DE102022209009A1 - Segmentierung eines digitalen Bildes mittels kaskadierter neuronaler Netze - Google Patents

Segmentierung eines digitalen Bildes mittels kaskadierter neuronaler Netze Download PDF

Info

Publication number
DE102022209009A1
DE102022209009A1 DE102022209009.8A DE102022209009A DE102022209009A1 DE 102022209009 A1 DE102022209009 A1 DE 102022209009A1 DE 102022209009 A DE102022209009 A DE 102022209009A DE 102022209009 A1 DE102022209009 A1 DE 102022209009A1
Authority
DE
Germany
Prior art keywords
resolution
resolution digital
low
neural network
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102022209009.8A
Other languages
English (en)
Inventor
Christoph Begau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102022209009.8A priority Critical patent/DE102022209009A1/de
Priority to PCT/EP2023/069261 priority patent/WO2024046638A1/de
Publication of DE102022209009A1 publication Critical patent/DE102022209009A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30136Metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

Verfahren zur Bestimmung einer dritten hochaufgelösten digitalen Segmentierung (HRS3) in einem dritten hochaufgelösten digitalen Bild (HRP3) mittels folgender Verfahrensschritte:
- Empfangen eines dritten hochaufgelösten digitalen Bildes (HRP3)
- Bereitstellen einer dritten niedrigaufgelösten Kopie (LRC3) des dritten hochaufgelösten digitalen Bildes (HRP3);
- Bestimmung einer dritten niedrigaufgelösten digitalen Segmentierung (LRS3), welche zumindest eine flächige Erstreckung des ersten Bereichs (FP1) und des zweiten Bereichs (FP2) und insbesondere des dritten Bereichs (SZ) in der dritten niedrigaufgelösten Kopie (LRC3) des dritten hochaufgelösten digitalen Bildes (HRP3) als Segmente niedrigaufgelöst repräsentiert, ausgehend von der dritten niedrigaufgelösten Kopie (LRC3) des dritten hochaufgelösten digitalen Bildes (HRP3) und mittels eines trainierten neuronalen Hilfsnetzes (NNHT).
- Bestimmung der dritten hochaufgelösten digitalen Segmentierung (HRS3) in dem dritten hochaufgelösten digitalen Bild (HRP3), welche zumindest eine flächige Erstreckung des ersten Bereichs (FP1) und des zweiten Bereichs (FP2) und insbesondere des dritten Bereichs (SZ) in dem dritten hochaufgelösten digitalen Bild (HRP3) als Segmente hochaufgelöst repräsentiert, ausgehend von dem dritten hochaufgelösten digitalen Bild (HRP3) und ausgehend von der dritten niedrigaufgelösten digitalen Segmentierung (LRS3), welche zumindest eine flächige Erstreckung des ersten Bereichs (FP1) und des zweiten Bereichs (FP2) und insbesondere des dritten Bereichs (SZ) in der dritten niedrigaufgelösten Kopie (LRC3) des dritten hochaufgelösten digitalen Bildes als Segmente niedrigaufgelöst repräsentiert, mittels eines trainierten neuronalen Hauptnetzes (NNMT).

