DE102021119405A1 - Stator für eine elektrische Maschine, elektrische Maschine, Statorkühlsystem und Verfahren zum Kühlen eines Stators - Google Patents

Stator für eine elektrische Maschine, elektrische Maschine, Statorkühlsystem und Verfahren zum Kühlen eines Stators Download PDF

Info

Publication number
DE102021119405A1
DE102021119405A1 DE102021119405.9A DE102021119405A DE102021119405A1 DE 102021119405 A1 DE102021119405 A1 DE 102021119405A1 DE 102021119405 A DE102021119405 A DE 102021119405A DE 102021119405 A1 DE102021119405 A1 DE 102021119405A1
Authority
DE
Germany
Prior art keywords
stator
cooling
cooling channel
electrical
electrical conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102021119405.9A
Other languages
English (en)
Inventor
Markus Oettel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADDITIVE | DRIVES GMBH, DE
Original Assignee
Additive Drives GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Additive Drives GmbH filed Critical Additive Drives GmbH
Priority to PCT/EP2022/064392 priority Critical patent/WO2022248659A1/de
Priority to EP22733869.6A priority patent/EP4348809A1/de
Publication of DE102021119405A1 publication Critical patent/DE102021119405A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/22Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of hollow conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Stator (100) für eine elektrische Maschine, insbesondere für einen elektrischen Motor oder Generator, der einen Statorkern mit mindestens einer Statornut (101) aufweist, in der mindestens zwei elektrische Leiter (10) angeordnet sind, wobei zumindest ein Teil des Stators mittels eines Verfahrens zur additiven Fertigung hergestellt ist, wobei bei einer vorbestimmten Anzahl der elektrischen Leiter (10) jeweils mindestens ein mit einem Kühlfluid beaufschlagbarer Kühlkanal (11) ausgestaltet ist, wobei mindestens eine erste und eine weitere Kühlkanalgruppe (V1, V2), in denen jeweils die Kühlkanäle mehrerer elektrischer Leiter (10) parallel zueinander mit Kühlfluid beaufschlagbar sind, fluidisch zu separaten Kreisläufen oder zu einem Kreislauf in Reihe und/oder parallel verbunden sind.

