DE102021110303A1 - Monolithic tandem solar cell - Google Patents

Monolithic tandem solar cell Download PDF

Info

Publication number
DE102021110303A1
DE102021110303A1 DE102021110303.7A DE102021110303A DE102021110303A1 DE 102021110303 A1 DE102021110303 A1 DE 102021110303A1 DE 102021110303 A DE102021110303 A DE 102021110303A DE 102021110303 A1 DE102021110303 A1 DE 102021110303A1
Authority
DE
Germany
Prior art keywords
solar cell
cell
tandem solar
sub
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102021110303.7A
Other languages
German (de)
Inventor
Jörg Müller
Ralf Niemann
Enrico Jarzembowski
Fabian Fertig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwha Q Cells GmbH
Original Assignee
Hanwha Q Cells GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwha Q Cells GmbH filed Critical Hanwha Q Cells GmbH
Priority to DE102021110303.7A priority Critical patent/DE102021110303A1/en
Priority to PCT/DE2022/100305 priority patent/WO2022223077A1/en
Publication of DE102021110303A1 publication Critical patent/DE102021110303A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die Erfindung betrifft eine monolithische Tandemsolarzelle, aufweisend eine obere Perowskit-Teilzelle (5) und eine untere Gallium-dotierte p-Typ monokristalline Silizium-Teilzelle (2).The invention relates to a monolithic tandem solar cell, having an upper perovskite sub-cell (5) and a lower gallium-doped p-type monocrystalline silicon sub-cell (2).

Description

Die Erfindung betrifft eine monolithische Tandemsolarzelle. Insbesondere betrifft die Erfindung eine monolithische Tandemsolarzelle, die eine obere Perowskit-Teilzelle und eine untere monokristalline Silizium-Teilzelle aufweist, die auch als Perowskit-auf-Silizium-Tandemsolarzelle bezeichnet wird.The invention relates to a monolithic tandem solar cell. In particular, the invention relates to a monolithic tandem solar cell having an upper perovskite sub-cell and a lower monocrystalline silicon sub-cell, also referred to as a perovskite-on-silicon tandem solar cell.

Eine Tandemsolarzelle, auch Mehrfachsolarzelle genannt, weist mindestens zwei Solarzellen aus verschiedenen Materialien auf, die übereinandergeschichtet sind. Dabei wird zwischen mechanisch gestapelten Solarzellen, bei denen die Materialien voneinander getrennt sind, und monolithischen Solarzellen unterschieden, bei denen alle Solarzellen auf demselben Substrat aufgebaut sind.A tandem solar cell, also known as a multiple solar cell, has at least two solar cells made of different materials that are stacked on top of each other. A distinction is made between mechanically stacked solar cells, in which the materials are separated from one another, and monolithic solar cells, in which all solar cells are built on the same substrate.

Die meisten Tandemsolarzellen, die aus mehreren Teilzellen bestehen, wie die Perowskit-auf-Silizium-Tandemsolarzellen, weisen sogenannte Heterojunction-Silizium-Teilzellen mit einem n-Typ-Siliziumabsorber auf, der rein phosphordotiert ist. Silizium-Heterojunction-Solarzellen sind zwar weit verbreitet in der Wissenschaft, weisen aber einen deutlich geringeren Marktanteil bei kommerziellen Produkten auf als Tandemsolarzellen mit einem Silizium-basierten unteren p-Typ Zellenabsorber und einem Perowskitbasierten oberen Zellenabsorber. Bei diesen Tandemsolarzellen, die einen p-Typ Siliziumabsorber aufweisen, ist eine Diffusionslänge im Siliziumabsorber entscheidend für eine optimierte Solarzellenleistung.Most tandem solar cells that consist of several sub-cells, such as the perovskite-on-silicon tandem solar cells, have so-called heterojunction silicon sub-cells with an n-type silicon absorber that is purely phosphorus-doped. Silicon heterojunction solar cells, although widely used in science, have a significantly lower market share in commercial products than tandem solar cells with a silicon-based p-type bottom cell absorber and a perovskite-based top cell absorber. In these tandem solar cells, which have a p-type silicon absorber, a diffusion length in the silicon absorber is crucial for optimized solar cell performance.