Description

  • Stand der Technik
  • Es ist grundsätzlich bekannt, in digitalen Bildern Segmentierungen vorzunehmen, beispielsweise manuell.
  • Offenbarung der Erfindung
  • Die vorliegende Erfindung beruht auf dem Wunsch, eine derartige Segmentierung in effizienter Weise, automatisiert, zwar hochauflösend aber doch mit überschaubarem Aufwand zu erhalten.
  • Der Kerngedanke der Erfindung besteht in der geschickten Kombination kaskadierter neuronaler Netze. Die unabhängigen Ansprüche dieser Anmeldung betreffen daher ein entsprechendes Trainingsverfahren und ein zugehöriges I nferenzverfahren.
  • Genauer ist erfindungsgemäß vorgesehen, dass das Training gemäß einem Verfahren nach dem unabhängigen Anspruch 1 und die Bestimmung von hochaufgelösten Segmentierungen gemäß einem Verfahren nach dem nebengeordneten Anspruch 7 erfolgt. Die Unteransprüche geben vorteilhafte Weiterbildungen an.
  • Das erfindungsgemäße Verfahren und seine Weiterbildungen haben ferner den Vorteil, besonders robust zu sein, also beispielsweise nicht durch kleine Bildfehler gestört zu werden.
  • Das erfindungsgemäße Verfahren und seine Weiterbildungen haben ferner den Vorteil, flexibel auf verschiedenartige Bilder adaptierbar zu sein.
  • Ferner stellen sie eine hinreichend hohe Bildauflösung bereit, beispielsweise um in der hochaufgelösten Segmentierung genaue Vermessungen durchführen zu können.
  • Ausführbeispiel
  • Ein Ausführbeispiel ist in den Figuren illustriert und sieht vor, dass eine dritte hochaufgelöste digitale Segmentierung HRS3 in einem dritten digitalen Bild HRP3 mittels folgender Verfahrensschritte erstellt wird (siehe insbesondere 1 und 2):
    • Schritt 1 SI1: Beispielsweise ein Computer empfängt ein drittes hochaufgelöstes digitales Bild HRP3, beispielsweise ein Bild mit der Auflösung n*m, wobei n=m=1024. Dann
    • Schritt 2 SI2: Beispielsweise empfängt der Computer eine dritte niedrigaufgelöste Kopie LRC3 des dritten hochaufgelösten digitalen Bildes HRP3. Alternativ wäre es auch möglich, dass eine Berechnung der dritten niedrigaufgelöste Kopie LRC3 des dritten hochaufgelösten digitalen Bildes HRP3 durch den Computer erfolgt und somit nachfolgend bereitsteht. Es handelt sich beispielsweise um eine Kopie mit der Auflösung n'*m', wobei n'=m'=128. Dann
    • Schritt 3 SI3: Mittels eines trainierten neuronalen Hilfsnetzes NNHT, beispielsweise einem neuronalen Netz vom Typ U-Net (siehe: Ronneberger O, Fischer P, Brox T (2015). „U-Net: Convolutional Networks for Biomedical Image Segmentation“; https://arxiv.org/abs/1505.04597), wird ausgehend von der dritten niedrigaufgelösten Kopie LRC3 des dritten hochaufgelösten digitalen Bildes HRP3 eine dritte niedrigaufgelöste digitale Segmentierung LRS3, welche zumindest eine flächige Erstreckung eines ersten Bereichs FP1 und eines zweiten Bereichs FP2 und insbesondere eines dritten Bereichs SZ in der dritten niedrigaufgelösten Kopie LRC3 des dritten hochaufgelösten digitalen Bildes HRP3 als Segmente niedrigaufgelöst repräsentiert, durch den Computer bestimmt. Das trainierte neuronale Hilfsnetzes NNHT kann ein Faltungsnetz sein, dessen receptive field eine Größe hat, die mit der Größe der niedrigaufgelösten digitalen Bilder identisch ist. Dann
