DE102021117401A1 - Steckverbindergehäuse für elektronische datenleitungen - Google Patents

Steckverbindergehäuse für elektronische datenleitungen Download PDF

Info

Publication number
DE102021117401A1
DE102021117401A1 DE102021117401.5A DE102021117401A DE102021117401A1 DE 102021117401 A1 DE102021117401 A1 DE 102021117401A1 DE 102021117401 A DE102021117401 A DE 102021117401A DE 102021117401 A1 DE102021117401 A1 DE 102021117401A1
Authority
DE
Germany
Prior art keywords
data
diode
connector housing
data diode
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102021117401.5A
Other languages
English (en)
Inventor
Felix Loske
Markus FRIESEN
Till Riechmann
Marian Dümke
Matthias Fritsche
Nils Aschenbruck
Leo Brügemann
Thomas Hänel
Till Zimmermann
Kurt Bettenhausen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harting Electric Stiftung and Co KG
Original Assignee
Harting Electric Stiftung and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harting Electric Stiftung and Co KG filed Critical Harting Electric Stiftung and Co KG
Priority to DE102021117401.5A priority Critical patent/DE102021117401A1/de
Priority to CN202280047306.5A priority patent/CN117616720A/zh
Priority to PCT/DE2022/100463 priority patent/WO2023280344A1/de
Priority to EP22760863.5A priority patent/EP4367838A1/de
Publication of DE102021117401A1 publication Critical patent/DE102021117401A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/6608Structural association with built-in electrical component with built-in single component
    • H01R13/6641Structural association with built-in electrical component with built-in single component with diode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • H04L63/105Multiple levels of security
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/627Snap or like fastening
    • H01R13/6275Latching arms not integral with the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/717Structural association with built-in electrical component with built-in light source
    • H01R13/7175Light emitting diodes (LEDs)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2105/00Three poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2107/00Four or more poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/04Connectors or connections adapted for particular applications for network, e.g. LAN connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/06Connectors or connections adapted for particular applications for computer periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/005Intermediate parts for distributing signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • H01R31/065Intermediate parts for linking two coupling parts, e.g. adapter with built-in electric apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0227Filtering policies

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

Steckverbindergehäuse für elektronische Datenleitungen, gekennzeichnet durch eine in das Steckverbindergehäuse (10; 72; 78) integrierte Datendiode (40).

