, is primarily achieved a uniform and high concentration through the Fresnel lens at oblique incidence. In a straight incidence is described in Fig. 3a and Fig. 3b, the incident rays 1 are as maximum concentrated by the inventive optical design of the Fresnel lens 2 and the mirror plates 4.

Die Prismenwinkel der Fresnellinse des erfindungsgemäßen Aufbaus müssen ermittelt werden, in dem für jede gewünschte Position als Abstand von der optischen Achse des Linsensystems derjenige Prismenwinkel durch Berechnung des optischen Strahlengangs unter Berücksichtigung der Spiegelplatten bestimmt wird, bei dem der maximale Ertrag an einfallenden Strahlen auf die Absorberfläche bei Variation des Einfallwinkels erreicht wird. In die Berechnung der Prismenwinkel gehen gewünschte Fokalweiten und Anstellwinkel der Spiegelplatten ein. The prism angle of the Fresnel lens of the construction according to the invention must be determined be in the for each desired position as a distance from the optical axis of the Lens system that prism angle by calculating the optical beam path below Consideration of the mirror plates is determined at which the maximum yield of incident Radiation on the absorber surface is achieved with variation of the angle of incidence. In the Calculate the prism angles go to desired focal widths and angles of attack of the mirror plates on.

Als Ausführungsform des erfindungsgemäßen optischen Systems kann die Fresnellinse in flacher oder gewölbter Form ausgelegt werden. Die optischen Materialien der Linse sind vornehmlich transparente Kunststoffe wie PMMA oder auch Glas. Bezugszeichenliste 1 Strahlengang
2 Fresnellinse
3 Absorber
4 Trogförmige Spiegelsystem
As an embodiment of the optical system according to the invention, the Fresnel lens can be designed in a flat or curved shape. The optical materials of the lens are primarily transparent plastics such as PMMA or glass. LIST OF REFERENCES 1 beam path
2 Fresnel lens
3 absorbers
4 trough-shaped mirror system

Claims (3)

1. Optischer Aufbau zur Erhöhung der solaren Strahlungsdichte, dadurch gekennzeichnet, dass mindestens eine fokussierende, transparente Zylinderlinse und ein im Fokalbereich angebrachtes trogförmiges Spiegelsystem eine Bündelung der einfallenden Strahlung bewirkt, wobei die Strahlung sowohl senkrecht auf die Oberfläche als auch schräg in der Ebene der Zylinderachse und der Flächennormale einfallen kann. 1. Optical structure to increase the solar radiation density, characterized in that at least one focusing, transparent cylindrical lens and a trough-shaped mirror system attached in the focal region bring about a concentration of the incident radiation, the radiation both perpendicular to the surface and obliquely in the plane of the cylinder axis and the surface normal can occur. 2. Optischer Aufbau nach Anspruch (1) dadurch gekennzeichnet, dass die transparente Zylinderlinse als lineare Fresnellinse ausgeführt wird. 2. Optical structure according to claim (1), characterized in that the transparent Cylindrical lens is designed as a linear Fresnel lens. 3. Optischer Aufbau nach Anspruch (2) dadurch gekennzeichnet, dass die Prismenwinkel der Fresnellinse durch Berechnung des Strahlengangs ermittelt werden, indem diejenigen Prismenwinkel bestimmt werden, bei dem der maximale Ertrag an einfallenden Strahlen auf eine gewünschte Absorberfläche bei Variation des Strahlungseinfallswinkels erreicht wird. 3. Optical structure according to claim (2), characterized in that the prism angle the Fresnel lens can be determined by calculating the beam path by those prism angles are determined at which the maximum yield of incident Blasting onto a desired absorber surface with variation of the Radiation incidence angle is reached.
DE10203106A 2002-01-25 2002-01-25 Optical system, to gather solar energy, has linear Fresnel's lens focused at absorber, together with angled mirror assembly to bundle light towards absorber and increase solar density from all sun positions Withdrawn DE10203106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10203106A DE10203106A1 (en) 2002-01-25 2002-01-25 Optical system, to gather solar energy, has linear Fresnel's lens focused at absorber, together with angled mirror assembly to bundle light towards absorber and increase solar density from all sun positions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10203106A DE10203106A1 (en) 2002-01-25 2002-01-25 Optical system, to gather solar energy, has linear Fresnel's lens focused at absorber, together with angled mirror assembly to bundle light towards absorber and increase solar density from all sun positions