    • Schritt 4 SI4: Mittels eines trainierten neuronalen Hauptnetzes NNMT, beispielsweise einem neuronalen Netzes vom Typ Faltungsnetz, wird ausgehend von dem dritten hochaufgelösten digitalen Bild HRP3 und ausgehend von der dritten niedrigaufgelösten digitalen Segmentierung LRS3, welche zumindest eine flächige Erstreckung eines ersten Bereichs FP1 und eines zweiten Bereichs FP2 und insbesondere eines dritten Bereichs SZ in der dritten niedrigaufgelösten Kopie LRC3 des hochaufgelösten digitalen Bildes als Segmente niedrigaufgelöst repräsentiert, eine dritten hochaufgelöste digitale Segmentierung HRS3 in dem dritten hochaufgelösten digitalen Bild, welche zumindest eine flächige Erstreckung eines ersten Bereichs FP1 und eines zweiten Bereichs FP2 und insbesondere eines dritten Bereichs SZ in dem hochaufgelösten digitalen Bild als Segmente hochaufgelöst repräsentiert, durch den Computer bestimmt.
  • Das trainierte neuronale Hauptnetz NNMT kann ein Faltungsnetz sein, dessen receptive field kleiner ist als das receptive field des neuronalen Hilfsnetzes. Das trainierte neuronale Hauptnetz NNMT kann die Funktion eines Upsamplers haben, welches die Ergebnisse des trainierte neuronale Hilfsnetzes NNHT, also die dritte niedrigaufgelöste digitale Segmentierung LRS3, verfeinert.
  • Dabei kann ein zweites neuronales Netz NN2 so trainiert worden sein, dass ein trainiertes zweites neuronales Netz NN2T, insbesondere das oben bereits erwähnte trainierte neuronale Hilfsnetz NNHT, resultiert, und zwar beispielsweise mittels folgender Verfahrensschritte (siehe 3):
  • Schritt 5 STH1: Auf einem Computer, beispielsweise dem ober bereits erwähntem Computer oder auf einem anderen Computer, werden beispielsweise 100 Datensätze zweiter Art DS2 bereitgestellt, wobei jeder Datensatz zweiter Art DS2 ein zweites niedrigaufgelöstes digitales Bild LRP2 enthält und eine zweite niedrigaufgelöste digitale Segmentierung LRS2 des zweiten niedrigaufgelösten digitalen Bilds LRP2 enthält, welche zumindest eine flächige Erstreckung eines ersten Bereichs FP1 und eines zweiten Bereichs FP2 und insbesondere eines dritten Bereichs SZ in dem zweiten niedrigaufgelösten digitalen Bild LRP2 als Segmente niedrigaufgelöst repräsentiert. Es versteht sich dabei, dass jedem Datensatz zweiter Art DS2 ein individuelles Bild zugeordnet ist. Die Herkunft der zweiten niedrigaufgelösten digitalen Segmentierung LRS2 des zweiten niedrigaufgelösten digitalen Bildes LRP2, die hier dem Training des zweiten neuronalen Netzes dient, kann beispielsweise händische Erzeugung sein.
  • Schritt 6 STH2: Auf dem Computer erfolgt ein Trainieren des zweiten neuronalen Netzes NN2 mit den zweiten niedrig aufgelösten digitalen Bildern LRP2 als Eingangsdaten und den zweiten niedrig aufgelösten digitalen Segmentierungen LRS2 als Sollausgangsdaten, sodass ein trainiertes zweites neuronales Netz NN2T entsteht. Hierzu kann vorgesehen sein, dass auf Basis der Datensätze zweiter Art DS2 eine zweite Kostenfunktion bestimmt wird und dass nachfolgend der Wert der zweiten Kostenfunktion minimiert wird, indem Parameter des zweiten neuronalen Netzes NN2 optimiert werden. Es können beispielsweise Methoden des Transfer-Learnings verwendet werden.
  • Dabei kann ein erstes neuronales Netz NN1 so trainiert worden sein, dass ein trainiertes erstes neuronales Netz NN1T, insbesondere das oben bereits erwähnte trainierte neuronale Hauptnetz NNMT, resultiert, und zwar beispielsweise mittels folgender Verfahrensschritte (siehe 4):
  • Schritt 7 STM1: Auf einem Computer, beispielsweise einem der oben bereits erwähnten Computern oder auf einem anderen Computer, werden beispielsweise 500 Datensätze erster Art DS1 bereitgestellt, wobei jeder Datensatz erster Art ein erstes hochaufgelöstes digitales Bild HRP1 aufweist und eine dem ersten hochaufgelösten digitalen Bild zugeordnete erste hochaufgelöste digitale Segmentierung HRS1, welche zumindest eine flächige Erstreckung eines ersten Bereichs FP1 und eines zweiten Bereichs FP2 und insbesondere eines dritten Bereichs SZ in dem hochaufgelösten digitalen Bild HRP1 als Segmente hochaufgelöst repräsentiert, aufweist und ferner eine erste niedrigaufgelöste digitale Segmentierung LRS1 aufweist, welche zumindest eine flächige Erstreckung des ersten Bereichs FP1 und des zweiten Bereichs FP2 und insbesondere des dritten Bereichs SZ in dem ersten hochaufgelösten digitalen Bild HRP1 als Segmente niedrigaufgelöst repräsentiert. Es versteht sich dabei, dass jedem Datensatz erster Art DS1 eine individuelles Bild zugeordnet ist. Die Herkunft der ersten niedrigaufgelösten digitalen Segmentierungen LRS1, die hier dem Training des ersten neuronalen Netzes NN1 dient, kann einerseits beispielsweise händische Erzeugung sein. Andererseits können sie aber auch allesamt oder teilweise durch das zuvor beschriebene trainierte zweite neuronale Netz NN2T erzeugt worden sein, bzw. durch eine Vielzahl derartiger trainierte zweite neuronale Netz NN2T erzeugt worden sein; und zwar jeweils ausgehend von ersten niedrigaufgelösten Kopien LRC1 der hochaufgelösten digitalen Bilder HRP1.
  • Die Herkunft der hochaufgelösten digitalen Segmentierungen HRS1, die hier dem Training des ersten neuronalen Netzes NN1 dienen, kann beispielsweise händische Erzeugung sein.
  • Schritt 8, STM2: Auf dem Computer erfolgt ein Trainieren des ersten neuronalen Netzes NN1 mit den ersten hochaufgelösten Bildern HRP1 und zusätzlich mit den ersten niedrigaufgelösten digitalen Segmentierungen LRS1 als Eingangsdaten des ersten neuronalen Netzes NN1 und den ersten hochaufgelösten Segmentierungen HRS1 als Sollausgangsdaten des ersten neuronalen Netzes NN1, sodass ein trainiertes erstes neuronales Netz NN1T entsteht. Hierzu kann vorgesehen sein, dass auf Basis der Datensätze erster Art DS1 eine erste Kostenfunktion bestimmt wird und dass nachfolgend der Wert der ersten Kostenfunktion minimiert wird, indem Parameter des ersten neuronalen Netzes NN1 optimiert werden.
  • Im Rahmen der Anmeldung soll durch die Verwendung der an die Zahlen eins, zwei und drei angelehneten Bezeichnungen „erster/ersten; zweiter/zweiten; dritter/dritten“ lediglich die Unterscheidbarkeit von ihrer Funktion nach verschiedenen Objekten bewirkt werden. Dies soll aber nicht so verstanden werden, dass beispielsweise die Existenz eines mit „dritter/dritten“ bezeichneten Objekts die Existenz weiterer Objekte, die dann mit „zweiter/zweiten; erster/ersten“ zu bezeichnen wären, notwendig voraussetzt.