Description

  • Die Erfindung betrifft ein Steckverbindergehäuse für elektronische Datenleitungen.
  • In Datennetzwerken ist es oft erforderlich, bestimmte Netzwerkknoten oder auch ganze Subnetze gegen unberechtigte Zugriffe, beispielsweise Lauschangriffe oder Sabotage, zu schützen. Neben sogenannten Firewalls, die eintreffende Daten auf etwaige Schadsoftware prüfen, kommt auch der Einsatz von sogenannten Datendioden in Betracht. Dabei handelt es sich um Schaltungselemente, die einen Datenfluss nur in einer einzigen Richtung, vom Sender zum Empfänger, zulassen und insofern das informationstechnische Gegenstück zu Halbleiterdioden darstellen, die einen Stromfluss nur in einer Richtung zulassen.
  • Beispielsweise können solche Datendioden in Fernüberwachungssystemen dazu dienen, das Lesen von Sensordaten zu ermöglichen, dabei jedoch die Übermittlung von Befehlen an die Sensoren zu blockieren, um die Sensoren gegen Manipulationen zu schützen. Entsprechendes gilt beispielsweise auch für Überwachungskameras.
  • In der Softwareentwicklung können Datendioden in Brownfield-Szenarien dazu dienen, Legacy-Geräte unidirektional anzubinden.
  • Eine weitere Einsatzmöglichkeit ist das Verhindern von unerwünschten Funktionalitäten. Beispielsweise kann bei einem Drucker durch eine Datendiode verhindert werden, dass der Drucker Informationen an den Hersteller sendet, während andererseits das Empfangen von Druckaufträgen und von Softwareupdates möglich bleibt.
  • In der Interaktion von Mensch und Maschine können Datendioden dazu dienen, Eingriffsmöglichkeiten von außen zu unterbinden und so eine Gefährdung der Menschen zu verhindern. Wenn beispielsweise in einem Kraftfahrzeug ein Fahrerassistenzsystem oder an ein teilautonomes Fahrsystem über eine Datendiode an das Internet angeschlossen ist, so kann das System Notrufe, Staumeldungen und dergleichen senden, jedoch wird verhindert, dass bei einem Hackerangriff jemand von außen die Kontrolle über das Fahrzeug übernimmt. Unter bestimmten Bedingungen kann es dann allerdings zulässig und erforderlich sein, die Datendiode zu umgehen oder abzuschalten, beispielsweise im Fall eines Softwareupdates.
  • Ein Beispiel einer Datendiode ist in WO 2019063258 A1 beschrieben.
  • DE 10 2009 058 879 A1 beschreibt eine Datendiode in der Form zweier miteinander in Eingriff stehender Steckverbinder, die zusammen eine optische Datenübertragungsstrecke bilden. Einer der Steckverbinder enthält optische Sender (LEDs), die elektronische Signale in optische Signale umwandeln, und der komplementäre Steckverbinder enthält optische Empfänger, die die optischen Signale wieder in elektronische Signale zurückverwandeln. Ein Datenfluss ist auf diese Weise aufgrund der Hardware nur von der Senderseite zur Empfängerseite möglich.
  • In der Regel beruht die Kommunikation in Datennetzwerken jedoch auf standardisierten Bussystemen mit standardisierten Datenleitungen und standardisierten Steckverbindern, über die elektronische Signale in beiden Richtungen übertragen werden können. Die Datendioden müssen dann in der Hardware der einzelnen Netzwerkknoten implementiert werden.
  • Aufgabe der Erfindung ist es, eine einfachere und flexiblere Konfiguration von Datennetzwerken mit Datendioden zu ermöglichen.
  • Zu diesem Zweck sieht die Erfindung ein Steckverbindergehäuse vor, in das eine in das eine Datendiode integriert ist.
  • Sowohl die Eingangssignale als auch die Ausgangssignale der Datendiode sind somit elektronische Signale, die über herkömmliche Bussysteme übermittelt werden können. Beim Aufbau oder der Konfiguration eines Datennetzwerks werden die Datenleitungen üblicherweise mit Hilfe von Steckverbindern an die Hardware in den Netzwerkknoten angeschlossen. Wenn nun in einer Datenleitung eine Datendiode installiert werden soll, so braucht man nur einen der herkömmlichen Steckverbinder durch einen Steckverbinder mit dem erfindungsgemäßen Steckverbindergehäuse zu ersetzen, in das die Datendiode integriert ist. Die Hardware in den eigentlichen Netzwerkknoten braucht dazu nicht verändert zu werden.
  • Eine elektrische Steckverbindung wird typischerweise durch zwei komplementäre Steckverbinder gebildet, von denen einer ein Gehäuse hat, das fest an dem anzuschließenden Gerät angeordnet ist, während das Gehäuse des anderen Steckverbinders am Ende eines Kabels angeordnet ist, das die Datenleitung bildet. Bei dem erfindungsgemä-ßen Steckverbindergehäuse kann es sich wahlweise um das geräteseitige Gehäuse oder um das kabelseitige Gehäuse handeln. Wenn man bei einem bestimmten Gerät verhindern will, dass der durch die Datendiode erreichte Schutz einfach durch Austausch des Netzwerkkabels aufgehoben werden kann, so wird man für den geräteseitigen Steckverbinder ein Gehäuse mit integrierter Datendiode verwenden. Wenn man sich dagegen die Möglichkeit offen halten möchte, flexibel zwischen einer Konfiguration mit und ohne Datendiode zu wechseln, so bietet es sich an, für den kabelseitigen Steckverbinder ein Gehäuse mit Datendiode zu verwenden.
  • Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Sofern eine Datenleitung durch mehradrige Kabel und mehrpolige Steckverbinder gebildet wird und somit mehrere voneinander unabhängige Kommunikationskanäle aufweist, so kann auch die in das Steckverbindergehäuse integrierte Datendiode eine mehrkanalige Diode sein, die in jedem einzelnen Kanal nur einen Informationsfluss in einer Richtung zulässt. Die Durchlassrichtung kann dabei jedoch im Prinzip von Kanal zu Kanal verschieden sein.