Publications (1)

Publication Number Publication Date
DE10203106A1 true DE10203106A1 (en) 2003-07-31

Family

ID=7713172

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10203106A Withdrawn DE10203106A1 (en) 2002-01-25 2002-01-25 Optical system, to gather solar energy, has linear Fresnel's lens focused at absorber, together with angled mirror assembly to bundle light towards absorber and increase solar density from all sun positions

Country Status (1)

Country Link
DE (1) DE10203106A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152157A1 (en) * 2007-06-12 2008-12-18 Concentración Solar La Mancha, S.L. Refractive optical system for collecting and concentrating solar energy
FR2927155A1 (en) * 2007-03-05 2009-08-07 R & D Ind Sarl SOLAR CAPTOR.
US7952017B2 (en) 2003-09-24 2011-05-31 Crf Societa Consortile Per Azioni Multifocal light concentrator for a device for the conversion of radiation, and in particular for the conversion of solar radiation into electrical, thermal or chemical energy
US9291320B2 (en) 2013-01-30 2016-03-22 Cree, Inc. Consolidated troffer
US9366396B2 (en) 2013-01-30 2016-06-14 Cree, Inc. Optical waveguide and lamp including same
US9366799B2 (en) 2013-03-15 2016-06-14 Cree, Inc. Optical waveguide bodies and luminaires utilizing same
US9389367B2 (en) 2013-01-30 2016-07-12 Cree, Inc. Optical waveguide and luminaire incorporating same
US9442243B2 (en) 2013-01-30 2016-09-13 Cree, Inc. Waveguide bodies including redirection features and methods of producing same
US9625638B2 (en) 2013-03-15 2017-04-18 Cree, Inc. Optical waveguide body
US9690029B2 (en) 2013-01-30 2017-06-27 Cree, Inc. Optical waveguides and luminaires incorporating same
US9869432B2 (en) 2013-01-30 2018-01-16 Cree, Inc. Luminaires using waveguide bodies and optical elements
US9920901B2 (en) 2013-03-15 2018-03-20 Cree, Inc. LED lensing arrangement
US10209429B2 (en) 2013-03-15 2019-02-19 Cree, Inc. Luminaire with selectable luminous intensity pattern
US10234616B2 (en) 2013-01-30 2019-03-19 Cree, Inc. Simplified low profile module with light guide for pendant, surface mount, wall mount and stand alone luminaires
US10416377B2 (en) 2016-05-06 2019-09-17 Cree, Inc. Luminaire with controllable light emission
US10436970B2 (en) 2013-03-15 2019-10-08 Ideal Industries Lighting Llc Shaped optical waveguide bodies
US11112083B2 (en) 2013-03-15 2021-09-07 Ideal Industries Lighting Llc Optic member for an LED light fixture
US11719882B2 (en) 2016-05-06 2023-08-08 Ideal Industries Lighting Llc Waveguide-based light sources with dynamic beam shaping