Description

  • Die Erfindung betrifft einen Stator für eine elektrische Maschine, insbesondere für einen elektrischen Motor oder Generator, der einen Statorkern mit mindestens einer Statornut aufweist, in der mindestens zwei (vorzugsweise mindestens vier) elektrische Leiter angeordnet sind, wobei zumindest ein Teil des Stators mittels eines Verfahrens zur additiven Fertigung hergestellt ist, eine elektrische Maschine, insbesondere einen elektrischen Motor oder Generator, ein Statorkühlsystem sowie ein Verfahren zum Kühlen eines Stators.
  • Bei elektrischen Maschinen ist die Temperatur, insbesondere der elektrischen Leiter im Stator, einer der entscheidenden Faktoren dafür, wie leistungsfähig und/oder effizient die elektrische Maschine im Betrieb ist.
  • Bei besonders leistungsfähigen Motoren fließen hohe elektrische Ströme in den Leitern des elektrischen Motors. Dies führt jedoch dazu, dass aufgrund des spezifischen Widerstands des Leitermaterials Wärme erzeugt wird. Mit steigender Wärme steigt wiederum der Widerstand des Leitermaterials, so dass sich der Wirkungsgrad des elektrischen Motors um mehrere Größenordnungen verschlechtern kann.
  • Insbesondere im Bereich der Hochleistungsmotoren, die beispielsweise in Antriebssträngen von Elektro-, Hybrid- oder Wasserstoffautos Anwendung finden, ist es daher notwendig, eine geeignete Statorkühlung für die elektrischen Motoren vorzusehen.
  • Ein herkömmlicher Ansatz zum Kühlen von elektrischen Motoren besteht darin, die elektrischen Leiter des Stators eines elektrischen Motors mit einem Wärmeleitkörper zu umgeben. Durch den Wärmeleitkörper kann die in den elektrischen Leitern erzeugte Abwärme vom Stator weggeleitet werden. Zusätzlich werden im Stand der Technik um den Wärmeleitkörper Kühlmäntel vorgesehen, die als kühlmitteldurchströmte Wärmetauscher ausgestaltet sein können. Die Wärmeleitkörper sind beispielsweise als Blechpakete ausgestaltet.
  • Bei diesem herkömmlichen Ansatz wird jedoch die entstehende Abwärme von den elektrischen Leitern über den Wärmeleitkörper bis zum Kühlmantel geleitet. Ein solcher Ansatz bietet somit nur eine sehr indirekte und/oder träge Kühlung der elektrischen Leiter des Stators und ist folglich von der Wärmeleitfähigkeit des Wärmeleitkörpers abhängig.
  • Eine direkte Kühlung der elektrischen Leiter ist daher erstrebenswert. In DE 10 2014 201 305 A1 wird ein Ansatz für eine direkte Kühlung eines Windungsleiters einer Hohlleiterspule verfolgt. Die Hohlleiterspule ist über den gesamten Verlauf des Windungsleiters mit einem Kühlkanal versehen.
  • Dies führt jedoch dazu, dass beim Beaufschlagen einer solchen Hohlleiterspule mit Kühlmittel der Strömungswiderstand für das Kühlmittel in Abhängigkeit von der Länge des Wicklungsleiters und dem Radius des in dem Windungsleiter vorgesehenen Kanals sehr hoch sein kann, wodurch unter anderem die Wahl des Kühlmittels (in Hinblick auf die Viskositätseigenschaften des Kühlmittels) beeinflusst wird.
  • Darüber hinaus erhöhen sich der technische Aufwand und die technischen Anforderungen an das für das Beaufschlagen vorgesehene System, da durch den erhöhten Strömungswiderstand das Kühlmittel mit einem höheren Druck beaufschlagt werden muss, um das Kühlmittel durch den Kanal der Hohlleiterspule strömen zu lassen.
  • Des Weiteren wird die Fertigung dieser Hohlleiterspule wesentlich verkompliziert. Denn Umform- und Biegeprozesse führen zum Einschnüren und damit einer Reduzierung des Kanals im Hohlleiter. Außerdem entsteht durch das Vorsehen des Kanal über den gesamten Verlauf des Windungsleiters in allen Bereichen des Kanals ein Bauraumverlust, wodurch sich der Füllfaktor des Windungsleiters in der Statornut verkleinert und damit die erreichbare Leistung des elektrischen Motors sinkt.
  • Es ist daher Aufgabe der Erfindung, einen Stator für eine elektrische Maschine, eine elektrische Maschine, ein Statorkühlsystem sowie ein Verfahren zum Kühlen eines Stators vorzuschlagen, wobei eine möglichst effektive Kühlung der elektrischen Leiter des Stators einer elektrischen Maschine erreicht werden soll, insbesondere soll eine möglichst platzsparende Konstruktion erreicht werden, die sich durch eine hohe Leistungsfähigkeit und/oder eine hohe Effizienz im Betrieb auszeichnet.
  • Diese Aufgabe wird insbesondere durch den Gegenstand gemäß Anspruch 1 gelöst. Ferner wird die Aufgabe insbesondere durch die Gegenstände gemäß Anspruch 13, 14 und 16 gelöst.
  • Insbesondere wird die Aufgabe gelöst durch einen Stator für eine elektrische Maschine (insbesondere für einen elektrischen Motor oder Generator), der einen Statorkern mit mindestens einer Statornut aufweist, in der mindestens zwei (vorzugsweise mindestens vier) elektrische Leiter angeordnet sind, wobei zumindest ein Teil des Stators mittels eines Verfahrens zur additiven Fertigung hergestellt ist, wobei bei einer vorbestimmten Anzahl der elektrischen Leiter jeweils mindestens ein mit einem Kühlfluid beaufschlagbarer Kühlkanal ausgestaltet ist, wobei mindestens zwei oder mindestens vier Kühlkanäle, die nicht durch denselben elektrischen Leiter ausgebildet werden, fluidisch parallel geschaltet sind und/oder wobei mindestens vier oder mindestens sechs oder mindestens acht oder mindestens zehn Kühlkanäle (die demselben oder verschiedenen Kühlkanälen zugeordnet sein können) fluidisch parallel geschaltet sind, und/oder wobei mindestens eine erste und eine weitere Kühlkanalgruppe, in denen jeweils die Kühlkanäle mehrerer elektrischer Leiter parallel zueinander mit Kühlfluid beaufschlagbar sind, fluidisch zu separaten Kreisläufen oder zu einem Kreislauf in Reihe und/oder parallel verbunden sind.
  • Die elektrischen Leiter können insbesondere als einzelne Windungsleiter einer Wicklung, vorzugsweise als einzelne Windungsleiter einer Spule, weiter vorzugsweise als Ipins (bzw. stabförmige Leiter) oder Upins (bzw. U-förmige Leiter) oder Hairpins ausgestaltet sein. Es wird bevorzugt, dass der Statorkern eine Vielzahl von Statornuten sowie eine Vielzahl von in den Statornuten untergebrachten elektrischen Leitern aufweist.