  • In einer konkreten Anwendung zeigen die Bilder Querschliffe von stoffschlüssigen Verbindungen, insbesondere Querschliffe von Schweißnähten. Dann sind:
    • - die ersten hochaufgelösten digitalen Bilder HRP1: hochaufgelöste digitale Bilder von Querschliffen durch eine erste stoffschlüssige Verbindung; insbesondere hochaufgelöste digitale Bilder von Querschliffen durch eine erste Schweißnaht;
    • - die ersten hochaufgelösten digitalen Segmentierungen HRS1: hochaufgelöste digitale Segmentierungen des Querschliffs durch die ersten stoffschlüssigen Verbindungen; insbesondere hochaufgelöste digitale Segmentierungen des Querschliffs durch die ersten Schweißnähte;
    • - der erste Bereich FP1: ein erster Fügepartner;
    • - der zweite Bereich FP2: ein zweiter Fügepartner;
    • - der optional vorhandene dritte Bereich SZ: eine im Fall einer stoffschlüssigen Verbindung zwingend vorhandene Verbindungszone; insbesondere eine im Fall einer Schweißnaht zwingend vorhandenen Schmelzzone;
    • - die ersten niedrigaufgelösten digitalen Segmentierungen LRS1:
      • niedrigaufgelöste digitale Segmentierungen eines Querschliffs durch die erste stoffschlüssige Verbindung; insbesondere niedrigaufgelöste digitale Segmentierungen eines Querschliffs durch die erste Schweißnaht:
    • - die zweiten niedrigaufgelösten digitalen Bilder LRP2: niedrigaufgelöste digitale Bilder eines Querschliffs durch eine zweite stoffschlüssige Verbindung; insbesondere niedrigaufgelöste digitale Bilder eines Querschliffs durch eine zweite Schweißnaht;
    • - die zweiten niedrigaufgelösten digitalen Segmentierungen LRS2:
      • niedrigaufgelöste digitale Segmentierungen eines Querschliffs durch die zweite stoffschlüssige Verbindung; insbesondere niedrigaufgelöste digitale Segmentierungen eines Querschliffs durch die zweite Schweißnaht;
    • - die ersten niedrigaufgelösten Kopien der hochaufgelösten digitalen Bilder LRC1: niedrigaufgelösten Kopien der hochaufgelösten digitalen Bilder des Querschliffs durch die erste stoffschlüssige Verbindung; insbesondere niedrigaufgelöste Kopien der hochaufgelösten digitalen Bilder des Querschliffs durch die erste Schweißnaht;
    • - die dritten hochaufgelösten digitalen Segmentierungen HRS3: hochaufgelöste digitale Segmentierungen des Querschliffs durch die dritten stoffschlüssigen Verbindungen; insbesondere hochaufgelöste digitale Segmentierungen des Querschliffs durch die dritten Schweißnähte;
    • - die dritten hochaufgelösten digitales Bilder HRP3: hochaufgelöste digitale Bilder von Querschliffen durch eine erste stoffschlüssige Verbindung; insbesondere hochaufgelöste digitale Bilder von Querschliffen durch eine erste Schweißnaht;
    • - die dritten niedrigaufgelösten digitalen Segmentierungen LRS3:
      • niedrigaufgelöste digitale Segmentierungen eines Querschliffs durch die dritte stoffschlüssige Verbindung; insbesondere niedrigaufgelöste digitale Segmentierungen eines Querschliffs durch die dritte Schweißnaht; und
    • - die dritten niedrigaufgelösten Kopie LRC3: niedrigaufgelösten Kopien der hochaufgelösten digitalen Bilder des Querschliffs durch die dritte stoffschlüssige Verbindung; insbesondere niedrigaufgelöste Kopien der hochaufgelösten digitalen Bilder des Querschliffs durch die dritte Schweißnaht.

Claims (12)

  1. Verfahren zum Trainieren eines ersten neuronalen Netzes (NN1), das einer hochaufgelösten Segmentierung in digitalen Bildern dient, mittels folgender Schritte: - Bereitstellen von Datensätzen erster Art (DS1), wobei jeder Datensatz erster Art (DS1) zumindest folgendes enthält: a) ein erstes hochaufgelöstes digitales Bild (HRP1), b) eine dem ersten hochaufgelösten digitalen Bild (HRP1) zugeordnete erste hochaufgelöste digitale Segmentierung (HRS1), welche zumindest eine flächige Erstreckung eines ersten Bereichs (FP1) und eines zweiten Bereichs (FP2) und insbesondere eines dritten Bereichs (SZ) in dem ersten hochaufgelösten digitalen Bild (HRP1) als Segmente hochaufgelöst repräsentiert, c) eine erste niedrigaufgelöste digitale Segmentierung (LRS1), welche zumindest eine flächige Erstreckung des ersten Bereichs (FP1) und des zweiten Bereichs (FP2) und insbesondere des dritten Bereichs (SZ) in dem ersten hochaufgelösten digitalen Bild (HRP1) als Segmente niedrigaufgelöst repräsentiert; - Trainieren des ersten neuronalen Netzes (NN1) mit den ersten hochaufgelösten Bildern (HRP1) und zusätzlich mit den ersten niedrigaufgelösten digitalen Segmentierungen (LRS1) als Eingangsdaten des ersten neuronalen Netzes (NN1) und den ersten hochaufgelösten Segmentierungen (HRS1) als Sollausgangsdaten des ersten neuronalen Netzes (NN1), sodass ein trainiertes erstes neuronales Netz (NN1T) entsteht.
  2. Verfahren nach Anspruch 1, wobei das Trainieren des ersten neuronalen Netzes (NN1) vorsieht, dass auf Basis der Datensätze erster Art (DS1) eine erste Kostenfunktion bestimmt wird und dass nachfolgend der Wert der ersten Kostenfunktion minimiert wird, indem Parameter des ersten neuronalen Netzes (NN1) optimiert werden.
  3. Verfahren nach Anspruch 1 oder 2, wobei die erste niedrigaufgelöste digitale Segmentierung (LRS1), welche zumindest die flächige Erstreckung des ersten Bereichs (FP1) und des zweiten Bereichs (FP2) und insbesondere des dritten Bereichs (SZ) in dem ersten hochaufgelösten digitalen Bild (HRP1) als Segmente niedrigaufgelöst repräsentiert, für jeden Datensatz erster Art (DS1) bereitgestellt wird, indem das Verfahren zusätzlich folgende Schritte enthält: - Bereitstellen von Datensätzen zweiter Art (DS2), wobei jeder Datensatz zweiter Art (DS2) folgendes enthält: d) ein zweites niedrigaufgelöstes digitales Bild (LRP2), e) eine zweite niedrigaufgelöste digitale Segmentierung (LRS2), welche zumindest eine flächige Erstreckung des ersten Bereichs (FP1) und des zweiten Bereichs (FP2) und insbesondere des dritten Bereichs (SZ) in dem zweiten niedrigaufgelösten digitalen Bild (LRP2) als Segmente niedrigaufgelöst repräsentiert; - Trainieren eines zweiten neuronalen Netzes (NN2) mit den zweiten niedrig aufgelösten digitalen Bildern (LRP2) als Eingangsdaten und den zweiten niedrig aufgelösten digitalen Segmentierungen (LRS2) als Sollausgangsdaten, sodass ein trainiertes zweites neuronales Netz (NN2T) entsteht; - Bereitstellen von ersten niedrigaufgelösten Kopien der hochaufgelösten digitalen Bilder (LRC1) - Mit dem trainierten zweiten neuronalen Netz (NN2T) und ausgehend von den ersten niedrigaufgelösten Kopien der hochaufgelösten digitalen Bilder (LRC1): Bestimmung der ersten niedrigaufgelösten digitalen Segmentierungen (LRS1), welche zumindest eine flächige Erstreckung des ersten Bereichs (FP1) und des zweiten Bereichs (FP2) und insbesondere des dritten Bereichs (SZ) in den ersten hochaufgelösten digitalen Bildern (HRP1) als Segmente niedrigaufgelöst repräsentiert.
  4. Verfahren nach Anspruch 3, wobei das Trainieren des zweiten neuronalen Netzes (NN2) vorsieht, dass auf Basis der Datensätze zweiter Art (DS2) eine zweite Kostenfunktion bestimmt wird und dass nachfolgend der Wert der zweiten Kostenfunktion minimiert wird, indem Parameter des zweiten neuronalen Netzes (NN2) optimiert werden.
  5. Verfahren nach einem der vorangehenden Ansprüche, wobei die Datensätze erster Art (DS1) in ihrer Gesamtheit erste hochaufgelöste digitale Bilder von Objekten (HRP1) umfassen, die untereinander nicht gleichartig sind.
  6. Verfahren nach einem der vorangehenden Ansprüche, wobei die zweiten niedrigaufgelösten digitalen Bilder (LRP2) die ersten niedrigaufgelösten Kopien der ersten hochaufgelösten digitalen Bilder (LRC1) umfassen.
  7. Verfahren zur Bestimmung einer dritten hochaufgelösten digitalen Segmentierung (HRS3) in einem dritten hochaufgelösten digitalen Bild (HRP3) mittels folgender Verfahrensschritte: - Empfangen eines dritten hochaufgelösten digitalen Bildes (HRP3) - Bereitstellen einer dritten niedrigaufgelösten Kopie (LRC3) des dritten hochaufgelösten digitalen Bildes (HRP3); - Bestimmung einer dritten niedrigaufgelösten digitalen Segmentierung (LRS3), welche zumindest eine flächige Erstreckung des ersten Bereichs (FP1) und des zweiten Bereichs (FP2) und insbesondere des dritten Bereichs (SZ) in der dritten niedrigaufgelösten Kopie (LRC3) des dritten hochaufgelösten digitalen Bildes (HRP3) als Segmente niedrigaufgelöst repräsentiert, ausgehend von der dritten niedrigaufgelösten Kopie (LRC3) des dritten hochaufgelösten digitalen Bildes (HRP3) und mittels eines trainierten neuronalen Hilfsnetzes (NNHT). - Bestimmung der dritten hochaufgelösten digitalen Segmentierung (HRS3) in dem dritten hochaufgelösten digitalen Bild (HRP3), welche zumindest eine flächige Erstreckung des ersten Bereichs (FP1) und des zweiten Bereichs (FP2) und insbesondere des dritten Bereichs (SZ) in dem dritten hochaufgelösten digitalen Bild (HRP3) als Segmente hochaufgelöst repräsentiert, ausgehend von dem dritten hochaufgelösten digitalen Bild (HRP3) und ausgehend von der dritten niedrigaufgelösten digitalen Segmentierung (LRS3), welche zumindest eine flächige Erstreckung des ersten Bereichs (FP1) und des zweiten Bereichs (FP2) und insbesondere des dritten Bereichs (SZ) in der dritten niedrigaufgelösten Kopie (LRC3) des dritten hochaufgelösten digitalen Bildes als Segmente niedrigaufgelöst repräsentiert, mittels eines trainierten neuronalen Hauptnetzes (NNMT).
  8. Verfahren nach Anspruch 7, wobei das trainierte neuronale Hauptnetz (NNMT) trainiert ist, entsprechend dem ersten neuronalen Netz (NN1) gemäß einem der Ansprüche 1 bis 6.
  9. Verfahren nach Anspruch 7 oder 8, wobei das trainierte neuronale Hilfsnetz (NNHT) trainiert ist, entsprechend dem zweiten neuronalen Netz (NN2) gemäß einem der Ansprüche 1 bis 6.
  10. Verfahren nach einem der vorangehenden Ansprüche, wobei die hochaufgelösten digitalen Bilder (HRP1, HRP3) und/oder die hochaufgelösten digitalen Segmentierungen (HRS1, HRS3) durch n*m Pixel gegeben sind; und wobei die niedrigaufgelösten digitalen Bilder (LRP2, LRC1, LRC3) bzw. die niedrigaufgelösten digitalen Segmentierungen (LRS1, LRS2, LRS3) durch n'*m' Pixel gegeben sind und wobei eine der Beziehungen aus {a), b)} gilt oder beide der Beziehungen aus {a), b)} gelten: a): n/n' ≥ 4, b): m/m' ≥ 4; z.B. n=m=1024 und n'=m'=128.
  11. Verfahren nach einem der vorangehenden Ansprüche, wobei das zweite neuronale Netz (NN2, NN2T) bzw. das neuronale Hilfsnetz (NNHT) und das erste neuronale Netz (NN1, NN1T) bzw. das neuronale Hauptnetz (NNMT) Faltungsnetze sind und wobei Größe des receptive fields des zweiten neuronalen Netzes (NN2, NN2T) bzw. des neuronalen Hilfsnetzes (NNHT) größer ist als die Größe des receptive fields des ersten neuronalen Netzes (NN1, NN1T) bzw. des neuronale Hauptnetzes (NNMT).
  12. Verfahren nach einem der vorangehenden Ansprüche, wobei das zweite neuronale Netz (NN2, NN2T) bzw. des neuronalen Hilfsnetz (NNHT) ein neuronales Netz vom Typ U-Net ist.
DE102022209009.8A 2022-08-31 2022-08-31 Segmentierung eines digitalen Bildes mittels kaskadierter neuronaler Netze Pending DE102022209009A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102022209009.8A DE102022209009A1 (de) 2022-08-31 2022-08-31 Segmentierung eines digitalen Bildes mittels kaskadierter neuronaler Netze
PCT/EP2023/069261 WO2024046638A1 (de) 2022-08-31 2023-07-12 Segmentierung eines digitalen bildes mittels kaskadierter neuronaler netze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022209009.8A DE102022209009A1 (de) 2022-08-31 2022-08-31 Segmentierung eines digitalen Bildes mittels kaskadierter neuronaler Netze