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952017B2 (en) 2003-09-24 2011-05-31 Crf Societa Consortile Per Azioni Multifocal light concentrator for a device for the conversion of radiation, and in particular for the conversion of solar radiation into electrical, thermal or chemical energy
FR2927155A1 (en) * 2007-03-05 2009-08-07 R & D Ind Sarl SOLAR CAPTOR.
WO2008152157A1 (en) * 2007-06-12 2008-12-18 Concentración Solar La Mancha, S.L. Refractive optical system for collecting and concentrating solar energy
WO2008152176A2 (en) * 2007-06-12 2008-12-18 Concentración Solar La Mancha, S.L. Optical system for capture and concentration of solar energy
WO2008152176A3 (en) * 2007-06-12 2009-03-26 Concentracion Solar La Mancha Optical system for capture and concentration of solar energy
US9389367B2 (en) 2013-01-30 2016-07-12 Cree, Inc. Optical waveguide and luminaire incorporating same
US9366396B2 (en) 2013-01-30 2016-06-14 Cree, Inc. Optical waveguide and lamp including same
US9291320B2 (en) 2013-01-30 2016-03-22 Cree, Inc. Consolidated troffer
US10234616B2 (en) 2013-01-30 2019-03-19 Cree, Inc. Simplified low profile module with light guide for pendant, surface mount, wall mount and stand alone luminaires
US9442243B2 (en) 2013-01-30 2016-09-13 Cree, Inc. Waveguide bodies including redirection features and methods of producing same
US9519095B2 (en) 2013-01-30 2016-12-13 Cree, Inc. Optical waveguides
US9581751B2 (en) 2013-01-30 2017-02-28 Cree, Inc. Optical waveguide and lamp including same
US11644157B2 (en) 2013-01-30 2023-05-09 Ideal Industries Lighting Llc Luminaires using waveguide bodies and optical elements
US9690029B2 (en) 2013-01-30 2017-06-27 Cree, Inc. Optical waveguides and luminaires incorporating same
US9869432B2 (en) 2013-01-30 2018-01-16 Cree, Inc. Luminaires using waveguide bodies and optical elements
US11070493B2 (en) 2013-01-30 2021-07-20 Ideal Industries Lighting Llc Simplified low profile module with light guide for pendant, surface mount, wall mount and stand alone luminaires
US10436969B2 (en) 2013-01-30 2019-10-08 Ideal Industries Lighting Llc Optical waveguide and luminaire incorporating same
US9366799B2 (en) 2013-03-15 2016-06-14 Cree, Inc. Optical waveguide bodies and luminaires utilizing same
US10209429B2 (en) 2013-03-15 2019-02-19 Cree, Inc. Luminaire with selectable luminous intensity pattern
US10436970B2 (en) 2013-03-15 2019-10-08 Ideal Industries Lighting Llc Shaped optical waveguide bodies
US9920901B2 (en) 2013-03-15 2018-03-20 Cree, Inc. LED lensing arrangement
US11112083B2 (en) 2013-03-15 2021-09-07 Ideal Industries Lighting Llc Optic member for an LED light fixture
US9625638B2 (en) 2013-03-15 2017-04-18 Cree, Inc. Optical waveguide body
US10416377B2 (en) 2016-05-06 2019-09-17 Cree, Inc. Luminaire with controllable light emission
US10527785B2 (en) 2016-05-06 2020-01-07 Ideal Industries Lighting Llc Waveguide-based light sources with dynamic beam shaping
US10890714B2 (en) 2016-05-06 2021-01-12 Ideal Industries Lighting Llc Waveguide-based light sources with dynamic beam shaping
US11372156B2 (en) 2016-05-06 2022-06-28 Ideal Industries Lighting Llc Waveguide-based light sources with dynamic beam shaping
US11719882B2 (en) 2016-05-06 2023-08-08 Ideal Industries Lighting Llc Waveguide-based light sources with dynamic beam shaping

Similar Documents

Publication Publication Date Title
DE10203106A1 (en) Optical system, to gather solar energy, has linear Fresnel's lens focused at absorber, together with angled mirror assembly to bundle light towards absorber and increase solar density from all sun positions
DE102009008170B4 (en) Method and system for light collection and light energy conversion device
EP1403595B1 (en) Absorber element for high temperature solar heat recovery and process for manufacturing same
DE2757155A1 (en) DEVICE FOR CONCENTRATING SOLAR RADIATION AND COLLECTING THE CONCENTRATED ENERGY
DE69822062T2 (en) solar panel
Ries et al. High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs
US4456783A (en) Multielement optical panel
US4108540A (en) Refractor-reflector radiation concentrator
Nelson et al. Linear Fresnel lens concentrators
DE10305428A1 (en) Cladding tube, receiver tube and parabolic trough collector
DE3107888A1 (en) SOLAR CONCENTRATOR
KR960706624A (en) Radiation Energy Collector
WO2006005303A1 (en) Device for concentrating light, particularly sunlight
DE2605127A1 (en) DEVICE FOR CONCENTRATING SOLAR RADIATION
DE19719083B4 (en) Device for collecting, concentrating and directing direct and diffused radiation
Leutz et al. Shaped nonimaging Fresnel lenses
DE102008014618A1 (en) Concentrator for solar radiation and its use
DE2947584A1 (en) SOLAR ENERGY COLLECTOR
DE2631412C2 (en) Device for bundling sunlight by refraction or reflection
DE19600813A1 (en) Solar cell assembly
CH658918A5 (en) PERIODIC REFRACTOR MADE OF CLEAR MATERIAL.
DE19834089A1 (en) Solar collector for solar-powered energy plant
JP3432168B2 (en) Discontinuous line focusing lens
JPH0637344A (en) Light-condensing type solar cell module
EP0115289A2 (en) Solar tracker for solar collector

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee