DE10202611C1 - Fuel cell system operating method has fuel medium to air ratio regulated in proportion to fuel cell loading - Google Patents

Fuel cell system operating method has fuel medium to air ratio regulated in proportion to fuel cell loading

Info

Publication number
DE10202611C1
DE10202611C1 DE10202611A DE10202611A DE10202611C1 DE 10202611 C1 DE10202611 C1 DE 10202611C1 DE 10202611 A DE10202611 A DE 10202611A DE 10202611 A DE10202611 A DE 10202611A DE 10202611 C1 DE10202611 C1 DE 10202611C1
Authority
DE
Germany
Prior art keywords
fuel cell
fuel
air ratio
load
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10202611A
Other languages
German (de)
Inventor
Rainer Autenrieth
Gerhard Konrad
Karsten Ledwig
Michael Niehues
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Priority to DE10202611A priority Critical patent/DE10202611C1/en
Application granted granted Critical
Publication of DE10202611C1 publication Critical patent/DE10202611C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04843Humidity; Water content of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The operating method has each fuel cell of the fuel cell system supplied with a fuel medium and air, used as the oxidation medium for oxidation of the fuel medium, the fuel medium/air ratio regulated in dependence on the loading of the fuel cell, such that the ratio is reduced or increased as the loading is reduced or increased within defined limits.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Brenn­ stoffzellensystems mit mindestens einer Brennstoffzelle, bei dem der Brennstoffzelle ein Brennmittel und ein Sauerstoff ent­ haltendes Gas zur Oxidation des Brennmittels in einem vorgege­ benen Mengenverhältnis zugeführt werden.The invention relates to a method for operating a Brenn fuel cell system with at least one fuel cell, at the fuel cell a fuel and an oxygen ent holding gas for the oxidation of the fuel in a preg be supplied quantity ratio.

Ein derartiges Verfahren wird in der deutschen Patentschrift 197 01 390 für ein Polymer Elektrolyt Membran (PEM)-Brennstoff­ zellensystem beschrieben, das mit Luft betrieben wird.Such a method is described in the German patent specification 197 01 390 for a polymer electrolyte membrane (PEM) fuel described cell system, which is operated with air.

Eine wichtige Kenngröße, die den Betrieb eines Brennstoffzel­ lensystems charakterisiert, ist das Mengenverhältnis zwischen dem zugeführten Brennmittel und dem zugeführten Sauerstoff ent­ haltenden Gas. Das für die vollständige Oxidation des Brennmit­ tels erforderliche Mengenverhältnis von Brennmittel und Sauer­ stoff enthaltendem Gas ergibt sich aus der stöchiometrischen Gleichung der Oxidation. Demnach sind für die Oxidation von Wasserstoff zu Wasser zwei Teile Wasserstoff und ein Teil Sau­ erstoff erforderlich. In der Regel werden Brennstoffzellen­ systeme aber mit einem Sauerstoffüberschuss betrieben, d. h. der Brennstoffzelle wird mehr Sauerstoff bzw. Sauerstoff enthalten­ des Gas zugeführt, als aufgrund der stöchiometrischen Gleichung erforderlich.An important parameter that determines the operation of a fuel cell lensystems is characterized, the quantity ratio between the supplied fuel and the supplied oxygen ent holding gas. That for the complete oxidation of the Brennmit Tels required ratio of fuel and acid containing gas results from the stoichiometric Equation of oxidation. Accordingly, for the oxidation of Hydrogen to water two parts hydrogen and one part sow required. In general, fuel cells but operated with an excess of oxygen, d. H. of the Fuel cell will contain more oxygen or oxygen fed to the gas, as due to the stoichiometric equation required.

Bei Brennstoffzellensystemen, die mit Luft betrieben werden, wird das Mengenverhältnis zwischen dem als Brennmittel dienen­ den Wasserstoff und der zugeführten Luft durch das Luftverhält­ nis λ beschrieben. Ein Luftverhältnis von λ = 1 entspricht dem Mengenverhältnis, das sich aufgrund der stöchiometrischen Glei­ chung für die vollständige Oxidation des Wasserstoffs ergibt. Ein Luftverhältnis von λ < 1 beschreibt einen Luftüberschuss. Bei dem in der DE 197 01 390 C1 beschriebenen Verfahren wird der dem Brennstoffzellensystem zugeführte Luftvolumenstrom entspre­ chend dem elektrischen Strom geregelt, den das Brennstoffzel­ lensystem liefern soll. Dabei wird, unabhängig von der Be­ lastung des Brennstoffzellensystems immer ein vorgegebenes Luftverhältnis von vorzugsweise λ = 2 eingehalten.In fuel cell systems operated with air, will be the ratio between the serve as a fuel the hydrogen and the supplied air through the air behaves nis λ described. An air ratio of λ = 1 corresponds to that Amount ratio, which is due to the stoichiometric Glei  for complete oxidation of the hydrogen. An air ratio of λ <1 describes an excess of air. at the method described in DE 197 01 390 C1 is the supplied to the fuel cell system air volume flow corre Regarding the electric current regulated by the fuel cell lens system should deliver. It is, regardless of the Be load of the fuel cell system always a predetermined Air ratio of preferably λ = 2 complied with.

Durch die DE 195 40 824 A1 ist ein Verfahren zur dynamischen Einstellung der Leistung für ein Fahrzeug mit Brennstoffzelle beschrieben. Wie auch in dem Patent Abstracts of Japan No. 60-230364 (A) und in der DE 196 40 808 C1 beschrieben, wird hierbei zur Regelung der durch die Brennstoffzelle bereitzu­ stellenden Leistung ein Verfahren beschrieben, bei dem letzt­ endlich, im groben, unabhängig von der jeweils verfügbaren Was­ serstoffmenge, da hier implizit davon ausgegangen wird, dass jeweils ausreichend Wasserstoff zur Verfügung steht, die Menge an zugeführter Luft und damit die Anzahl an zur Reaktion be­ reitstehenden Sauerstoffmolekülen variiert wird.DE 195 40 824 A1 discloses a method for dynamic Adjustment of power for a fuel cell vehicle described. As in the patent abstracts of Japan no. 60-230364 (A) and described in DE 196 40 808 C1, is in this case for the regulation of the fuel cell bereitu performance is described as a last resort at last, roughly, regardless of what's available amount of hydrogen, since it implicitly assumes that enough hydrogen is available, the amount to supplied air and thus the number of reaction to be equidistant oxygen molecules is varied.

Insbesondere bei mobilen Anwendungen eines Brennstoffzellen­ systems, wie z. B. in einem Kraftfahrzeug als Bordstromversor­ gungssystem oder zum Fahrzeugantrieb, sollte das Brennstoffzel­ lensystem mit einer positiven Wasserbilanz betrieben werden, so dass der Wartungs- und Pflegeaufwand des Systems möglichst ge­ ring gehalten wird.Especially in mobile applications of a fuel cell systems, such. B. in a motor vehicle as Bordstromversor system or to the vehicle drive, the fuel cell should lens system with a positive water balance, so that the maintenance and care of the system ge as possible ring is held.

Mit der vorliegenden Erfindung wird nun ein Verfahren zum Betreiben eines Brennstoffzellensystems vorgeschlagen, mit dem auch im Teillastbereich des Brennstoffzellensystems eine posi­ tive Wasserbilanz erzielt werden kann.With the present invention, a method for the Operating a fuel cell system proposed with the also in the partial load range of the fuel cell system posi tive water balance can be achieved.

Dies wird erfindungsgemäß dadurch erreicht, dass das Luftver­ hältnis λ in Abhängigkeit von der Belastung der Brennstoffzelle geregelt wird. This is inventively achieved in that the Luftver λ depending on the load of the fuel cell is regulated.  

Die Wasserbilanz des Brennstoffzellensystems lässt sich im Rah­ men des erfindungsgemäßen Verfahrens einfach dadurch verbes­ sern, dass das Luftverhältnis λ bei einer verringerten Bela­ stung der Brennstoffzelle gegenüber dem Luftverhältnis λ bei Volllast der Brennstoffzelle verringert. Dadurch erhöht sich die Wasserkonzentration in der Luft, so dass eine größere Menge an Wasser auskondensiert.The water balance of the fuel cell system can be in the Rah men of the inventive method simply verbes that the air ratio λ at a reduced Bela Fuel cell compared to the air ratio λ at Full load of the fuel cell reduced. This increases the water concentration in the air, leaving a larger amount condensed out in water.

In einer vorteilhaften Variante des erfindungsgemäßen Verfah­ rens wird das Luftverhältnis λ stetig an die Belastung der Brennstoffzelle angepasst. Diese Anpassung kann in vorteilhaf­ ter Weise proportional zur Belastung der Brennstoffzelle er­ folgen.In an advantageous variant of the method according to the invention rens, the air ratio λ is steadily adjusted to the load of the Fuel cell adapted. This adaptation can in vorteilhaf ter way proportional to the load of the fuel cell he consequences.

Mit Luft betriebene Brennstoffzellensysteme werden bei Volllast vorteilhafter Weise mit einem Luftverhältnis λ im Bereich von 1,7 bis 2,5 betrieben. In diesem Fall erweist es sich für die Wasserbilanz als vorteilhaft, wenn das Brennstoffzellensystem im Teillastbereich mit einem Luftverhältnis λ im Bereich von 1,3 bis 2,3 betrieben wird.Air-fueled fuel cell systems run at full load Advantageously, with an air ratio λ in the range of 1.7 to 2.5 operated. In this case, it turns out for the Water balance as beneficial if the fuel cell system in the partial load range with an air ratio λ in the range of 1.3 to 2.3 is operated.

Die einzige Figur zeigt schematisch ein Diagramm, das den Zusammenhang zwischen der Belastung einer mit Luft betriebenen Brennstoffzelle und dem Luftverhältnis λ wiedergibt, wobei das Luftverhältnis λ entsprechend dem erfindungsgemäßen Verfahren geregelt wird.The single figure shows schematically a diagram that the Relationship between the load of an air-driven Fuel cell and the air ratio λ reproduces, wherein the Air ratio λ according to the inventive method is regulated.

Im hier dargestellten Ausführungsbeispiel wird die Brennstoff­ zelle bei Volllast, d. h. bei einer 100%-Belastung, mit einem Luftverhältnis λ von ca. 2 betrieben. Je mehr sich die Be­ lastung der Brennstoffzelle verringert, um so mehr wird auch das Luftverhältnis λ verringert. Der Zusammenhang zwischen dem Luftverhältnis λ und der Belastung der Brennstoffzelle ist hier linear, so dass die Brennstoffzelle bei einer Belastung von 10% mit einem Luftverhältnis λ von ca. 1,3 betrieben wird.In the embodiment shown here, the fuel cell at full load, d. H. at a 100% load, with one Air ratio λ of about 2 operated. The more the Be reduces the load of the fuel cell, the more it will reduces the air ratio λ. The connection between the Air ratio λ and the load of the fuel cell is here linear, allowing the fuel cell at a load of 10% is operated with an air ratio λ of about 1.3.

Claims (5)

1. Verfahren zum Betreiben eines Brennstoffzellensystems mit mindestens einer Brennstoffzelle, bei dem der Brennstoff­ zelle ein Brennmittel und Luft als Sauerstoff enthaltendes Gas zur Oxidation des Brennmittels in einem vorgegebenen Luftverhältnis λ zugeführt wird, dadurch gekennzeichnet, dass das Luftverhältnis λ in Abhängigkeit von der Belastung der Brennstoffzelle geregelt wird.Anspruch [en] A method of operating a fuel cell system having at least one fuel cell, wherein the fuel cell is supplied with fuel and air containing oxygen as the oxygen for oxidizing the fuel at a predetermined air ratio λ, characterized in that the air ratio λ depends on the load of the fuel Fuel cell is regulated. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Luftverhältnis λ bei einer verringerten Belastung der Brennstoffzelle gegenüber dem Luftverhältnis λ bei Volllast der Brennstoffzelle verringert wird.2. The method according to claim 1, characterized, that the air ratio λ at a reduced load the fuel cell against the air ratio λ at Full load of the fuel cell is reduced. 3. Verfahren nach einem der Ansprüche 1 oder 2 dadurch gekennzeichnet, dass das Luftverhältnis λ stetig mit der Belastung der Brennstoffzelle verringert oder erhöht wird.3. The method according to any one of claims 1 or 2 characterized, that the air ratio λ continuously with the load of Fuel cell is reduced or increased. 4. Verfahren nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass das Luftverhältnis λ proportional zur Belastung der Brennstoffzelle geregelt wird.4. The method according to any one of claims 1 to 3 characterized, that the air ratio λ proportional to the load of Fuel cell is regulated. 5. Verfahren nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass das Luftverhältnis λ innerhalb vorgegebener Grenzen geregelt wird und dass das Luftverhältnis λ bei Volllast der Brennstoffzelle im Bereich von 1,7 bis 2,5 liegt und im Teillastbereich der Brennstoffzelle im Bereich von 1,3 bis 2,3.5. The method according to any one of claims 1 to 4 characterized, that the air ratio λ within predetermined limits is regulated and that the air ratio λ at full load the fuel cell is in the range of 1.7 to 2.5 and in the Part load range of the fuel cell in the range of 1.3 to 2.3.
DE10202611A 2002-01-24 2002-01-24 Fuel cell system operating method has fuel medium to air ratio regulated in proportion to fuel cell loading Expired - Fee Related DE10202611C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10202611A DE10202611C1 (en) 2002-01-24 2002-01-24 Fuel cell system operating method has fuel medium to air ratio regulated in proportion to fuel cell loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10202611A DE10202611C1 (en) 2002-01-24 2002-01-24 Fuel cell system operating method has fuel medium to air ratio regulated in proportion to fuel cell loading

Publications (1)

Publication Number Publication Date
DE10202611C1 true DE10202611C1 (en) 2003-04-30

Family

ID=7712931

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10202611A Expired - Fee Related DE10202611C1 (en) 2002-01-24 2002-01-24 Fuel cell system operating method has fuel medium to air ratio regulated in proportion to fuel cell loading

Country Status (1)

Country Link
DE (1) DE10202611C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021279A1 (en) * 2004-04-29 2005-11-24 Daimlerchrysler Ag Fuel cell operation for a polymer electrolyte membrane fuel cell controls a regulated quantity of fuel during power take-up
WO2011134580A1 (en) 2010-04-30 2011-11-03 Daimler Ag Method for controlling energy management in a fuel cell system
DE112008002649B4 (en) * 2007-10-16 2014-09-11 Toyota Jidosha Kabushiki Kaisha The fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540824A1 (en) * 1995-11-02 1997-05-07 Daimler Benz Ag Method for dynamically adjusting the power for a vehicle with a fuel cell
DE19640808C1 (en) * 1996-10-02 1997-11-27 Siemens Ag Operating Polymer Electrolyte Membrane (PEM) fuel cell system with fuel-cell block and compressor e.g. for vehicle electric drive
DE19701390C1 (en) * 1997-01-16 1998-04-09 Siemens Ag Compressor control in fuel cell e.g. for motor vehicle drive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540824A1 (en) * 1995-11-02 1997-05-07 Daimler Benz Ag Method for dynamically adjusting the power for a vehicle with a fuel cell
US5780981A (en) * 1995-11-02 1998-07-14 Daimler-Benz Ag Process for dynamically adjusting the power for a vehicle having a fuel cell
DE19640808C1 (en) * 1996-10-02 1997-11-27 Siemens Ag Operating Polymer Electrolyte Membrane (PEM) fuel cell system with fuel-cell block and compressor e.g. for vehicle electric drive
DE19701390C1 (en) * 1997-01-16 1998-04-09 Siemens Ag Compressor control in fuel cell e.g. for motor vehicle drive

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP 60-2 30 364 (abstr.) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021279A1 (en) * 2004-04-29 2005-11-24 Daimlerchrysler Ag Fuel cell operation for a polymer electrolyte membrane fuel cell controls a regulated quantity of fuel during power take-up
DE112008002649B4 (en) * 2007-10-16 2014-09-11 Toyota Jidosha Kabushiki Kaisha The fuel cell system
WO2011134580A1 (en) 2010-04-30 2011-11-03 Daimler Ag Method for controlling energy management in a fuel cell system
DE102010018907A1 (en) 2010-04-30 2011-11-03 Daimler Ag Method for regulating the energy management of a fuel cell system

Similar Documents

Publication Publication Date Title
EP0790657B1 (en) Method for operating a fuel cell system
DE112005003300B4 (en) A fuel cell system and method for reducing a voltage loss caused by a voltage cycling load by using a rechargeable electric storage device
EP0958629B1 (en) Device and method for combined purification and compression of hydrogen containing co and the use thereof in fuel cell assemblies
DE112005001063B4 (en) fuel cell system
DE102013227217A1 (en) PERFORMANCE RESTORATION PROCESS FOR A FUEL CELL STACK
DE10115336A1 (en) Fuel cell system and method for operating a fuel cell system
DE102008034353A1 (en) Reduction of membrane degradation by multilayer electrode
DE112012005965T5 (en) The fuel cell system
DE10161965B4 (en) Method for operating a fuel cell stack and fuel cell system
DE102015207600A1 (en) Method for controlling an operating point change of a fuel cell stack and fuel cell system
DE112013002180T5 (en) System for controlling the electrical power supply of a vehicle, as well as vehicle
DE10202611C1 (en) Fuel cell system operating method has fuel medium to air ratio regulated in proportion to fuel cell loading
EP3017493B1 (en) Fuel cell starting method
DE102013108067B4 (en) Power supply of a fuel cell stack during stand-by operation
DE112009000103T5 (en) Electricity generating cell for a fuel battery
DE10256451B4 (en) Solid polymer electrolyte fuel cell
DE102011011953A1 (en) Tip hoe driving with fuel cell vehicle
DE10200058B4 (en) Delivery system for supplying a gaseous fuel to a fuel stack, fuel cell system and method for supplying a gaseous fuel
DE19908099A1 (en) Fuel cell system
WO2021119714A1 (en) Sensor device for a fuel cell system
DE19652341C2 (en) Process for the preparation of fuel for fuel cells and suitable fuel cell for carrying out the process
DE102019128420A1 (en) Method for operating a motor vehicle with a fuel cell device and a motor vehicle
DE60309854T2 (en) FUEL CELL WITH OXIDOREDUCETASE ENZYMES IN CATHODERAUM OR GGF. ANODE ROOM
DE102006025109B4 (en) A specially shaped bipolar plate fuel cell and method of reducing voltage oscillation in a fuel cell
DE102020107200A1 (en) Display device, fuel cell vehicle and method for boosting such

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
8304 Grant after examination procedure
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DAIMLERCHRYSLER AG, 70327 STUTTGART, DE

8327 Change in the person/name/address of the patent owner

Owner name: DAIMLER AG, 70327 STUTTGART, DE

8320 Willingness to grant licences declared (paragraph 23)
8339 Ceased/non-payment of the annual fee