  • Ein Kerngedanke der Erfindung liegt darin, zumindest eine vorbestimmte Anzahl der (einzelnen) elektrischen Leiter eines Stators mit Kühlkanälen zu versehen und die Kühlkanäle der elektrischen Leiter in einer Parallelschaltung oder in mehreren Parallelschaltungen mit Kühlfluid zu beaufschlagen. Dies ermöglicht eine direkte Kühlung der elektrischen Leiter. Die Kühlkanäle der elektrischen Leiter des Stators können durch die Verwendung eines additiven Verfahrens zur Herstellung von zumindest einem Teil des Stators direkt in oder in unmittelbarer Nähe zu den elektrischen Leitern gebildet werden.
  • Durch die Parallelschaltung der Kühlkanäle der elektrischen Leiter wird eine Reduzierung des Strömungswiderstands erreicht und die Kühlleistung wird gezielt dort bereitgestellt, wo die Wärme bzw. Abwärme im Stator entsteht.
  • Dabei ist es möglich, dass die parallelgeschalteten Kühlkanäle zu separaten Kreisläufen (Kühlkreisläufen) verbunden sind, um beispielsweise die Kühlleistung, mit der die elektrischen Leiter gekühlt werden, zu erhöhen, oder zu einem Kreislauf (Kühlkreislauf) verbunden sind, um beispielsweise zusätzlich zum Erhöhen der Kühlleistung diese möglichst effizient auf die elektrischen Leiter des Stators zu verteilen.
  • Unter einem Kühlfluid kann ein gasförmiger oder flüssiger Stoff oder ein Stoffgemisch verstanden werden, der oder das zum Abtransport von Wärme eingesetzt werden kann.
  • Vorzugsweise ist die vorbestimmte Anzahl der elektrischen Leiter, bei denen ein Kühlkanal ausgestaltet ist, kleiner oder gleich einer Leiteranzahl in der mindestens einen Statornut. Insbesondere ist ein Verhältnis zwischen einer Kühlkanalanzahl (einer Anzahl der elektrischen Leiter, die mit einem Kühlkanal ausgestaltet sind) und der Leiteranzahl kleiner als 1, vorzugsweise kleiner als 3/4, weiter vorzugsweise kleiner als 1/2. Insbesondere ist das Verhältnis kleiner als 1/4.
  • Dies führt dazu, dass, wenn die Anzahl der elektrischen Leiter kleiner als die Leiteranzahl ist, nicht jeder elektrische Leiter mit einem Kühlkanal versehen wird, wodurch ein höherer Füllfaktor der Statornut erreicht werden kann. So kann eine kompaktere Bauform des Stators und eine hohe Leistungsfähigkeit des elektrischen Motors erreicht werden.
  • Darüber hinaus kann hierdurch ein Kompromiss zwischen der Kühlleistung, mit der die elektrischen Leiter der Statornut gekühlt werden können, und des Füllfaktors erreicht werden.
  • Die elektrischen Leiter einer Statornut sind insbesondere in einem Querschnitt (senkrecht zu einer zentralen Achse des Stators) in einer radialen Richtung des Stators angeordnet, wobei die elektrischen Leiter, die in einem inneren Bereich bezogen auf die radiale Richtung des Stators angeordnet sind, mit Kühlkanälen ausgestaltet sind. Hierdurch ist es möglich, Kühlleistung direkt dort einzubringen, wo die Wärmeentwicklung in der Statornut am größten ist.
  • Zusätzlich oder alternativ können die elektrischen Leiter, die in einem äußeren Bereich bezogen auf die radiale Richtung des Stators und/oder in einem mittleren Bereich zwischen dem äußeren und dem inneren Bereich angeordnet sind, mit Kühlkanälen ausgestaltet sein.
  • Die zentrale Achse des Stators ist hierbei vorzugsweise eine Achse, um die der Stator hohlzylindrisch angeordnet ist, wobei die Statornut/en durch Aussparungen im Statorkern gebildet ist/sind, die in radialer- und axialer Richtung des Stators verlaufen. Die Statornut/en kann/können zu einem Innenumfang des Stators oder zu einem Außenumfang des Stators hin geöffnet sein.
  • In einer Ausführungsform sind die mit mindestens einem Kühlkanal ausgestalteten elektrischen Leiter als Hohlkanalleiter ausgestaltet, deren Kühlkanal sich entlang einer Längsrichtung des elektrischen Leiters erstreckt. Die Hohlkanalleiter können einen ringförmigen Querschnitt, vorzugsweise einen recht- oder mehreckigen Querschnitt mit kreis-, recht oder mehreckigen Querschnitt des Kühlkanals, aufweisen.
  • Die Ausgestaltung der elektrischen Leiter als Hohlkanalleitern ermöglicht es, die elektrischen Leiter, die wesentlich zur Wärmeentwicklung im Stator beitragen, durch Beaufschlagung der in den elektrischen Leitern ausgebildeten Kühlkanäle mit Kühlfluid direkt zu kühlen.
  • In einer weiteren Ausführungsform können die mit einem Kühlkanal ausgestalteten elektrischen Leiter jeweils ein (rohrförmiges oder schlauchförmiges) Kühlkanalelement aufweisen, das den Kühlkanal bildet und mit Kühlfluid beaufschlagbar ist.
  • Die Kühlkanalelemente sind vorzugsweise fluiddicht ausgestaltet. Insbesondere sind die Kühlkanalelemente aus einem Material mit einer geringeren elektrischen Leitfähigkeit (beispielsweise geringer als Kupfer) und/oder mit einer hohen thermischen Leitfähigkeit hergestellt. Insbesondere können die die Kühlkanalelemente aus einem reaktionsträgem Material, wie Kunststoff, hergestellt sein, wodurch die Verwendung von Wasser als Kühlfluid ermöglicht wird. Vorzugsweise ist das Material ein elektrischer Isolator mit guter thermischer Leitfähigkeit.
  • Es wird bevorzugt, dass die Kühlkanalelemente in einem Aktivbereich des Stators zumindest teilweise, vorzugsweise vollständig, von dem jeweiligen elektrischen Leiter umschlossen sind, wodurch die Wärmeübertragungsfläche zwischen elektrischem Leiter und Kühlkanalelement vor allem im Aktivbereich vergrößert werden kann und so eine verbesserte Wärmeabfuhr erreicht werden kann. Alternativ oder zusätzlich kann mindestens ein Kühlkanal (ggf. mehrere oder alle Kühlkanäle) nicht (ggf. auch nicht teilweise) von dem jeweiligen (zugeordneten) elektrischen Leiter umschlossen sind. Alternativ oder zusätzlich kann mindestens ein Kühlkanal (ggf. mehrere oder alle Kühlkanäle) neben, insbesondere unmittelbar neben einem oder mehreren Leitern angeordnet sein (insbesondere jeweils zwischen zwei oder mehr Leitern).
  • Eine Länge des (jeweiligen) Kühlkanals kann höchstens 3-mal oder höchstens 2-mal oder höchstens 1,5-mal oder höchstens 1,2-mal so lang sein, wie eine Länge der entsprechenden Statornut (in der der jeweilige Kühlkanal verläuft).
  • Unter einem Aktivbereich des Stators (bzw. der elektrischen Leiter, insbesondere der Wicklungen) ist insbesondere ein ringförmiger Abschnitt des Stators zu verstehen, in welchem die elektrischen Leiter parallel zu einer zentralen Achse des Stators verlaufen. Im (jeweiligen) Aktivbereich findet vorzugsweise die eigentliche Krafterzeugung des elektrischen Motors statt, da hier das erforderliche (magnetische) Drehfeld erzeugt wird, um einen (innerhalb des Stators angeordneten) Rotor (rotatorisch) zu bewegen.
  • Die Kühlkanalelemente in einem ersten (oberen) und einem zweiten (unteren) Kopfbereich (Wickelkopf) des Stators sind insbesondere zumindest teilweise von dem jeweiligen elektrischen Leiter umschlossen, wodurch die Wärmeübertragungsfläche zwischen elektrischem Leiter und Kühlkanalelement bis hin in den ersten und den zweiten Kopfbereich (Wickelkopf) des Stators vergrößert werden kann und so eine weitere Verbesserung der Wärmeabfuhr erreicht werden kann.
  • Unter einem ersten Kopfbereich des Stators ist vorzugsweise ein Abschnitt des Stators zu verstehen, der sich an den Aktivbereich (bzw. dem krafterzeugenden Bereich) (oben) anschließt. In dem ersten Kopfbereich verlaufen die elektrischen Leiter nicht parallel zur zentralen Achse des Stators. Unter einem zweiten Kopfbereich des Stators ist insbesondere ein entsprechender Abschnitt zu verstehen, der sich an der anderen Seite des Aktivbereichs (unten), also in axialer Richtung des Stators an der gegenüberliegenden Seite des Stators, anschließt.
  • Die Kühlkanalelemente und die dazugehörigen elektrischen Leiter verzweigen sich vorzugsweise im ersten und im zweiten Kopfbereich des Stators, wodurch eine Weiterführung oder (elektrische) Kontaktierung des elektrischen Leiters sowie eine fluidische Koppelung der Kühlelemente im ersten und/oder zweiten Kopfbereich ermöglicht wird.
  • Es wird bevorzugt, dass jedes Kühlkanalelement an einem ersten Ende im ersten Kopfbereich und an einem zweiten Ende im zweiten Kopfbereich durch ein Anschlusselement fluidisch koppelbar ist, wodurch die fluidische Koppelung der Kühlelemente im ersten und zweiten Kopfbereich vereinfacht wird.
  • Die einem elektrischen Leiter zugehörigen Kühlkanalelemente sind insbesondere neben dem elektrischen Leiter angeordnet, so dass mindestens ein Teil einer Wandung des Kühlkanalelements an dem zughörigen elektrischen Leiter angrenzt, wodurch der Querschnitt des elektrischen Leiters vergrößert werden kann und gleichzeitig eine gute Wärmeübertragung zwischen Kühlkanalelement und elektrischem Leiter erreicht wird.
  • Vorzugsweise ist das einem elektrischen Leiter zugeordnete Kühlkanalelement zusätzlich neben einem benachbarten elektrischen Leiter angeordnet, so dass mindestens ein Teil der Wandung des Kühlkanalelements an dem zughörigen elektrischen Leiter und an dem benachbarten elektrischen Leiter angrenzt, wodurch ein Kühlkanalelement Kühlleistung für sowohl den zughörigen elektrischen Leiter als auch den benachbarten elektrischen Leiter bereitstellen kann.
  • Die obengenannte Aufgabe wird weiterhin gelöst durch eine elektrische Maschine (insbesondere elektrischer Motor oder Generator) für elektrisch oder hybridelektrisch angetriebenes Fahrzeug, die einen Stator nach obiger Art und einen Rotor aufweist.
  • Die obengenannte Aufgabe wird weiterhin gelöst durch ein Statorkühlsystem, aufweisend:
    • - eine elektrische Maschine nach obiger Art;
    • - eine Kühleinheit, die fluidisch mit den Kühlkanälen der elektrischen Leiter des Stators nach obiger Art derart gekoppelt ist, dass die erste und die weitere Kühlkanalgruppe fluidisch zu separaten Kreisläufen oder zu einem Kreislauf in reihe und/oder parallel verbunden sind, wobei die Kühleinheit ferner dazu ausgestaltet ist, die Kreisläufe oder den Kreislauf mit einem Kühlfluid zu beaufschlagen.
  • Vorzugsweise weist das Statorkühlsystem ferner Folgendes auf:
    • - eine Sensoreinheit, die dazu ausgestaltet ist, mindestens eine Temperatur der elektrischen Leiter des Stators zu erfassen;
    • - eine Steuereinheit, die kommunikativ mit der Sensoreinheit und der Kühleinheit verbunden ist und dazu ausgestaltet ist, die Kühleinheit derart zu steuern, dass die Temperatur der elektrischen Leiter des Stators unterhalb einer vorbestimmten unteren Grenztemperatur oder oberhalb eine vorbestimmten oberen Grenztemperatur, vorzugsweise einer Solltemperatur angenähert wird.
  • Es wird bevorzugt, dass die Temperatur der elektrischen Leiter zumindest im Wesentlichen auf eine Solltemperatur (vorzugsweise konstant) geregelt wird.
  • Zusätzlich oder alternative kann eine Temperatur des Kühlfluides in einem Vorlauf und/oder in einem Nachlauf des Kreislaufs oder der Kreisläufe erfasst werden und an die Steuereinheit übertragen werden. Vorzugsweise wird/werden in der Steuereinheit die Temperatur/en des Kühlfluides zur Regelung der Temperatur der elektrischen Leiter des Stators verwendet.
  • Die obengenannte Aufgabe wird ferner durch ein Verfahren zum Kühlen der elektrischen Leiter eines Stators nach obiger Art mit einem Statorkühlsystem nach obiger Art, gelöst, wobei der Kreislauf oder die Kreisläufe, der/die aus den Kühlkanälen gebildet wird/werden, derart mit einem Kühlfluid beaufschlagt wird/werden, dass die Temperatur der elektrischen Leiter des Stators unterhalb einer vorbestimmten unteren Grenztemperatur oder oberhalb eine vorbestimmten oberen Grenztemperatur, vorzugsweise einer Solltemperatur angenähert wird.
  • Bei dem Verfahren zum Kühlen der elektrischen Leiter wird insbesondere die Temperatur der elektrischen Leiter zumindest im Wesentlichen auf eine Solltemperatur (vorzugsweise konstant) geregelt.
  • Die nachfolgend erläuterten weiteren Aspekte können vorzugsweise mit den obigen Aspekten bzw. Merkmalen kombiniert werden.
  • Ein weiterer Aspekt besteht darin, die Temperatur der elektrischen Leiter eines Stators in einem bestimmten Bereich zu halten, in welchem die elektrische Maschine effizient betrieben werden kann. Dies kann beispielsweise auch ein Wärmen (anstelle eines Kühlens) der elektrischen Leiter des Stators umfassen, wenn die elektrische Maschine bei niedrigen Temperaturen beispielsweise als Generator betrieben wird.
  • Weitere Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen beschrieben, die anhand der Abbildungen näher erläutert werden. Hierbei zeigen:
    • 1A-1E mehrerer schematische Längsschnitte der elektrischen Leiter im Aktivbereich von unterschiedlichen Ausführungsbeispielen;
    • 2 eine dreidimensionale Ansicht von einem Ausführungsbeispiel eines Kühlkanalelements mit elektrischem Leiter;
    • 3A-3G mehrere schematische Querschnitte der elektrischen Leiter im Aktivbereich von erfindungsgemäßen Ausführungsbeispielen;
    • 4A-4F unterschiedliche schematische Querschnitte der Statornut im Aktivbereich von unterschiedlichen Ausführungsbeispielen;
    • 5 einen U-förmigen Leiter mit Kühlkanal in einer Seitenansicht;
    • 6 den Leiter gemäß 5 in einer Schrägansicht;
    • 7 den Leiter gemäß 5 mit teilweise einsehbarem Inneren;
    • 8 einen erfindungsgemäßen Stator mit Kühlkanälen;
    • 9 einen Querschnitt (quer zur Längsrichtung) durch den Stator gemäß 8;
    • 10 eine Schnittdarstellung entlang der Linie A-A aus 9.
  • In der nachfolgenden Beschreibung werden für gleiche und gleich wirkende Teile dieselben Bezugsziffern verwendet.
  • In 1A ist ein schematischer Längsschnitt des Aktivbereichs A eines Stators 100 gezeigt. Es sind vier elektrische Leiter 10 gezeigt, die als Ipins (stabförmige Leiter) ausgestaltet sind. In den einzelnen elektrischen Leitern 10 ist jeweils ein Kühlkanal 11 ausgestaltet.
  • Die Kühlkanäle 11 der elektrischen Leiter 10 einer ersten Kühlkanalgruppe V1 sind parallelgeschaltet und werden mit Kühlfluid durch einen ersten Eingangs-Volumenstrom V̇1-in parallel beaufschlagt. Der erste Ausgangs-Volumenstrom V̇1-out der ersten Kühlkanalgruppe V1 ist zusammen mit dem ersten Eingangs-Volumenstrom V̇1-in zu einem Kühlkreislauf verbunden.
  • Die Kühlkanäle 11 der elektrischen Leiter 10 einer weiteren Kühlkanalgruppe V2 sind ebenfalls parallelgeschaltet und werden mit Kühlfluid durch einen weiteren Eingangs-Volumenstrom V̇2-in parallel beaufschlagt. Der weitere Ausgangs-Volumenstrom V̇2-out der weitere Kühlkanalgruppe V1 ist zusammen mit dem weiteren Eingangs-Volumenstrom V̇2-in zu einem separaten Kühlkreislauf verbunden.
  • In dem Ausführungsbeispiel aus 1A sind die Kühlkanäle der elektrischen Leiter zu zwei separaten Kühlkreisläufen fluidisch verschaltet.
  • 1B zeigt einen schematischen Längsschnitt des Aktivbereichs A eines Stators 100, wobei die vier elektrischen Leiter 10 als Ipins (stabförmige Leiter) und mit jeweils einem Kühlkanal 11 ausgestaltet sind.
  • Die Kühlkanäle 11 der elektrischen Leiter 10 einer ersten Kühlkanalgruppe V1 sind zueinander parallelgeschaltet und die Kühlkanäle 11 der elektrischen Leiter 10 einer weiteren Kühlkanalgruppe V2 sind zueinander parallelgeschaltet.
  • In diesem Ausführungsbeispiel sind die Kühlkanäle 11 einer ersten Kühlkanalgruppe V1 und die Kühlkanäle 11 einer zweiten Kühlkanalgruppe V2 zueinander parallel verbunden, so dass ein Eingangs-Volumenstrom V̇in und ein Ausgangs-Volumenstrom V̇out zu einem Kühlkreislauf verbunden sind.
  • In 1C ist ein weiteres Ausführungsbeispiel abgebildet. Die Kühlkanäle 11 der ersten Kühlkanalgruppe V1 und der weiteren Kühlkanalgruppe V2 sind innerhalb der Gruppen parallel verschaltet, wobei die erste Kühlkanalgruppe V1 in Reihe mit der weiteren Kühlkanalgruppe V2 verbunden ist, so dass ein Eingangs-Volumenstrom V̇in und ein Ausgangs-Volumenstrom V̇out zu einem Kühlkreislauf verbunden sind.
  • Die Reihenschaltung der Kühlkanäle 11 der ersten und der weiteren Kühlkanalgruppe V1, V2 wird durch entsprechende Kühlkanalumlenkelemente 12 erreicht.
  • In 1D ist ein weiteres Ausführungsbeispiel abgebildet, bei dem, wie in 1C, die Kühlkanäle der ersten Kühlkanalgruppe V1 in Reihe mit den Kühlkanälen der weiteren Kühlkanalgruppe V2 verbunden sind, so dass ein Eingangs-Volumenstrom V̇in und ein Ausgangs-Volumenstrom V̇out zu einem Kühlkreislauf verbunden sind.
  • Die Reihenschaltung der Kühlkanäle 11 der ersten und der weiteren Kühlkanalgruppe V1, V2 wird auch hier beispielhaft durch entsprechende Kühlkanalumlenkelemente 12 erreicht.
  • In 1E ist ein weiteres Ausführungsbeispiel abgebildet, bei dem die (sämtlichen) Kühlkanäle zueinander parallel geschaltet sind und nicht mehrere Kühlkanalgruppen vorliegen.
  • 2 zeigt eine beispielhafte dreidimensionale Ansicht von einem elektrischen Leiter 10 in einem Kopfbereich des Stators 100. In diesem Ausführungsbeispiel bildet ein Kühlkanalelement 13 einen Kühlkanal 11. Im Aktivbereich ist das Kühlkanalelement 13 vollständig von dem elektrischen Leiter 10 umschlossen. In einem Verzweigungsbereich VZ des gezeigten Kopfbereiches K verzweigen sich der elektrische Leiter 10 und das zumindest im Aktivbereich des Stators 100 von dem elektrischen Leiter 10 umschlossene Kühlkanalelement 13.
  • In den 3A bis 3H sind die Querschnitte von verschiedenen Ausführungsbeispielen von elektrischen Leitern 10 im Aktivbereich A des Stators 100 abgebildet.
  • 3A zeigt den Querschnitt eines Leiters 10, bei dem der Kühlkanal 11 direkt im elektrischen Leiter 10 ausgebildet ist. Der Querschnitt des Leiters 10 ist ringförmig. Zwischen Kühlkanal 11 und dem Leiter ist in diesem Beispiel kein Kühlkanalelement vorgesehen.
  • 3B zeigt das Beispiel aus 3A, allerdings ist in dem elektrischen Leiter 10 ein Kühlkanalelement 13 ausgebildet, das den Kühlkanal 11 von dem elektrischen Leiter 10 trennt. Die Querschnitte des Leiters 10 und des Kühlkanalelements 13 sind ringförmig.
  • 3C zeigt ein weiteres Ausführungsbeispiel, bei dem der elektrische Leiter 10 im Querschnitt neben dem Kühlkanalelement 13 angeordnet ist. In diesem Beispiel grenzt der Leiter 10 an einem Teil 13w der Wandung des Kühlkanalelements 13 an, so dass eine Wärmeübertragung zwischen dem elektrischen Leiter und dem Kühlkanalelement erreicht wird. In diesem Beispiel sind die Querschnitte des Leiters 10 und des Kühlkanalelements 13 zumindest im Wesentlichen ringförmig, wobei jedoch im Teil 13w der Wandung des Kühlkanalelements 13, sich ein Außendurchmesser des Kühlkanalelements 13 an den Außendurchmesser des elektrischen Leiters kontinuierlich annähert.
  • In 3D ist der abgebildete Querschnitt des Leiters 10 rechteckig und der Querschnitt des Kühlkanals kreisförmig. Ebenfalls denkbar sind weitere mehreckige Formen für den Querschnitt des Leiters 10 oder für den Querschnitt des Kühlkanals 11, um den Füllfaktor in der Statornut und den Strömungswiderstand des Kühlkanals zu optimieren.
  • 3E zeigt das Beispiel aus 3D, bei dem im elektrischen Leiter 10 ein Kühlkanalelement 13 ausgebildet ist, das den Kühlkanal 11 von dem elektrischen Leiter 10 trennt.
  • 3F zeigt ein weiteres Ausführungsbeispiel, bei dem der elektrische Leiter 10 im Querschnitt neben dem Kühlkanalelement 13 angeordnet ist. Die Querschnitte des Leiters 10 und des Kühlkanalelements 13 sind rechteckig ausgebildet. In 3G sind zwei Kühlkanäle im Kühlkanalelement 13 ausgebildet.