  • Die ein- oder mehrkanaligen Datendioden können wahlweise als Hard-Dioden oder als Soft-Dioden ausgebildet sein. Bei einer Hard-Diode wird durch die Hardware, beispielsweise durch eine optische Datenübertragungsstecke, sichergestellt, dass die Kommunikation nur in einer Richtung erfolgen kann. Bei einer Soft-Diode wird dieselbe Funktionalität dagegen durch Software erreicht.
  • Viele gebräuchliche Bussysteme und Kommunikationsprotokolle erfordern zumindest zeitweise eine bidirektionale Kommunikation, beispielsweise beim Verbindungsaufbau. Oft sind auch Fehlerkorrekturalgorithmen implementiert, die eine bidirektionale Kommunikation erfordern, damit im Fall von schadhaften Datenpaketen eine erneute Übermittlung desselben Datenpakets angefordert werden kann. In solchen Fällen weist die Datendiode sowohl eingangsseitig als auch ausgangsseitig einen Proxy auf, der die bidirektionale Kommunikation emuliert. Gegebenenfalls muss dabei eine größere Fehleranfälligkeit in Kauf genommen werden. Dieses Problem lässt sich jedoch durch den Einsatz von Vorwärts-Fehlerschutzalgorithmen zumindest mildern. Ein solcher Fehlerschutzalgorithmus kann beispielsweise vorsehen, dass die Redundanz erhöht wird, beispielsweise indem jedes zu sendende Datenpaket „vorbeugend“ mehrfach gesendet wird.
  • Die Funktionalität der Proxies muss an das jeweils zu verwendete Kommunikationsprotokoll angepasst sein. Dazu kann die Datendiode eine Konfigurationsdatei aufweisen, in der die Emulationsalgorithmen und/oder die Protokollspezifikationen vorab gespeichert werden. Wahlweise kann die Datendiode auch eine Konfigurationsschnittstelle aufweisen über die sich der Inhalt der Konfigurationsdatei nachträglich verändern lässt.
  • Die Konfigurationsschnittstelle kann auch zu anderen Zwecken genutzt werden, beispielsweise dazu, die Datendiode situationsabhängig zu aktivieren und zu deaktivieren oder die Durchlassrichtung umzukehren. Aus Sicherheitsgründen sollten die von außen an die Kommunikationsschnittstelle übermittelten Befehle jedoch verschlüsselt sein. Dazu ist dann in der Datendiode zusätzlich noch eine Schlüsseldatei erforderlich, die das Entschlüsseln der Befehle ermöglicht. Alternativ ist es auch denkbar, am Steckverbindergehäuse einen Schalter, vorzugsweise einen Schlüsselschalter vorzusehen, mit dem manuell zwischen verschiedenen Konfigurationen oder Durchlassrichtungen oder Betriebsmodi umgeschaltet werden kann.
  • Wahlweise kann in der Datendiode auch eine Lernsoftware implementiert sein, mit der die protokollabhängigen Emulationsalgorithmen gelernt werden können. In einem Lernmodus kann dann die Datendiode abgeschaltet sein, so dass echte bidirektionale Kommunikation stattfindet, die durch die Lernsoftware verfolgt wird. Dabei lernt die Software, wie die von den Kommunikationspartnern gesendeten Signale protokollgemäß beantwortet werden müssen. Nach Abschluss der Lernphase ist die Software dann in der Lage, bei aktiver Datendiode das Protokoll zu emulieren.
  • Einige der oben beschriebenen Funktionalitäten können bei Datendioden auch generell von Vorteil sein, unabhängig davon, ob die Diode in ein Steckverbindergehäuse integriert ist oder nicht.
  • Offenbart ist somit auch eine Datendiode, gekennzeichnet durch eine Konfigurationsschnittstelle, mit der die Datendiode zwischen verschiedenen Betriebsmodi umschaltbar ist, insbesondere zwischen einem aktiven und einem inaktiven Zustand und/oder zwischen entgegengesetzten Durchlassrichtungen.
  • Offenbart ist auch eine Datendiode mit eingangsseitigen und ausgangsseitigen Proxies zur Emulation von bidirektionalen Kommunikationsprotokollen, dadurch gekennzeichnet, dass in der Datendiode eine Lernsoftware implementiert ist, die in der Lage ist, die protokollgerechte Emulation von bidirektionaler Kommunikation durch Beobachtung echter bidirektionaler Kommunikation zu lernen.
  • Gegenstand der Erfindung ist weiterhin ein elektrischer Steckverbinder mit einer Anordnung von elektrischen Kontakten an oder in einem Steckverbindergehäuse, dadurch gekennzeichnet, dass in das Steckverbindergehäuse eine Datendiode integriert ist.
  • Gegenstand der Erfindung ist darüber hinaus ein Steckverbindersystem mit mehreren paarweise zueinander komplementären Steckverbindern, von denen mindestens einer ein Gehäuse mit einer integrierten Datendiode aufweist.
  • Im folgenden werden Ausführungsbeispiele anhand der Zeichnung näher erläutert.
  • Es zeigen:
    • 1 eine Explosionsdarstellung eines Steckverbindersystems mit einem Steckverbindergehäuse gemäß der Erfindung und einem dazu komplementären Steckverbindergehäuse;
    • 2 eine Schaltskizze einer Hard-Datendiode;
    • 3 ein Blockdiagramm einer Soft-Datendiode;
    • 4 ein Steckverbindersystem mit zwei gleichen Steckverbindern und einer Kupplung;
    • 5 ein Beispiel eines Datennetzwerkes mit Datendioden; und
    • 6 ein Steckverbindersystem mit einem Steckverbindergehäuse in der Form einer Weiche mit mehreren Datendioden.
  • In 1 ist ein Steckverbindersystem mit zwei Steckverbindergehäusen 10, 12 gezeigt, die im folgenden kurz als Gehäuse bezeichnet werden. Das Gehäuse 12 ist als Anbaugehäuse ausgestaltet und weist an der Unterseite einen Montageflansch 14 auf, mit dem es außenseitig an einer Wand eines Gerätes 16 montiert ist, das nicht gezeigte elektronische Komponenten aufweist. Auf der dem Montageflansch 14 entgegengesetzten Seite weist das Gehäuse 12 eine umlaufende Dichtung 18 auf, die eine obere Öffnung des Gehäuses umgibt.