Es sind PERC (Passivated emitter rear contact)-basierte Silizium-Solarzellen mit einem Bor-dotierten Siliziumsubstrat bekannt. Ein auftretender Bor-Sauerstoff-Defekt kann zu einer signifikanten Verschlechterung der Diffusionslänge im Siliziumabsorber führen. Um dieses Problem zu lindern, können Regenerationsprozesse durch z.B. Überschussladungsträgererzeugung/- injektion bei Temperaturen im Bereich von 100 bis 350°C angewendet werden. PERC (passivated emitter rear contact)-based silicon solar cells with a boron-doped silicon substrate are known. A boron-oxygen defect that occurs can lead to a significant deterioration in the diffusion length in the silicon absorber. To alleviate this problem, regeneration processes by, for example, excess carrier generation/injection at temperatures ranging from 100 to 350°C can be applied.

Es ist jedoch bekannt, dass diese Regenration destabilisiert oder sogar verschlimmert werden kann, selbst wenn der Bor-Sauerstoff-Defekt regeneriert wurde.However, it is known that this regeneration can be destabilized or even exacerbated even when the boron-oxygen defect has been regenerated.

Es ist eine Aufgabe der vorliegenden Erfindung, eine Tandemsolarzelle mit einer verbesserten Diffusionslänge bereitzustellen.It is an object of the present invention to provide a tandem solar cell with an improved diffusion length.

Erfindungsgemäß wird die Aufgabe durch eine monolithische Solarzelle mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Variationen und Weiterbildungen sind in den Unteransprüchen angegeben.According to the invention, the object is achieved by a monolithic solar cell having the features of claim 1. Advantageous variations and developments are specified in the dependent claims.

Die Erfindung betrifft eine monolithische Tandemsolarzelle, aufweisend eine obere Perowskit-Teilzelle und eine untere Gallium-dotierte p-Typ monokristalline Silizium-Teilzelle. Die Klassifizierung der Solarzelle als monolithische bedeutet insbesondere, dass sie in einer monolithischen Bauweise hergestellt ist, bei der die Schichten, insbesondere sämtliche Schichten, einzeln nacheinander auf ein Substrat oder ein Superstrat und aufeinander aufgebracht bzw. aufgetragen werden.The invention relates to a monolithic tandem solar cell, having an upper perovskite sub-cell and a lower gallium-doped p-type monocrystalline silicon sub-cell. The classification of the solar cell as monolithic means in particular that it is produced in a monolithic construction in which the layers, in particular all layers, are applied or applied one after the other to a substrate or a superstrate and to one another.

Diese Solarzelle weist eine verbesserte Diffusionslänge und dadurch eine optimierte Leistung auf. Sie weist ferner nicht den Bor-Sauerstoff-Defekt auf und muss daher nicht zum Erhalten ihrer Leistung regeneriert werden.This solar cell has an improved diffusion length and therefore optimized performance. It also does not have the boron-oxygen defect and therefore does not need to be regenerated to maintain its performance.

Diese Erfindung beschreibt die Verwendung eines Siliziumabsorbers mit einem anderen Dotiermittel als Bor, um die Verwendung von unteren Silizium-Teilzellen in Tandemsolarzellen ohne Verschlechterung der Diffusionslänge innerhalb des Silizium-Teilzellabsorbers zu ermöglichen. Hierbei hat sich herausgestellt, dass Gallium geeignet ist. Im Gegensatz zu früheren Annahmen ermöglicht dies beispielsweise eine Verwendung angepasster PERC-basierter Teilzellen in hocheffizienten Tandemsolarzellen durch Aufrechterhaltung einer hohen Diffusionslänge innerhalb des Siliziumabsorbers. Darüber hinaus ermöglicht diese Erfindung die Verwendung eines höheren Temperaturbudgets als im Falle von Tandemsolarzellen, die eine Silizium-Heterojunction-basierte Teilzelle umfassen, die in der Regel nur Temperaturen unter etwa 200°C standhalten kann. Durch die Anwendung dieser Erfindung wird eine signifikante Steigerung der Diffusionslänge innerhalb des Siliziumabsorbers einer Silizium-basierten Teilzelle in einer Tandemsolarzellen-Photovoltaik-Anlage im Vergleich zur Verwendung von Bor-dotierten Siliziumsubstraten erreicht.This invention describes the use of a silicon absorber with a dopant other than boron to enable the use of bottom silicon sub-cells in tandem solar cells without degrading the diffusion length within the silicon sub-cell absorber. Here, it has been found that gallium is suitable. Contrary to previous assumptions, this enables, for example, the use of adapted PERC-based sub-cells in high-efficiency tandem solar cells by maintaining a high diffusion length within the silicon absorber. Furthermore, this invention enables the use of a higher temperature budget than in the case of tandem solar cells comprising a silicon heterojunction-based sub-cell, which typically can only withstand temperatures below about 200°C. By applying this invention, a significant increase in the diffusion length within the silicon absorber of a silicon-based sub-cell in a tandem solar cell photovoltaic system is achieved compared to the use of boron-doped silicon substrates.