  • In den 4A bis 4F sind Querschnitte einer Statornut im Aktivbereich A in mehreren Ausführungsbeispielen abgebildet. In den Ausführungsbeispielen ist jeweils die Anzahl der elektrischen Leiter 10, die mit einem Kühlkanal 11 versehen sind, geringer ist als die Leiteranzahl in der Statornut 101. In diesem Ausführungsbeispiel sind acht elektrische Leiter 10 pro Statornut 101 vorgesehen.
  • In 4A sind nur zwei der acht elektrischen Leiter 10 mit Kühlkanälen ausgebildet. Die elektrischen Leiter 10, die mit einem Kühlkanal 11 versehen sind, befinden sich in einem inneren Bereich IB. Der innere Bereich umfasst in diesem Beispiel die innersten zwei elektrischen Leiter 10, die naher an dem Innenumfang IU des Stators 100 angeordnet sind, als die restlichen elektrischen Leiter 10. Ein Verhältnis zwischen der vorbestimmten Anzahl an Leitern 10, die mit einem Kühlkanal versehen sind, und der Leiteranzahl in der Statornut 101 beträgt 1/4.
  • In 4B ist zusätzlich zum Beispiel aus 4A ein weiterer elektrischer Leiter 10 der acht elektrischen Leiter 10 mit einem Kühlkanal 11 versehen. Der zusätzliche elektrische Leiter 10 ist in einem mittleren Bereich angeordnet, der in radialer Richtung an den inneren Bereich angrenzt und weiter außen in Richtung des Außenumfangs AU des Stators 100 liegt. Das Verhältnis zwischen der vorbestimmten Anzahl an Leitern 10, die mit einem Kühlkanal versehen sind, und der Leiteranzahl in der Statornut 101 beträgt 3/8.
  • 4C zeigt ein Ausführungsbeispiel, bei dem vier der acht elektrischen Leiter 10 mit einem Kühlkanal 11 ausgestaltet. Das Verhältnis zwischen der vorbestimmten Anzahl an Leitern 10, die mit einem Kühlkanal 11 versehen sind, und der Leiteranzahl in der Statornut 101 beträgt 1/2.
  • Die Kühlkanäle 11 sind derart auf die elektrischen Leiter 10 verteilt, dass im inneren Bereich IB ein Kühlkanal, im mittleren Bereich MB zwei Kühlkanäle 11 und in einem äußeren Bereich AB ein Kühlkanal 11 vorgesehen ist. Der äußere Bereich AB schließt sich an den mittleren Bereich MB in Richtung des Außenumfangs AU des Stators 100 an. Der äußere Bereich AB umfasst zwei elektrische Leiter 10.
  • 4D zeigt ein Ausführungsbeispiel, bei dem vier der acht elektrischen Leiter 10 mit einem Kühlkanal 11 ausgestaltet. Das Verhältnis zwischen der vorbestimmten Anzahl an Leitern 10, die mit einem Kühlkanal 11 versehen sind, und der Leiteranzahl in der Statornut 101 beträgt 1/2.
  • Die Kühlkanäle 11 sind derart auf die elektrischen Leiter 10 verteilt, dass die elektrischen Leiter 10 in radialer Richtung vom Innenumfang IU zum Außenumfang AU des Stators 100 alternierend (also abwechselnd) mit einem Kühlkanal 11 und ohne einem Kühlkanal versehen sind, wobei der innerste elektrische Leiter 10 im inneren Bereich IB mit einem Kühlkanal 11 versehen ist.
  • 4E zeigt ein Ausführungsbeispiel, bei dem zwei der acht elektrischen Leiter 10 mit einem Kühlkanal 11 ausgestaltet, so dass das Verhältnis zwischen der vorbestimmten Anzahl an Leitern 10, die mit einem Kühlkanal 11 versehen sind, und der Leiteranzahl in der Statornut 101 beträgt 1/4. In diesem Beispiel sind zwei elektrischen Leiter 10 im mittleren Bereich MB des Stators mit Kühlkanälen 11 versehen.
  • 4F zeigt das Ausführungsbeispiel aus 4D, bei dem die elektrischen Leiter 10 alternierend mit einem Kühlkanal 11 und ohne einem Kühlkanal versehen sind, wobei jedoch der innerste elektrische Leiter 10, der mit einem Kühlkanal 11 versehen ist, der zweitinnerste elektrische Leiter 10 ist.
  • 5 bis 10 zeigen einen erfindungsgemäßen Stators 100 (5 bis 7 nur ausschnittsweise). In diesem Ausführungsbeispiel sind die Kühlkanalelemente 13 im Aktivbereich A des Stators 100 von den elektrischen Leitern 10 umschlossen. Im oberen und im unteren Kopfbereich des Stators 100 zweigen die Kühlkanalelemente 13 von dem jeweiligen elektrischen Leiter 10 ab (und zwar in einem jeweiligen Verzweigungsbereich VZ.
  • Konkret kann (was nicht zwingend ist) bei Hair-Pin-Strukturen (siehe 5 bis 7) z. B. durch einen äußeren Leiter 10 der Hair-Pin-Struktur ein jeweiliges Kühlkanalelement 13 verlaufen. Durch einen inneren Leiter 10 der Hair-Pin-Struktur kann ggf. kein Kühlkanalelement 13 verlaufen (alternativ oder zusätzlich ist dies jedoch möglich).
  • In der Ausführungsform nach den 5 bis 10 sind (hier exemplarisch: acht; allgemeiner: mehrere, insbesondere mindestens zwei oder mindestens vier oder mindestens acht) Leiter 10 der Hairpin-Struktur mit genau einem Kühlkanalelement 13 ausgestattet. Alternativ oder zusätzlich kann ein jeweiliges Kühlkanalelement 13 auch einem inneren Leiterabschnitt des jeweiligen Hair-Pins zugeordnet sein.
  • An dieser Stelle sei darauf hingewiesen, dass alle oben beschriebenen Teile für sich alleine gesehen und in jeder Kombination, insbesondere die in den Zeichnungen dargestellten Details, als erfindungswesentlich beansprucht werden. Abänderungen hiervon sind dem Fachmann geläufig.
  • Weiterhin wird darauf hingewiesen, dass ein möglichst breiter Schutzumfang angestrebt wird. Insofern kann die in den Ansprüchen definierte Erfindung auch durch Merkmale präzisiert werden, die mit weiteren Merkmalen beschrieben sind (auch ohne dass diese weiteren Merkmale zwingend aufgenommen werden sollen). Explizit wird darauf hingewiesen, dass runde Klammern und der Begriff „insbesondere“ im jeweiligen Kontext die Optionalität von Merkmalen hervorheben soll (was nicht im Umkehrschluss bedeuten soll, dass ohne derartige Kenntlichmachung ein Merkmal als im entsprechenden Zusammenhang zwingend zu betrachten ist).
  • Bezugszeichenliste
  • 100
    Stator
    101
    Statornut
    10
    elektrischer Leiter
    11
    Kühlkanal
    12
    Kühlkanalumlenkelemente
    13
    Kühlkanalelement
    A
    Aktivbereich
    K
    erster (oberer) und zweiter (unterer) Kopfbereich
    VZ
    Verzweigungsbereich
    V1
    erste Kühlkanalgruppe
    V2
    weitere Kühlkanalgruppe
    AB
    äußerer Bereich
    MB
    mittlerer Bereich
    IB
    innerer Bereich
    AU
    Außenumfang des Stators
    IU
    Innenumfang des Stators
    V̇in
    Eingangs-Volumenstrom
    V̇1-in
    Eingangs-Volumenstrom der ersten Kühlkanalgruppe
    V̇2-in
    Eingangs-Volumenstrom der weiteren Kühlkanalgruppe
    Vout
    Ausgangs-Volumenstrom der ersten Kühlkanalgruppe
    V̇1-out
    Ausgangs-Volumenstrom der weiteren Kühlkanalgruppe
    V̇2-out
    Ausgangs-Volumenstrom
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102014201305 A1 [0007]