  • Im Inneren des Gehäuses 12 ist eine Reihe von elektrischen Kontakten 20 angeordnet, von denen jeweils ein elektrischer Leiter 22 ausgeht. Die Leiter 22 sind isoliert durch die Wand des Gerätes 16 hindurchgeführt und jeweils mit einer der erwähnten elektronischen Komponenten verbunden.
  • Das in 1 obere Gehäuse 10 ist haubenförmig ausgebildet und mit seinem unteren Rand auf die Dichtung 18 des Gehäuses 12 aufsetzbar. An seiner Unterseite weist das Gehäuse 10 eine Reihe von nach unten vorspringenden elektrischen Kontakten 24 auf, die zu den Kontakten 20 des Gehäuses 12 komplementär sind. Auch von den Kontakten 24 des Gehäuses 10 geht jeweils ein elektrischer Leiter 26 aus. Diese Leiter 26 sind im oberen Teil des Gehäuses 10 zu einem Kabel 28 gebündelt, das durch eine Kabeldurchführung 30 aus dem Gehäuse herausgeführt ist.
  • In seinem unteren Bereich weist das Gehäuse 10 an der Außenseite mehrere nach unten vorspringende Verriegelungsfedern 32 auf. Wenn das Gehäuse 10 auf die Dichtung 18 des Gehäuses 12 aufgesetzt wird, so gleiten die Verriegelungsfedern 32 auf Verriegelungsansätze 34 des Gehäuses 12 auf, wodurch die beiden Gehäuse aneinander verriegelt werden.
  • Außerdem ist der untere Teil des Gehäuses 10 von einem Entriegelungsring 36 umgeben, der axial (vertikal) verschiebbar an den Wänden des Gehäuses 10 geführt ist und den größten Teil der Verriegelungsfedern 32 nach Art einer Schürze umgibt. An diesem Verriegelungsring sind innenseitig Entriegelungsschrägen 38 gebildet, die in dem in 1 gezeigten Zustand an den nach außen ausgestellten unteren Rändern der Verriegelungsfedern 32 angreifen und diese in einer gespreizten Stellung halten. Wenn der Entriegelungsring 36 in seine untere Position verschoben wird, so geben die Entriegelungsschrägen 38 die Verriegelungsfedern 32 frei, so dass diese an den Verriegelungsansätzen 34 einrasten können. Wenn die Verriegelung gelöst werden soll, wird der Entriegelungsring 36 wieder angehoben, so dass die Verriegelungsfedern 32 wieder von den Verriegelungsansätzen 34 freikommen und das Gehäuse 10 dann nach oben abgezogen werden kann.
  • Wenn das Gehäuse 10 auf das Gehäuse 12 aufgesetzt und an diesem verriegelt wird, so treten die steckerartigen Kontakte 24 des Gehäuses 10 in die buchsenartigen Kontakte 20 des Gehäuses 12 ein, und es werden elektrisch leitende Verbindungen zwischen den Leitern 22 und 26 hergestellt, so dass eine mehrkanalige Datenleitung geschaffen wird. Im gezeigten Beispiel sind insgesamt acht Paare von Leitern 22, 26 vorhanden. Von den beiden äußeren Leiterpaaren dient eines als Masseleiter, und das andere Paar ist mit einer Versorgungsspannung für die elektrischen Komponenten des Gerätes 16 und/oder elektrische Komponenten am anderen Ende des Kabels 28 belegt. Die sechs inneren Paare von Leitern 22, 26 bilden eine sechskanalige Datenleitung.
  • Erfindungsgemäß ist in das Gehäuse 10 eine Datendiode 40 integriert, die in 1 nur symbolisch dargestellt ist. Diese Datendiode 40 hat im gezeigten Beispiel sechs Kanäle, je einen für jeden Kanal der Datenleitung. In jedem der sechs Kanäle erlaubt die Datendiode 40 nur einen Datenstrom in einer einzigen Richtung. Dabei kann die Durchlassrichtung der Datendiode jedoch von Kanal zu Kanal verschieden sein. Im gezeigten Beispiel erlaubt die Datendiode in drei Kanälen einen Datenfluss vom Gerät 16 in das Kabel 28 und in den drei übrigen Kanälen nur einen Datenfluss vom Kabel 28 zum Gerät 16. Als Beispiel kann angenommen werden, dass es sich bei den drei linken Datenkanälen in 1 um Kanäle handelt, über die Sensordaten von Sensoren im Gerät 16 über das Kabel 28 übermittelt werden. Bei diesen Kanälen verhindert die Datendiode 40, dass über das Kabel 28 irgendwelche Befehle an die Sensoren übermittelt werden können, um die Sensoren zu manipulieren. Die drei übrigen Datenkanäle können beispielsweise dazu dienen, Befehle oder Daten an das Gerät 16 zu übermitteln. Bei diesen Kanälen verhindert die Datendiode 40, dass das Gerät 16 diese Kanäle zur Datenübermittlung nutzen kann.
  • In 2 ist eine mögliche technische Umsetzung der Datendiode 40 gezeigt. In diesem Beispiel ist die Datendiode als Hard-Datendiode ausgebildet, die für jeden Datenkanal ein Paar aus einem optischen Sender 42 (LED) und einem optischen Empfänger 44 (Fotodiode oder CCD) aufweist. Der optische Sender 42 wandelt elektronische Datensignale in optische Signale um, die vom Empfänger 44 empfangen und wieder in elektronische Signale zurückverwandelt werden, so dass ein Datenfluss nur von der Senderseite zur Empfängerseite möglich ist. In dem in 2 gezeigten Beispiel ist die Datendiode so konfiguriert, dass der Datenfluss auf allen sechs Kanälen nur von der Seite des Gerätes 16 zur Seite des Kabels 28 erfolgen kann.
  • Eingangsseitig weist die Datendiode 40 einen Proxy 46 auf, d.h., einen Prozessor, der die auf den Leitungen 24 eintreffenden Signale empfängt und verarbeitet und über diese Leitungen 24 in Übereinstimmung mit einem für die Datenleitung festgelegten Kommunikationsprotokoll Signale an das Gerät 16 zurückmeldet. Für die „normale“ bidirektionale Kommunikation zwischen dem Gerät 16 und einer Gegenstelle am anderen Ende des Kabels 28 sieht das Protokoll einen nach bestimmten Regeln ablaufenden Dialog zwischen den beteiligten Instanzen vor. Die Datendiode 40 hat den Zweck, bidirektionale Kommunikation zu unterbinden und verhindert somit zwangsläufig auch das Zustandekommen des protokollgemäßen Dialogs. Deshalb muss der Proxy 46 das Protokoll emulieren, indem er jeweils die Signale an das Gerät 16 zurückmeldet, die das Gerät laut Protokoll erwartet.