Bei Betrieb tritt Licht in der Tandemsolarzelle zuerst durch die obere Teilzelle, auch Top-Zelle genannt, und anschließend durch die untere Teilzelle, auch Bottom-Zelle genannt, ein. Zwischen der oberen und der unteren Teilzelle können weitere Teilzellen angeordnet sein. Das von der oberen Teilzelle nicht genutzte Licht kann von der oder den darunter liegende unteren Teilzellen verarbeitet werden. Silizium-basierte Teilzellen wandeln im Wesentlichen infrarote Anteile des Lichts in elektrische Energie um, während Perowskitbasierte Teilzellen im Wesentlichen sichtbare Anteile des Sonnenlichts effektiv nutzen können. Werden beide Materialien in Kombination genutzt, kann mehr Energie auf gleicher Fläche umgewandelt werden. Dadurch wird im Vergleich zu einer einfachen Solarzelle mehr Leistung erzielt.During operation, light first enters the tandem solar cell through the upper sub-cell, also called the top cell, and then through the lower sub-cell, also called the bottom cell. Further sub-cells can be arranged between the upper and the lower sub-cell. The light not used by the upper sub-cell can be processed by the sub-cell(s) below it. Silicon-based sub-cells mainly convert infrared light into electrical energy, while perovskite-based sub-cells can essentially use visible parts of sunlight. If both materials are used in combination, more energy can be converted in the same area. As a result, more power is achieved compared to a simple solar cell.

Die untere Gallium-dotierte p-Typ monokristalline Silizium-Teilzelle kann eine vollflächige Gallium-Dotierung aufweisen. Die Gallium-Dotierung kann aber auch nur teilflächig vorliegen.The lower gallium-doped p-type monocrystalline silicon partial cell can have gallium doping over the entire surface. However, the gallium doping can also only be present over part of the area.

In einer bevorzugten Ausführungsform ist die Tandemsolarzelle als 2-Terminal-Tandemsolarzelle ausgebildet. Die obere Perowskit-Teilzelle und die untere Silizium-Teilzelle sind dabei bevorzugt in Reihe geschaltet. Alternativ bevorzugt ist die Tandemsolarzelle als 3-Terminal-Tandemsolarzelle ausgebildet. Während 2-Terminal-Tandemsolarzelle bedeutet, dass die Tandemsolarzelle zwei elektrische Anschlüsse aufweist, weist eine 3-Terminal-Tandemsolarzelle drei elektrische Anschlüsse auf. Weiterhin alternativ bevorzugt ist die Tandemsolarzelle als 4-Terminal-Tandemsolarzelle ausgebildet. Je größer die Anzahl an Terminals bzw. elektrischen Anschlüssen der Tandemsolarzelle ist, desto größer ist die Leistung, die die Tandemsolarzelle erzielt, aber desto kostspieliger ist die Tandemsolarzelle in ihrer Herstellung. In der 4-Terminal-Tandemsolarzelle sind die Tandem-Teilzellen bevorzugt gegeneinander elektrisch isoliert und parallel verschaltet. Daher sind die 4-Terminal-Solarzellen teurer wegen der zusätzlichen Elektroden und der Installationskosten. Trotzdem kann es für einen Nutzer auf einer jährlichen Basis betrachtet die kostengünstigere Option sein, eine 4-Terminal-Tandemsolarzelle zu verwenden, insbesondere wenn sie im Außeneinsatz mit wechselnden Lichtintensitäten und -spektren betrieben wird.In a preferred embodiment, the tandem solar cell is designed as a 2-terminal tandem solar cell. The upper perovskite sub-cell and the lower silicon sub-cell are preferably connected in series. Alternatively, the tandem solar cell is preferably designed as a 3-terminal tandem solar cell. While 2-terminal tandem solar cell means that the tandem solar cell has two electrical connections, a 3-terminal tandem solar cell has three electrical connections. Further alternatively, the tandem solar cell is preferably designed as a 4-terminal tandem solar cell. The greater the number of terminals or electrical connections of the tandem solar cell, the greater the performance that the tandem solar cell achieves, but the more expensive the tandem solar cell is to produce. In the 4-terminal tandem solar cell, the tandem sub-cells are preferably electrically isolated from one another and connected in parallel. Therefore, the 4-terminal solar cells are more expensive because of the additional electrodes and installation costs. Nevertheless, on a yearly basis, it may be the more cost-effective option for a user to use a 4-terminal tandem solar cell, especially when operated outdoors with changing light intensities and spectra.