Publications (1)

Publication Number Publication Date
DE102022209009A1 true DE102022209009A1 (de) 2024-02-29

Family

ID=87245713

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102022209009.8A Pending DE102022209009A1 (de) 2022-08-31 2022-08-31 Segmentierung eines digitalen Bildes mittels kaskadierter neuronaler Netze

Country Status (2)

Country Link
DE (1) DE102022209009A1 (de)
WO (1) WO2024046638A1 (de)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200129168A (ko) * 2017-09-27 2020-11-17 구글 엘엘씨 고해상도 이미지 세분화를 위한 종단간 네트워크 모델
CA3195077A1 (en) * 2020-10-07 2022-04-14 Dante DE NIGRIS Systems and methods for segmenting 3d images

Also Published As

Publication number Publication date
WO2024046638A1 (de) 2024-03-07

Similar Documents

Publication Publication Date Title
DE2909153C2 (de) Einrichtung zur digitalen Analyse von Bild- oder Zeichenmustern
DE102011113546B4 (de) Korrektur fehlerhafter pixel in digitalen farbbildern
DE60020887T2 (de) Optischer fluss und bildaufbau
DE102006046746A1 (de) Systeme, Verfahren und Vorrichtung zum Erzeugen einer Datenbank von Bildern anhand von Kategoriekennzahlen
DE112008003337T5 (de) Eigenschaftsanalysegerät
DE10327949A1 (de) Verfahren und Vorrichtung zum Ansprechen auf Schwellenereignisse von Heterogenen Meßquellen
DE112017006976T5 (de) Überlagerungspositionskorrektureinrichtung und überlagerungspositionskorrekturverfahren
WO2003042920A1 (de) Verfahren und vorrichtung zum entzerren einer eingescannten abbildung
DE60224125T2 (de) Signalverarbeitungsgerät, Signalverarbeitungsverfahren des Geräts, Operationsprozessprogramm des Verfahrens und Speichermedium zum Speichern des Programms
DE3905234C2 (de)
DE102022209009A1 (de) Segmentierung eines digitalen Bildes mittels kaskadierter neuronaler Netze
DE102004017145A1 (de) Verfahren und Vorrichtung zur Ermittlung von Bewegungvektoren, die Bildbereichen eines Bildes zugeordnet sind
DE10024374B4 (de) Verfahren und Vorrichtung zum Messen des in einem Bild enthaltenen Rauschens
DE60320076T2 (de) Verfahren zur elektronischen farbentfernung unter nutzung räumlicher beziehungen zur verbesserung der genauigkeit
DE112017006779T5 (de) Kamerasystem einschliesslich objektiv mit vergrösserungsgradient
DE102022209007A1 (de) Segmentierung eines Schliffbilds einer Schweißnaht mittels künstlicher Intelligenz
DE10327576A1 (de) Verfahren und Vorrichtung zur bewegungsvektorgestützten Bildpunktinterpolation
EP2064674A1 (de) Mischung unterschiedlich bearbeiteter röntgenbilddaten
DE112021005620T5 (de) Verfahren und Vorrichtung zur Farbwiederherstellung von Unterwasserbildern und -videos
DE10221389A1 (de) Verfahren zur Ermittlung eines Pixelwertes eines Pixel aufweisenden Bildes, Gewichtungsmatrix und Recheneinrichtung
EP3518180B1 (de) Verfahren zur erstellung einer bildstapel-datenstruktur
EP1397002B1 (de) Gradientengestütztes Verfahren zur Bildpunktinterpolation
DE102012215527B4 (de) Verfahren und Vorrichtung zur Verbesserung einer Bildauflösung
DE112017007292T5 (de) Überwachungsbildschirmdaten-erzeugungsvorrichtung,, verfahren zur erzeugung von überwachungsbildschirmdaten und programm zur erzeugung von überwachungsbildschirmdaten
DE112017007165T5 (de) Bildverarbeitungsvorrichtung und abbildungsvorrichtung