  • Ausgangsseitig hat die Datendiode 40 einen weiteren Proxy 48, der die bidirektionale Kommunikation für die Gegenstelle emuliert.
  • Die in 2 oberste der Leitungen 24 führt eine Versorgungsspannung Vcc für die Proxies 46, 48, und die unterste der Leitungen 24 dient als Masseleitung. Wenn die Datenverbindung protokollgemäß aufgebaut ist, wandelt der Proxy 46 die auf den Eingangskanälen eintreffenden digitalen Signale in Treibersignale für die optischen Sender 42 um. Bei jedem Puls eines Treibersignals fließt ein Strom durch die den Sender 42 bildende Diode zum Masseleiter, und die Diode sendet einen Lichtpuls aus, der vom Empfänger 44 empfangen wird. Die Dioden, die die optischen Empfänger 44 bilden, sind an die Versorgungsspannung angeschlossen und werden, wenn ein optischer Puls vom Sender 42 eintrifft, vorübergehend leitend, so dass ein elektrischer Puls in der Höhe der Versorgungsspannung Vcc an einen entsprechenden Eingang des Proxys 48 übermittelt wird. Diese Impulse werden vom Proxy 48 wieder in digitale Signale umgewandelt, die den vom Proxy 46 empfangenen Signalen entsprechen und über das Kabel 28 weitergeleitet werden.
  • 3 zeigt als weiteres Beispiel eine Datendiode 40', die als Soft-Datendiode ausgebildet ist. Die Datendiode 40` ist ebenfalls in ein Steckverbindergehäuse integriert, beispielsweise das Gehäuse 10 nach 1, und wird im wesentlichen gebildet durch einen Prozessor 50, einen Speicher 52 und eine Konfigurationsschnittstelle 54. Als Beispiel sei wieder angenommen, dass die Datendiode 40` sechs Datenkanäle mit einheitlicher Durchlassrichtung vom Gerät 16 zum Kabel 28 aufweist. Der Prozessor 50 weist Eingänge für sechs Eingangsleitungen 26a auf, die mit den Kontakten 24 in 1 verbunden sind, sowie Ausgänge für sechs Ausgangsleitungen 26b, bei denen es sich um Adern des Kabels 28 handelt. Einer von mehreren Speicherblöcken des Speichers 52 ist ein Programmspeicher 56, in dem Betriebssoftware für den Prozessor 50 gespeichert ist. Diese Betriebssoftware umfasst einerseits Instruktionen für die Behandlung der Signale auf den Eingangs- und Ausgangsleitungen 26a, 26b, durch die sichergestellt wird, dass keine Daten von den Ausgangsleitungen 26b an die Eingangsleitungen 26a übermittelt werden. Zum anderen umfasst die Software Emulationsalgorithmen für die Emulation der bidirektionalen Kommunikation entsprechend dem jeweiligen Protokoll bzw. Bussystem, z.B. Internet, RS485, CAN, KMX oder dergleichen.
  • Die Konfigurationsschnittstelle 54 ermöglicht es, die Datendiode für unterschiedliche Protokolle oder Bussysteme zu konfigurieren. Diese Kommunikationsschnittstelle 54 kann beispielsweise durch eine Kabelverbindung oder auch durch eine drahtlose Verbindung wie Bluetooth, RFID oder dergleichen gebildet werden. Gemäß einer weiteren Ausführungsform weist die Konfigurationsschnittstelle 54 einen Modulator/Demodulator auf, zum Lesen von Konfigurationsbefehlen, die vom Gerät 16 oder von der Gegenstelle auf die Versorgungsspannungsleitung aufmoduliert wurden (powerline communication).
  • Aus Sicherheitsgründen sollten die Konfigurationsbefehle, insbesondere wenn sie drahtlos oder durch powerline communication übermittelt werden, verschlüsselt sein. Im Speicher 52 ist dann eine Schlüsseldatei 58 abgelegt, die einen für die Datendiode spezifischen Schlüssel zum Entschlüsseln der Konfigurationsbefehle enthält. Damit ist sichergestellt, dass nur derjenige die Konfiguration der Datendiode ändern kann, der über den richtigen Schlüssel verfügt. Alternativ kann in der Konfigurationsschnittstelle auch ein Authentifizierungsalgorithmus implementiert sein.
  • Der Speicher 52 enthält weiterhin eine Konfigurationsdatei 60, in der die Spezifikationen für die jeweils geltende Konfiguration abgelegt sind, insbesondere die Spezifikationen des Protokolls oder Bussystems. In einer Ausführungsform kann die Konfigurationsdatei 60 auch Register enthalten, die unterschiedliche Betriebsmodi der Datendiode spezifizieren, beispielsweise einen aktiven Modus, in dem nur bidirektionale Kommunikation möglich ist, und einen inaktiven Modus, in dem der Prozessor 50 Datenübermittlungen in beiden Richtungen zulässt. Indem der Inhalt dieses Registers über die Kommunikationsschnittstelle 54 verändert wird, kann die Diode somit aktiviert und deaktiviert werden. Beispielsweise kann die Datendiode vorübergehend deaktiviert werden, um bei einem durch die Diode geschützten Geräte ein Softwareupdate vorzunehmen. Danach wird die Datendiode wieder aktiviert, so dass das Gerät wieder gegen Fremdeingriff geschützt ist.
  • Des weiteren kann die Konfigurationsdatei 60 Register enthalten, die unabhängig für jeden der Kommunikationskanäle die aktuell geltende Durchlassrichtung spezifizieren. Durch Konfigurationsbefehle, die den Inhalt dieses Registers ändern, kann somit die Durchlassrichtung der Diode durch das Personal, das über den nötigen Schlüssel verfügt, je nach Bedarf umgeschaltet werden.