In einer bevorzugten Ausführungsform ist die untere Gallium-dotierte p-Typ monokristalline Silizium-Teilzelle als eine IBC (Interdigitated Back Contact)-Solarzelle ausgebildet. Die IBC-Solarzelle ist eine speziell für Zwecke der Sonnenlichtkonzentration optimierte Solarzelle. Üblicherweise weist eine Solarzelle eine Front- und ein Rückseite auf, wobei bei Betrieb die Frontseite der Sonne zugewandt ist, während die Rückseite von der Sonne abgewandt ist. Bei der IBC-Solarzelle werden auf frontseitige Kontakte verzichtet. Vielmehr sind getrennte p- und n-Emitterbereiche sowie Kontakte auf der sonnenabgewandten Rückseite der Solarzelle vorgesehen. Durch den Verzicht auf die frontseitige partielle Kontakt-Abschattung kann ein Stromgewinn erzielt werden. Dadurch wird weiterhin die Leistung der Tandemsolarzelle gesteigert.In a preferred embodiment, the lower gallium-doped p-type monocrystalline silicon partial cell is designed as an IBC (interdigitated back contact) solar cell. The IBC solar cell is a solar cell specially optimized for the purpose of concentrating sunlight. A solar cell usually has a front and a back side, with the front side facing the sun during operation, while the back side is turned away from the sun. The IBC solar cell does not have front contacts. Rather, separate p- and n-emitter regions and contacts are provided on the rear side of the solar cell that faces away from the sun. By doing without the partial contact shading on the front, a power gain can be achieved. This further increases the performance of the tandem solar cell.

Alternativ bevorzugt ist die die untere Gallium-dotierte p-Typ monokristalline Silizium-Teilzelle als eine PERC (Passivated Emitter and Rear Contact)-Solarzelle ausgebildet. Bei einer PERC-Solarzelle wird ein Teil des Sonnenlichts, das bei Betrieb von der Frontseite bis zur Rückseite der Zelle gelangt, ohne Strom erzeugt zu haben, wieder in die Zelle reflektiert. Dies geschieht durch eine spezielle an der Rückseite aufgetragene Schicht, die auch Rückseitenpassivierung genannt wird. Dadurch kann weiterhin die Leistung gesteigert werdenAlternatively, the lower gallium-doped p-type monocrystalline silicon partial cell is preferably designed as a PERC (passivated emitter and rear contact) solar cell. With a PERC solar cell, some of the sunlight that travels from the front to the back of the cell during operation without having generated electricity is reflected back into the cell. This is done with a special layer applied to the back, which is also called backside passivation. This can further increase performance

Nachstehend wird die Erfindung weiterhin unter Bezugnahme auf die beigefügten Figuren detaillierter erläutert werden. Es zeigt schematisch und nicht maßstabsgerecht:

  • 1 eine Querschnittsansicht einer Tandemsolarzelle gemäß einer ersten Ausführungsform;
  • 2 eine Querschnittsansicht einer Tandemsolarzelle gemäß einer zweiten Ausführungsform;
  • 3 eine Querschnittsansicht einer Tandemsolarzelle gemäß einer dritten Ausführungsform; und
  • 4 eine Querschnittsansicht einer Tandemsolarzelle gemäß einer vierten Ausführungsform.
In the following the invention will be further explained in more detail with reference to the attached figures. It shows schematically and not to scale:
  • 1 a cross-sectional view of a tandem solar cell according to a first embodiment;
  • 2 a cross-sectional view of a tandem solar cell according to a second embodiment;
  • 3 a cross-sectional view of a tandem solar cell according to a third embodiment; and
  • 4 a cross-sectional view of a tandem solar cell according to a fourth embodiment.