Claims (16)

  1. Stator (100) für eine elektrische Maschine, insbesondere für einen elektrischen Motor oder Generator, der einen Statorkern mit mindestens einer Statornut (101) aufweist, in der mindestens zwei elektrische Leiter (10) angeordnet sind, wobei zumindest ein Teil des Stators mittels eines Verfahrens zur additiven Fertigung hergestellt ist, wobei bei einer vorbestimmten Anzahl der elektrischen Leiter (10) jeweils mindestens ein mit einem Kühlfluid beaufschlagbarer Kühlkanal (11) ausgestaltet ist, wobei mindestens zwei Kühlkanäle, die nicht durch denselben elektrischen Leiter ausgebildet werden, fluidisch parallel geschaltet sind und/oder wobei mindestens eine erste und eine weitere Kühlkanalgruppe (V1, V2), in denen jeweils die Kühlkanäle mehrerer elektrischer Leiter (10) parallel zueinander mit Kühlfluid beaufschlagbar sind, fluidisch zu separaten Kreisläufen oder zu einem Kreislauf in Reihe und/oder parallel verbunden sind.
  2. Stator (100) nach Anspruch 1, wobei die vorbestimmte Anzahl der elektrischen Leiter (10), bei denen ein Kühlkanal (11) ausgestaltet ist, kleiner oder gleich einer Leiteranzahl in der mindestens einen Statornut (101) ist.
  3. Stator (100) nach Anspruch 1 oder 2, wobei die elektrischen Leiter (10) einer Statornut (101) in einem Querschnitt des Stators in einer radialen Richtung des Stators angeordnet sind, wobei die elektrischen Leiter (10), die in einem inneren Bereich (IB) bezogen auf die radiale Richtung des Stators angeordnet sind, mit Kühlkanälen ausgestaltet sind.
  4. Stator (100) nach Anspruch 3, wobei die elektrischen Leiter (10), die in einem äußeren Bereich (AB) bezogen auf die radiale Richtung des Stators und/oder in einem mittleren Bereich (MB) zwischen dem äußeren (AB) und dem inneren Bereich (IB) angeordnet sind, mit Kühlkanälen (11) ausgestaltet sind.
  5. Stator (100) nach einem der vorhergehenden Ansprüche, wobei die mit mindestens einem Kühlkanal (11) ausgestalteten elektrischen Leiter (10) als Hohlkanalleiter (10) ausgestaltet sind, deren Kühlkanal (11) sich entlang einer Längsrichtung des elektrischen Leiters erstreckt, vorzugsweise wobei die Hohlkanalleiter (10) einen ringförmigen Querschnitt, weiter vorzugsweise einen recht- oder mehreckigen Querschnitt mit kreis-, recht oder mehreckigen Querschnitt des Kühlkanals (11), aufweisen.
  6. Stator (100) nach einem der Ansprüche 1 bis 4, wobei die mit einem Kühlkanal (11) ausgestalteten elektrischen Leiter (10) jeweils ein, insbesondere rohrförmiges, Kühlkanalelement (13) aufweisen, das den Kühlkanal (11) bildet und mit Kühlfluid beaufschlagbar ist.
  7. Stator (100) nach Anspruch 6, wobei die Kühlkanalelemente (13) in einem Aktivbereich (A) des Stators zumindest teilweise, vorzugsweise vollständig, von dem jeweiligen elektrischen Leiter (10) umschlossen sind.
  8. Stator (100) nach Anspruch 6 oder 7, wobei die Kühlkanalelemente (13) in einem ersten und einem zweiten Kopfbereich (K) des Stators zumindest teilweise von dem jeweiligen elektrischen Leiter (10) umschlossen sind.
  9. Stator (100) nach einem der Ansprüche 6 bis 8, wobei sich die Kühlkanalelemente (13) und die dazugehörigen elektrischen Leiter (10) im ersten und im zweiten Kopfbereich (K) des Stators verzweigen.
  10. Stator (100) nach Anspruch 9, wobei jedes Kühlkanalelement (13) an einem ersten Ende im ersten Kopfbereich (K) und an einem zweiten Ende im zweiten Kopfbereich (K) durch ein Anschlusselement fluidisch koppelbar ist.
  11. Stator (100) nach einem der vorhergehenden Ansprüche, insbesondere nach einem der Ansprüche 6 bis 10, wobei das einem elektrischen Leiter (10) zugehörigen Kühlkanalelement (13) neben dem elektrischen Leiter (10) angeordnet ist, so dass mindestens ein Teil (13w) einer Wandung des Kühlkanalelements (13) an dem zughörigen elektrischen Leiter (10) angrenzt.
  12. Stator (100) nach Anspruch 11, wobei das einem elektrischen Leiter (10) zugeordnete Kühlkanalelement (13) zusätzlich neben einem benachbarten elektrischen Leiter (10) angeordnet ist, so dass mindestens ein Teil der Wandung des Kühlkanalelements (13) an dem zughörigen elektrischen Leiter (10) und an dem benachbarten elektrischen Leiter (10) angrenzt.
  13. Elektrische Maschine, insbesondere elektrischer Motor oder Generator, für elektrisch oder hybridelektrisch angetriebenes Fahrzeug, die einen Stator (100) nach einem der vorhergehenden Ansprüche und einen Rotor aufweist.
  14. Statorkühlsystem, aufweisend: - eine elektrische Maschine nach Anspruch 13; - eine Kühleinheit, die fluidisch mit den Kühlkanälen der elektrischen Leiter (10) des Stators nach einem der Ansprüche 1 bis 13 derart gekoppelt ist, dass die erste und die weitere Kühlkanalgruppe fluidisch zu separaten Kreisläufen oder zu einem Kreislauf in reihe und/oder parallel verbunden sind, wobei die Kühleinheit ferner dazu ausgestaltet ist, die Kreisläufe oder den Kreislauf mit einem Kühlfluid zu beaufschlagen.
  15. Statorkühlsystem nach Anspruch 14, ferner aufweisend: - eine Sensoreinheit, die dazu ausgestaltet ist, mindestens eine Temperatur der elektrischen Leiter (10) des Stators zu erfassen; - eine Steuereinheit, die kommunikativ mit der Sensoreinheit und der Kühleinheit verbunden ist und dazu ausgestaltet ist, die Kühleinheit derart zu steuern, dass die Temperatur der elektrischen Leiter (10) des Stators unterhalb einer vorbestimmten unteren Grenztemperatur oder oberhalb eine vorbestimmten oberen Grenztemperatur, vorzugsweise einer Solltemperatur angenähert wird.
  16. Verfahren zum Kühlen der elektrischen Leiter (10) eines Stators nach einem der Ansprüche 1 bis 12 mit einem Statorkühlsystem nach Anspruch 14 oder 15, wobei mindestens eine Temperatur der elektrischen Leiter (10) des Stators erfasst wird, und wobei der Kreislauf oder die Kreisläufe, der/die aus den Kühlkanälen gebildet wird/werden, derart mit einem Kühlfluid beaufschlagt wird/werden, dass die Temperatur der elektrischen Leiter (10) des Stators unterhalb einer vorbestimmten unteren Grenztemperatur oder oberhalb eine vorbestimmten oberen Grenztemperatur, vorzugsweise einer Solltemperatur angenähert wird.
DE102021119405.9A 2021-05-27 2021-07-27 Stator für eine elektrische Maschine, elektrische Maschine, Statorkühlsystem und Verfahren zum Kühlen eines Stators Pending DE102021119405A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/EP2022/064392 WO2022248659A1 (de) 2021-05-27 2022-05-27 Stator für eine elektrische maschine, elektrische maschine, statorkühlsystem und verfahren zum kühlen eines stators
EP22733869.6A EP4348809A1 (de) 2021-05-27 2022-05-27 Stator für eine elektrische maschine, elektrische maschine, statorkühlsystem und verfahren zum kühlen eines stators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021113663.6 2021-05-27
DE102021113663 2021-05-27