  • Es sind auch Situationen denkbar, in denen die Datendiode 40` in einem Umfeld eingesetzt wird, in dem auch den zur Konfiguration der Diode berechtigen Personen die Protokoll- oder Bus-Spezifikationen nicht vollständig bekannt sind, so dass die Konfiguration der Diode auf Schwierigkeiten stößt. Für diesen Fall enthält der Speicher 52 im hier gezeigten Beispiel einen weiteren Speicherblock, in dem eine Lernsoftware 62 gespeichert ist. Wenn die Protokollspezifikationen nicht vollständig bekannt sind, findet bei der Konfiguration des Systems zunächst eine Lernphase statt, in der die Datendiode abgeschaltet ist, also bidirektionale Kommunikation möglich ist. In dieser Phase braucht folglich die Kommunikation nicht emuliert zu werden, sondern der Dialog wird von den beteiligten Agenten im Gerät 16 und der Gegenstelle autonom durchgeführt. Die Lernsoftware 62 versetzt jedoch den Prozessor 50 in die Lage, diese Kommunikation mitzuhören und auf diese Weise im Laufe der Zeit festzustellen, welche Antworten auf welche Anfragen folgen müssen. Diese Information wird dann automatisch in der Konfigurationsdatei 60 gespeichert, so dass das System sich gewissermaßen selbst konfiguriert. Wenn die Lernphase abgeschlossen ist, wird die Datendiode aktiviert, und bei künftigen Kommunikationsprozessen wird die protokollgerechte Kommunikation emuliert.
  • In der Emulationssoftware können in bekannter Weise auch Vorwärts-Fehlerschutzalgorithmen implementiert sein, die einer Zunahme der Fehlerrate vorbeugen, die andernfalls dadurch entstehen könnte, dass fehlerhafte Datenblöcke von der Empfängerseite nicht noch einmal neu angefragt werden können.
  • 4 zeigt ein Beispiel eines Steckverbindersystems 64 mit zwei identisch ausgebildeten Steckverbindern 66, 68 und einer Kupplung 70, die zu den Steckverbindern 66 und 68 komplementär ist und es somit ermöglicht, die beiden Steckverbinder miteinander zu verbinden und eine durchgehende Datenleitung zu schaffen. Die Kupplung 70 hat ein Steckverbindergehäuse 72, in das eine Datendiode 74 integriert ist. Bei der Datendiode 74 kann es sich wahlweise um eine Hard-Diode oder eine Soft-Diode handeln. Das Steckverbindergehäuse 72 kann eine Batterie enthalten, die die Betriebsspannung für die Datendiode 74 bereitstellt.
  • Im gezeigten Beispiel bezieht die Datendiode 74 ihre Betriebsspannung über Masse- und Betriebsspannungskontakte 76 der Steckverbinder 66, 68. Als Beispiel kann angenommen werden, dass jeder dieser Steckverbinder zwei parallele Reihen von Kontaktpins hat und dass die beiden Kontakte 76 (einer für Masse und einer für Betriebsspannung) jeweils in der Mitte der Reihe der Kontaktpins liegen. Unter diesen Umständen ist es möglich, die Durchlassrichtung der Datendiode 74 dadurch umzukehren, dass die gesamte Kupplung 70 in einer um 180° gedrehten Position zwischen den Steckverbindern 66, 68 eingesetzt wird, so dass der Datenfluss nicht mehr von 68 zu 66 geht, sondern von 66 zu 68.
  • Wenn die Datendiode 74 ganz deaktiviert werden soll, so kann dies bei kleineren Steckverbindergehäusen 72 dadurch geschehen, dass einfach die gesamte Kupplung 70 gegen eine Kupplung ohne Datendiode ausgetauscht wird. Bei größeren Steckverbindergehäusen 72 kann auch ein Schlüsselschalter vorgesehen sein, mit dem sich die Datendiode abschalten lässt.
  • Mit Kupplungen 70 der in 4 gezeigten Art und/oder mit Datendioden, die in die Gehäuse der Steckverbinder 66, 68 oder von dazu komplementären Steckverbindern integriert sind, lassen sich komplexe Datennetze flexibel so konfigurieren, dass bestimmte Schutzzwecke erfüllt werden können.
  • 5 zeigt als einfaches Beispiel ein Datennetzwerk mit Knoten A, B, C1 und C2, die über Datendioden 74a-d kommunizieren, die nach Art eines Gleichrichters angeordnet sind. Beispielsweise kann es sich bei dem Knoten A um einen geschützten Rechner eines Unternehmens und bei dem Knoten B um eine nicht sichere Internetseite handeln. Die Knoten C1 und C2 sind Kontrollinstanzen, die von dem Unternehmen betrieben werden. Die Kontrollinstanz C1 kann über die Datendiode 74a Daten vom Knoten A an einem Eingangsport empfangen und kann über einen separaten Ausgangsport und die Datendiode 74b Daten an den Knoten B senden. Eine direkte Kommunikation von A nach B über die Dioden 74, 74b ist hingegen nicht möglich. Beispielsweise kann die Überwachungsinstanz C1 ein Rechner sein, der die von A gesendeten Daten automatisch auf klassifizierte Dateninhalte überprüft und nur die nicht klassifizierten Daten an den Knoten B weiterleitet. Die Diode 74a verhindert, dass C1 den Zustand von A verändern kann, und die Diode 74b verhindert, dass B die Überwachungsinstanz manipulieren kann.
  • Die Überwachungsinstanz C2 kann über die Diode 74c Daten vom Knoten B an einem Eingangsport empfangen und kann über einen separaten Ausgangsport und die Diode 74d Daten an den Knoten A senden. Beispielsweise kann die Überwachungsinstanz C2 eine Firewall sein, die die von B eintreffenden Daten auf etwaige Schadsoftware überprüft und nur die von Schadsoftware freien Daten an A weiterleitet. Die Diode 74c verhindert, dass B irgendwelche Daten von der Überwachungsinstanz oder vom Knoten A empfangen kann, und die Diode 74d verhindert, dass A die Konfiguration der Firewall verändern kann.
  • 6 zeigt ein Beispiel eines Netzwerkes mit einem Steckverbindergehäuse 78 in der Form einer Weiche, die über vier Steckverbinder 66 mit Knoten A', B', C' und D' verbunden ist. In das Steckverbindergehäuse 78 sind ebenfalls vier Datendioden 74a-d integriert, die nach Art eines Gleichrichters geschaltet sind, diesmal jedoch mit einer direkten Verbindung zwischen dem Ausgang der Diode 74a und dem Eingang der Diode 74b sowie zwischen dem Ausgang der Diode 74c und dem Eingang der Diode 74d. Die Dioden ermöglichen somit bidirektionale Kommunikation zwischen den Knoten A' und B'. Der Knoten C` kann die Kommunikation von A' nach B' mithören und eigene Daten an B' senden, kann jedoch nicht auf A` einwirken. Umgekehrt kann der Knoten D' die Kommunikation von B' nach A' mithören und eigene Daten an A' senden, jedoch nicht auf B' einwirken.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2019063258 A1 [0007]
    • DE 102009058879 A1 [0008]