1 zeigt eine Querschnittsansicht einer Tandemsolarzelle gemäß einer ersten Ausführungsform. Die monolithische Tandemsolarzelle weist eine obere Perowskit-Teilzelle 5 und eine untere Gallium-dotierte p-Typ monokristalline Silizium-Teilzelle 2 auf. An einer Seite der unteren Silizium- Teilzelle 2 ist eine Rückseitenelektrode 1 angeordnet, während auf einer gegenüberliegenden Seite der unteren Silizium-Teilzelle 2 ein Lambert'scher Streuer 3 und eine Reflektionsschicht 4 angeordnet sind. Auf einer der unteren Silizium-Teilzelle 2 gegenüberliegenden Seite der Reflektionsschicht 4 ist die obere Perowskit-Teilzelle 5 angeordnet. Auf einer der Reflektionsschicht 4 gegenüberliegenden Seite der oberen Perowskit-Teilzelle 5 sind eine Antireflektionsschicht/ein Frontseitenkontakt 6 angeordnet, die als eine Schicht gezeigt sind. Auf die Tandemsolarzelle einfallendes Licht ist durch die Pfeile angedeutet. 1 shows a cross-sectional view of a tandem solar cell according to a first embodiment. The monolithic tandem solar cell has an upper perovskite sub-cell 5 and a lower gallium-doped p-type monocrystalline silicon sub-cell 2 . A rear-side electrode 1 is arranged on one side of the lower silicon sub-cell 2, while a Lambertian scatterer 3 and a reflection layer 4 are arranged on an opposite side of the lower silicon sub-cell 2. FIG. The upper perovskite cell part 5 is arranged on a side of the reflection layer 4 opposite the lower silicon cell part 2 . On a side of the upper perovskite sub-cell 5 opposite the reflection layer 4, an anti-reflection layer/front-side contact 6, shown as one layer, is arranged. Light incident on the tandem solar cell is indicated by the arrows.

2 zeigt eine Querschnittsansicht einer Tandemsolarzelle gemäß einer zweiten Ausführungsform. Die Tandemsolarzelle entspricht der in 1 gezeigten Tandemsolarzelle mit dem Unterschied, dass der Lambert'sche Streuer nicht dargestellt ist, dass anstelle Antireflektionsschicht/ Frontseitenkontakt eine Reflektionsschicht 4 und frontseitige Kontakte 7 dargestellt sind und dass die Tandemsolarzelle als 2-Terminal-Tandemsolarzelle ausgebildet ist, die zwei Terminals bzw. elektrische Anschlüsse 8 aufweist. 2 12 shows a cross-sectional view of a tandem solar cell according to a second embodiment. The tandem solar cell corresponds to the in 1 shown tandem solar cell with the difference that the Lambertian scatterer is not shown, that instead of an anti-reflection layer/front side contact, a reflective layer 4 and front side contacts 7 are shown and that the tandem solar cell is designed as a 2-terminal tandem solar cell that has two terminals or electrical connections 8 has.

3 zeigt eine Querschnittsansicht einer Tandemsolarzelle gemäß einer dritten Ausführungsform. Die in 3 gezeigte Tandemsolarzelle weist eine untere Gallium-dotierte p-Typ monokristalline Silizium-Teilzelle 2 mit rückseitigen Kontakten 7 auf, wobei die untere Silizium-Teilzelle 2 neben p-Emitterbereichen 10 weiterhin n-Emitterbereiche 9 aufweist, auf denen rückseitig die Kontakte 7 angeordnet sind. Auf einer den p-Typ und n-Typ Emitterbereichen 9, 10 gegenüberliegenden Seite der Silizium-Teilzelle 2 ist eine Reflektionsschicht 4 angeordnet, auf der weiterhin eine Zwischenschicht 11 angeordnet ist. Auf einer von der Reflektionsschicht 4 gegenüberliegenden Seite der Zwischenschicht 11 ist eine weitere Reflektionsschicht 4 angeordnet, auf dessen zu der Zwischenschicht 11 gegenüberliegenden Seite eine obere Perowskit-Teilzelle 5 angeordnet ist. Auf einer dem p-Typ Emitterbereich 9 gegenüberliegend angeordneten Seite der oberen Perowskit-Teilzelle 5 sind weiterhin eine Reflektionsschicht 4 und frontseitige Kontakte 7 angeordnet. Die Tandemsolarzelle ist als 3-Terminal-Solarzelle ausgebildet, denn sie weist drei elektrische elektrische Anschlüsse 8 auf. 3 12 shows a cross-sectional view of a tandem solar cell according to a third embodiment. In the 3 The tandem solar cell shown has a lower gallium-doped p-type monocrystalline silicon sub-cell 2 with rear contacts 7, the lower silicon sub-cell 2 also having p-emitter regions 10 and n-emitter regions 9, on which the contacts 7 are arranged on the back. A reflection layer 4 is arranged on a side of the silicon partial cell 2 opposite the p-type and n-type emitter regions 9, 10, on which an intermediate layer 11 is also arranged. A further reflection layer 4 is arranged on a side of the intermediate layer 11 which is opposite from the reflection layer 4 , and an upper perovskite partial cell 5 is arranged on the side of the reflection layer 4 which is opposite to the intermediate layer 11 . A reflection layer 4 and front-side contacts 7 are also arranged on a side of the upper perovskite partial cell 5 which is arranged opposite the p-type emitter region 9 . The tandem solar cell is designed as a 3-terminal solar cell because it has three electrical connections 8 .