Publications (1)

Publication Number Publication Date
DE102021119405A1 true DE102021119405A1 (de) 2022-12-01

Family

ID=83997532

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021119405.9A Pending DE102021119405A1 (de) 2021-05-27 2021-07-27 Stator für eine elektrische Maschine, elektrische Maschine, Statorkühlsystem und Verfahren zum Kühlen eines Stators

Country Status (1)

Country Link
DE (1) DE102021119405A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018055A1 (de) 2022-07-22 2024-01-25 Additive │ Drives GmbH Stator für eine elektrische maschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201305A1 (de) 2014-01-24 2015-07-30 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Statorteils mit einer Hohlleiterspule
DE102017204472A1 (de) 2017-03-17 2018-09-20 Siemens Aktiengesellschaft Stator mit Wicklungskühlung und elektrische Maschine
DE102020126459A1 (de) 2019-10-10 2021-04-15 Ford Global Technologies, Llc Statoren und rotoren mit variierender isolierdichte
DE102019217964A1 (de) 2019-11-21 2021-05-27 Siemens Aktiengesellschaft Kühlsystem und Bauteil für eine elektrische Maschine mit Hohlleiterkühlung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201305A1 (de) 2014-01-24 2015-07-30 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Statorteils mit einer Hohlleiterspule
DE102017204472A1 (de) 2017-03-17 2018-09-20 Siemens Aktiengesellschaft Stator mit Wicklungskühlung und elektrische Maschine
DE102020126459A1 (de) 2019-10-10 2021-04-15 Ford Global Technologies, Llc Statoren und rotoren mit variierender isolierdichte
DE102019217964A1 (de) 2019-11-21 2021-05-27 Siemens Aktiengesellschaft Kühlsystem und Bauteil für eine elektrische Maschine mit Hohlleiterkühlung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018055A1 (de) 2022-07-22 2024-01-25 Additive │ Drives GmbH Stator für eine elektrische maschine

Similar Documents

Publication Publication Date Title
DE102017222635A1 (de) Stator und Elektromaschine mit Kühlsystem
DE102019112389A1 (de) Kühlung von Elektromotoren
DE102016221810A1 (de) Elektrische Spulenanordnung mit Litzenleitern
DE102020109209A1 (de) Leistungserzeugende Komponente einer elektrischen Rotationsmaschine und elektrische Rotationsmaschine
DE102021119405A1 (de) Stator für eine elektrische Maschine, elektrische Maschine, Statorkühlsystem und Verfahren zum Kühlen eines Stators
WO2022248659A1 (de) Stator für eine elektrische maschine, elektrische maschine, statorkühlsystem und verfahren zum kühlen eines stators
DE102019008668A1 (de) Statorvorrichtung für eine elektrische Maschine mit einer separaten Kühleinrichtung, sowie elektrische Maschine
DE102019217964A1 (de) Kühlsystem und Bauteil für eine elektrische Maschine mit Hohlleiterkühlung
DE4032944A1 (de) Gasgekuehlte elektrische maschine
WO2022033620A1 (de) Elektromotor mit kühleinrichtung zur aktiven kühlung der wicklungsabschnitte innerhalb von nutbereichen eines grundkörpers
WO2017041957A1 (de) Hohlleiter für eine elektrische maschine, elektrische maschine sowie herstellungsverfahren
DE102017207663A1 (de) Verfahren zur Herstellung einer Spulenanordnung
DE2403226A1 (de) Dynamoelektrische maschine mit staender und laeufer
DE102022114896A1 (de) Verfahren zur Herstellung einer leistungserzeugenden Komponente einer elektrischen Rotationsmaschine und elektrische Rotationsmaschine
DE102021109007B4 (de) Direkter Nutkühlung in elektrischen Maschinen
DE102018126320A1 (de) Rotor für eine elektrische Maschine und elektrische Maschine
DE202013103599U1 (de) Elektrisches Bauteil
DE102021108953B3 (de) Stator einer elektrischen Axialflussmaschine und Axialflussmaschine
DE102020126184B4 (de) Elektrische Maschine
DE102020126813B3 (de) Rohr mit Nutverschlusskeilen zur Abdichtung der Wickelkopfbereiche bei elektrischen Maschinen mit direkter Nutkühlung
DE102022114759A1 (de) Aktivteil für eine elektrische Maschine mit einem pulsierenden Wärmerohr
DE102021102429A1 (de) Elektrische Maschine und Fahrzeug mit einer elektrischen Maschine
DE102021108954A1 (de) Stator einer elektrischen Axialflussmaschine und Axialflussmaschine
DE102021211920A1 (de) Stator für eine elektrische Maschine
DE102020109282A1 (de) Elektrische Maschine und Stator für eine elektrische Maschine

Legal Events

Date Code Title Description
R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: ADDITIVE | DRIVES GMBH, DE

Free format text: FORMER OWNER: ADDITIVE DRIVES GMBH, 09633 HALSBRUECKE, DE