Claims (15)

  1. Steckverbindergehäuse für elektronische Datenleitungen, gekennzeichnet durch eine in das Steckverbindergehäuse (10; 72; 78) integrierte Datendiode (40; 40`; 74; 74a-d).
  2. Steckverbindergehäuse nach Anspruch 1, bei dem die Datendiode (40; 40`) mehrere parallele Kommunikationskanäle aufweist und in mindestens einem dieser Kommunikationskanäle nur einen Datenfluss in einer Richtung zulässt.
  3. Steckverbindergehäuse nach Anspruch 2, bei dem die Datendiode mehrere Einzel-Dioden in den mehreren Kommunikationskanälen enthält und die Durchlassrichtungen der Einzel-Dioden unabhängig voneinander konfiguriert oder konfigurierbar sind.
  4. Steckverbindergehäuse nach einem der vorstehenden Ansprüche, bei dem die Datendiode (40) eine Hard-Datendiode ist, deren Hardwarekonfiguration die Durchlassrichtung der Diode definiert.
  5. Steckverbindergehäuse nach einem der Ansprüche 1 bis 3, bei dem die Datendiode (40') eine Soft-Datendiode ist, bei der die Durchlassrichtung durch die Konfiguration von Software der Diode definiert ist.
  6. Steckverbindergehäuse nach einem der vorstehenden Ansprüche, bei dem die Datendiode dazu ausgebildet ist, bidirektionale Kommunikation gemäß einem vorbestimmten Protokoll zu emulieren.
  7. Steckverbindergehäuse nach einem der vorstehenden Ansprüche, bei dem die Datendiode (40`) eine Konfigurationsschnittstelle (54) für den Empfang von Konfigurationsbefehlen aufweist, mit denen die Datendiode für unterschiedliche Betriebsmodi konfigurierbar ist.
  8. Steckverbindergehäuse nach Anspruch 7, bei dem die Datendiode (40`) eine Schlüsseldatei (58) mit einem Schlüssel enthält, mit dem verschlüsselte Konfigurationsbefehle entschlüsselbar sind.
  9. Steckverbindergehäuse nach Anspruch 7 oder 8, bei dem die Betriebsmodi der Datendiode einen inaktiven Modus umfassen, in dem bidirektionale Kommunikation zugelassen ist.
  10. Steckverbindergehäuse nach einem der Ansprüche 7 bis 9, bei dem die Betriebsmodi sich in der Durchlassrichtung der Datendiode in mindestens einem Kommunikationskanal unterscheiden.
  11. Steckverbindergehäuse nach Anspruch 6 und einem der Ansprüche 7 bis 10, bei dem die Betriebsmodi sich in Protokoll-Spezifikationen unterscheiden, auf deren Basis die Emulation der bidirektionalen Kommunikation erfolgt
  12. Steckverbindergehäuse nach Anspruch 11, bei dem in der Datendiode (40`) eine Lernsoftware (62) implementiert ist, die dazu konfiguriert ist, durch Beobachtung von realer bidirektionaler Kommunikation Emulationsalgorithmen für die Emulation der bidirektionalen Kommunikation bei aktiver Datendiode zu erlernen.
  13. Steckverbinder mit einem Steckverbindergehäuse (10; 72; 78) nach einem der vorstehenden Ansprüche.
  14. Steckverbindersystem (64) mit mindestens zwei zueinander komplementären Steckverbindern (66, 68, 70), von denen mindestens einer ein Steckverbindergehäuse (72) nach einem der Ansprüche 1 bis 12 aufweist.
  15. Steckverbindersystem nach Anspruch 14, mit mindestens einer Kupplung (70), deren Gehäuse die Datendiode (74) enthält und in zwei entgegengesetzten Orientierungen zwischen zwei Steckverbindern (66, 68) einsetzbar ist, wobei in die entgegengesetzten Orientierungen die jeweilige Durchlassrichtung der Datendiode (74) bestimmen.
DE102021117401.5A 2021-07-06 2021-07-06 Steckverbindergehäuse für elektronische datenleitungen Pending DE102021117401A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102021117401.5A DE102021117401A1 (de) 2021-07-06 2021-07-06 Steckverbindergehäuse für elektronische datenleitungen
CN202280047306.5A CN117616720A (zh) 2021-07-06 2022-06-23 用于电子数据线的具有数据二极管的插接连接器壳体
PCT/DE2022/100463 WO2023280344A1 (de) 2021-07-06 2022-06-23 Steckverbindungsgehäuse mit datendiode für elektronische datenleitungen
EP22760863.5A EP4367838A1 (de) 2021-07-06 2022-06-23 Steckverbindungsgehäuse mit datendiode für elektronische datenleitungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021117401.5A DE102021117401A1 (de) 2021-07-06 2021-07-06 Steckverbindergehäuse für elektronische datenleitungen