4 zeigt eine Querschnittsansicht einer Tandemsolarzelle gemäß einer vierten Ausführungsform. Die in 4 gezeigte Tandemsolarzelle entspricht der in 2 gezeigten Tandemsolarzelle mit dem Unterschied, dass sie als 4-Terminal-Tandemsolarzelle ausgebildet ist, d.h. vier elektrische Anschlüsse 8 aufweist, dass sie eine Zwischenschicht 11 zwischen der oberen Perowskit-Teilzelle 5 und der unteren Silizium-Teilzelle 2 aufweist, welche jeweils frontseitige Kontakte 7 und Rückseitenelektroden 1 aufweisen, die durch jeweils zwei der insgesamt vier elektrischen Anschlüsse 8 elektrisch verbunden sind. 4 12 shows a cross-sectional view of a tandem solar cell according to a fourth embodiment. In the 4 The tandem solar cell shown corresponds to that in 2 shown tandem solar cell with the difference that it is designed as a 4-terminal tandem solar cell, i.e. has four electrical connections 8, that it has an intermediate layer 11 between the upper perovskite sub-cell 5 and the lower silicon sub-cell 2, each of which has front-side contacts 7 and have rear side electrodes 1 which are electrically connected by two of the total of four electrical terminals 8 .

Bezugszeichenlistereference list

11
Rückseitenelektrode/-kontaktbackside electrode/contact
22
untere Silizium-Teilzellelower silicon sub-cell
33
Lambert'scher StreuerLambertian scatterer
44
Reflektionsschichtreflection layer
55
obere Perowskit-Teilzelleupper perovskite sub-cell
66
Antireflektionsschicht/FrontseitenkontaktAnti-reflective coating/front contact
77
KontaktContact
88th
Terminal-Anschlussterminal connection
99
n-Emitterbereichn-emitter region
1010
p-Emitterbereichp-emitter region
1111
Zwischenschichtintermediate layer

Claims (6)

Monolithische Tandemsolarzelle, aufweisend eine obere Perowskit-Teilzelle (5) und eine untere Gallium-dotierte p-Typ monokristalline Silizium-Teilzelle (2).Monolithic tandem solar cell, having an upper perovskite sub-cell (5) and a lower gallium-doped p-type monocrystalline silicon sub-cell (2). Tandemsolarzelle nach Anspruch 1, ausgebildet als 2-Terminal-Tandemsolarzelle.tandem solar cell claim 1 , designed as a 2-terminal tandem solar cell. Tandemsolarzelle nach Anspruch 1, ausgebildet als 3-Terminal-Tandemsolarzelle.tandem solar cell claim 1 , designed as a 3-terminal tandem solar cell. Tandemsolarzelle nach Anspruch 1, ausgebildet als 4-Terminal-Tandemsolarzelle.tandem solar cell claim 1 , designed as a 4-terminal tandem solar cell. Tandemsolarzelle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die untere Gallium-dotierte p-Typ monokristalline Silizium-Teilzelle als eine IBC (Interdigitated Back Contact)-Solarzelle ausgebildet ist.Tandem solar cell according to one of Claims 1 until 4 , characterized in that the lower gallium-doped p-type monocrystalline silicon partial cell is designed as an IBC (Interdigitated Back Contact) solar cell. Tandemsolarzelle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die untere Gallium-dotierte p-Typ monokristalline Silizium-Teilzelle als eine PERC (Passiccated Emitter and Rear Contact)-Solarzelle ausgebildet ist.Tandem solar cell according to one of Claims 1 until 4 , characterized in that the lower gallium-doped p-type monocrystalline silicon partial cell is designed as a PERC (Passiccated Emitter and Rear Contact) solar cell.
DE102021110303.7A 2021-04-22 2021-04-22 Monolithic tandem solar cell Pending DE102021110303A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102021110303.7A DE102021110303A1 (en) 2021-04-22 2021-04-22 Monolithic tandem solar cell
PCT/DE2022/100305 WO2022223077A1 (en) 2021-04-22 2022-04-22 Monolithic tandem solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021110303.7A DE102021110303A1 (en) 2021-04-22 2021-04-22 Monolithic tandem solar cell