Publications (1)

Publication Number Publication Date
DE102021117401A1 true DE102021117401A1 (de) 2023-01-12

Family

ID=83113022

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021117401.5A Pending DE102021117401A1 (de) 2021-07-06 2021-07-06 Steckverbindergehäuse für elektronische datenleitungen

Country Status (4)

Country Link
EP (1) EP4367838A1 (de)
CN (1) CN117616720A (de)
DE (1) DE102021117401A1 (de)
WO (1) WO2023280344A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047556A1 (en) 2007-10-10 2009-04-16 Bae Systems Plc Data diode
DE102009058879A1 (de) 2009-12-18 2011-06-22 Continental Automotive GmbH, 30165 Elektrisches Energiespeichersystem eines Fahrzeuges
US20150020189A1 (en) 2013-07-09 2015-01-15 High Sec Labs Ltd. Electro-mechanic usb locking device
DE102015213400A1 (de) 2015-07-16 2017-01-19 Thales Deutschland Gmbh Verfahren zur unidirektionalen datenübertragung
EP3203702A1 (de) 2016-02-04 2017-08-09 BAE SYSTEMS plc Datendiode
DE102017114441A1 (de) 2017-06-29 2018-08-16 Voith Patent Gmbh Sichere Daten Diode
WO2019063258A1 (de) 2017-09-29 2019-04-04 Siemens Mobility GmbH Konzept zum unidirektionalen übertragen von daten

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035098A1 (en) * 2011-09-06 2013-03-14 High Sec Labs Ltd. Single optical fiber kvm extender
US10474613B1 (en) * 2017-12-22 2019-11-12 Fend, Inc. One-way data transfer device with onboard system detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047556A1 (en) 2007-10-10 2009-04-16 Bae Systems Plc Data diode
DE102009058879A1 (de) 2009-12-18 2011-06-22 Continental Automotive GmbH, 30165 Elektrisches Energiespeichersystem eines Fahrzeuges
US20150020189A1 (en) 2013-07-09 2015-01-15 High Sec Labs Ltd. Electro-mechanic usb locking device
DE102015213400A1 (de) 2015-07-16 2017-01-19 Thales Deutschland Gmbh Verfahren zur unidirektionalen datenübertragung
EP3203702A1 (de) 2016-02-04 2017-08-09 BAE SYSTEMS plc Datendiode
DE102017114441A1 (de) 2017-06-29 2018-08-16 Voith Patent Gmbh Sichere Daten Diode
WO2019063258A1 (de) 2017-09-29 2019-04-04 Siemens Mobility GmbH Konzept zum unidirektionalen übertragen von daten

Also Published As

Publication number Publication date
CN117616720A (zh) 2024-02-27
EP4367838A1 (de) 2024-05-15
WO2023280344A1 (de) 2023-01-12

Similar Documents

Publication Publication Date Title
EP3425865B1 (de) Verfahren und vorrichtung zur rückwirkungsfreien unidirektionalen übertragung von daten an einen abgesetzten anwendungsserver
EP3245775B1 (de) Einweg-koppelvorrichtung mit unterfrage-einrichtung zum rückwirkungsfreien übertragen von daten
DE69533024T2 (de) Zugriffskontrollsystem für an einem Privatnetz angeschlossene Computer
EP3662601B1 (de) Konzept zum unidirektionalen übertragen von daten
EP1320962B1 (de) Verfahren zur steuerung des zugriffs
DE102011007914A1 (de) Datenkommunikationsschnittstelle für ein landwirtschaftliches Nutzfahrzeug
EP3559854B1 (de) Sicherheitsgerät und feldbussystem zur unterstützung einer sicheren kommunikation über einen feldbus
DE102021117401A1 (de) Steckverbindergehäuse für elektronische datenleitungen
WO2021018776A1 (de) Netzwerkadapter zur unidirektionalen übertragung von daten
EP1862931A1 (de) Vorrichtung und Verfahren zum Schutz eines medizinischen Geräts und eines von diesem Gerät behandelten Patienten vor gefährdenden Einflüssen aus einem Kommunikationsnetzwerk
DE102014208839A1 (de) Verfahren zur sicheren Datenübertragung zwischen einer Automatisierungsanlage und einer IT-Komponente
DE102013221955A1 (de) Sicherheitsrelevantes System
EP2685670B1 (de) Bustransceiver
EP3324596B1 (de) Schutzvorrichtung und netzwerkverkabelungsvorrichtung zur geschützten übertragung von daten
EP3607437B1 (de) Verfahren zum konfigurieren zumindest eines geräts eines schienenfahrzeugs in einem netzwerk, computerprogramm und computerlesbares speichermedium
WO2020254106A1 (de) Filter, anordnung und betriebsverfahren für eine anordnung
WO2020069852A1 (de) Verfahren zur absicherung eines datenpakets durch eine vermittlungsstelle in einem netzwerk, vermittlungsstelle und kraftfahrzeug
DE4232922C2 (de) Anordnung zur Datenübertragung in Prozeßleitsystemen
EP3957052B1 (de) Rechenanlage und verfahren zum betreiben einer rechenanlage
WO2019096610A1 (de) System und verfahren zum senden und zum empfangen von daten für ein schienenfahrzeug
EP3557837A1 (de) Bereitstellung von sicherheitskonfigurationsdaten einer zugangsverbindung
DE102018124235A1 (de) Poisoning-schutz für prozessleit-switches
EP3603011B1 (de) Vorrichtungen und verfahren zum betreiben einer mobilfunkkommunikation mit einer streckenseitigen einrichtung
EP1163761B1 (de) Digitales signalübertragungssystem der gebäudesystemtechnik
EP1163760A1 (de) Digitales signalübertragungssystem der gebäudesystemtechnik

Legal Events

Date Code Title Description
R081 Change of applicant/patentee

Owner name: HARTING ELECTRIC STIFTUNG & CO. KG, DE

Free format text: FORMER OWNER: HARTING STIFTUNG & CO. KG, 32339 ESPELKAMP, DE

R163 Identified publications notified