Publications (1)

Publication Number Publication Date
DE102021110303A1 true DE102021110303A1 (en) 2022-10-27

Family

ID=81854728

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021110303.7A Pending DE102021110303A1 (en) 2021-04-22 2021-04-22 Monolithic tandem solar cell

Country Status (2)

Country Link
DE (1) DE102021110303A1 (en)
WO (1) WO2022223077A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163904A1 (en) 2014-12-03 2016-06-09 The Board Of Trustees Of The Leland Stanford Junior University 2-terminal metal halide semiconductor/c-silicon multijunction solar cell with tunnel junction
US20180019358A1 (en) 2016-07-13 2018-01-18 Lg Electronics Inc. Tandem solar cell, tandem solar cell module comprising the same, and method for manufacturing thereof
WO2020127030A1 (en) 2018-12-20 2020-06-25 Total Sa Three terminal tandem solar generation unit
DE102019114498A1 (en) 2019-05-29 2020-12-03 Hanwha Q Cells Gmbh Wafer solar cell, solar module and method for manufacturing the wafer solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163904A1 (en) 2014-12-03 2016-06-09 The Board Of Trustees Of The Leland Stanford Junior University 2-terminal metal halide semiconductor/c-silicon multijunction solar cell with tunnel junction
US20180019358A1 (en) 2016-07-13 2018-01-18 Lg Electronics Inc. Tandem solar cell, tandem solar cell module comprising the same, and method for manufacturing thereof
WO2020127030A1 (en) 2018-12-20 2020-06-25 Total Sa Three terminal tandem solar generation unit
DE102019114498A1 (en) 2019-05-29 2020-12-03 Hanwha Q Cells Gmbh Wafer solar cell, solar module and method for manufacturing the wafer solar cell

Also Published As

Publication number Publication date
WO2022223077A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
EP0219763B1 (en) Solar cell
DE3650012T2 (en) Semiconductor device.
DE202009019121U1 (en) solar cell
DE112010001822T5 (en) SOLAR BATTERY CELL AND METHOD FOR THE PRODUCTION THEREOF
DE10237515A1 (en) Stack-shaped photoelectric converter
DE102009041476A1 (en) Encapsulant, crystalline silicon photovoltaic module and thin film photovoltaic module
DE3709153A1 (en) MULTILAYER THIN FILM SOLAR CELL
DE102010006314A1 (en) Photovoltaic multiple thin-film solar cell
DE102009056594A1 (en) Antireflection coating as well as solar cell and solar module
DE102010007131A1 (en) Solar cell string and method for its production
DE3408317C2 (en) Amorphous silicon solar cell
DE102011122281A1 (en) Solar cell module and method for its production
DE102012104289A1 (en) Heterocontact solar cell and process for its preparation
DE112010001140T5 (en) Solar cell module and method of making same
DE102010043006A1 (en) Photovoltaic device
WO2013097964A1 (en) Solar cell arrangement in tandem configuration
DE102011119228A1 (en) Thin film solar cell
DE2812547A1 (en) PHOTO ELEMENT
DE102011010077A1 (en) Photovoltaic solar cell and process for its production
DE102018007387B4 (en) Solar cell and solar cell panel with it
DE102014105358A1 (en) Solar cell and method for producing a solar cell
DE3732617A1 (en) PHOTOELEMENT
DE102021110303A1 (en) Monolithic tandem solar cell
DE102011109846A1 (en) Thin-film solar cell and process for its production
WO2010072462A1 (en) Photovoltaic element

Legal Events

Date Code Title Description
R012 Request for examination validly filed