DE102021003370A1 - solid state device - Google Patents

solid state device Download PDF

Info

Publication number
DE102021003370A1
DE102021003370A1 DE102021003370.1A DE102021003370A DE102021003370A1 DE 102021003370 A1 DE102021003370 A1 DE 102021003370A1 DE 102021003370 A DE102021003370 A DE 102021003370A DE 102021003370 A1 DE102021003370 A1 DE 102021003370A1
Authority
DE
Germany
Prior art keywords
cathode
anode
nhl
semiconductor material
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102021003370.1A
Other languages
German (de)
Inventor
gleich Anmelder Erfinder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102021003370.1A priority Critical patent/DE102021003370A1/en
Publication of DE102021003370A1 publication Critical patent/DE102021003370A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Einander gegenüberliegende asymmetrische Elektroden sind mittels Halbleitermaterial elektronen-leitend miteinander verbunden, dass durch einwirkende elektromagnetische Strahlung eine offene Klemmenspannung VOCvon 1,3 Volt erzielt werden kann.Asymmetric electrodes lying opposite one another are connected to one another in an electron-conducting manner by means of semiconductor material, so that an open terminal voltage VOC of 1.3 volts can be achieved through the effect of electromagnetic radiation.

Description

Die Erfindung betrifft ein Festkörperbauelement, das auf elektromagnetische Strahlung anspricht und je nach Ausführungsform als (thermo)photovoltaisches Element, als photoelektrischer Sensor, als Photokatalysator, als Stromspeicher odgl. eingesetzt werden kann.The invention relates to a solid-state component that responds to electromagnetic radiation and, depending on the embodiment, as a (thermo)photovoltaic element, as a photoelectric sensor, as a photocatalyst, as a power storage device or the like. can be used.

Das erfindungsgemäße Festkörperbauelement besteht aus einer Kathode K (aus der Elektronen austreten) und einer Anode A (in die diese Elektronen eintreten). Einander gegenüberliegende Flächen von K und A begrenzen den Elektrodenzwischenraum EZR. Im EZR befinden sich ein n-Typ-Halbleitermaterial nHL. Der n-Typ-Halbleiter nHL kontaktiert sowohl die Kathode K als auch die Anode A unter Ausbildung der Grenzflächen K / nHL / A.The solid state component according to the invention consists of a cathode K (from which electrons emerge) and an anode A (into which these electrons enter). Opposite surfaces of K and A delimit the electrode gap EZR. The EZR contains an n-type semiconductor material nHL. The n-type semiconductor nHL contacts both the cathode K and the anode A, forming the interfaces K / nHL / A.

Erfindungsgemäß haben die eingesetzten Materialien folgende, auf Vakuum bezogene, Energiepositionen: i) die Austrittsarbeit Φ der Kathode K ist größer als die Austrittsarbeit ΦA der Anode A (ΦK > ΦA) und ii) die Bandlücke des n-Typ-Halbleiter nHL ist größer als 2,0 eV (EgnHL >2 eV) und seine Fermi-Energie EFnHL ist die größer oder (im Wesentlichen) gleich der Austrittsarbeit ΦK der Kathode K (EFnHL > ΦK) und iii) die Austrittsarbeit des Beschichtungsmaterials BM ist kleiner als die Austrittsarbeit der Anode A (ΦBM < ΦA).According to the invention, the materials used have the following energy positions related to vacuum: i) the work function Φ of the cathode K is greater than the work function Φ A of the anode A (Φ K > Φ A ) and ii) the band gap of the n-type semiconductor nHL is greater than 2.0 eV (E gnHL >2 eV) and its Fermi energy E FnHL is greater than or (substantially) equal to the work function Φ K of the cathode K (E FnHL > Φ K ) and iii) the work function of the Coating material BM is smaller than the work function of the anode A (Φ BMA ).

zeigt, wie die Kathode K, n-Typ-Halbleitermaterial nHL und Anode A zueinander angeordnet sind und, im nicht-kontaktierten Zustand, ihre auf Vakuum bezogenen o.g. Energiepositionen in eV. (Die Werte entsprechen dem Beispiel Graphit als Kathode K, Eisen(III)oxid Fe2O3 als n-Typ-Halbleitermaterial nHL und Magnesium als Anode A.) shows how the cathode K, n-type semiconductor material nHL and anode A are arranged in relation to one another and, in the non-contacted state, their vacuum-related energy positions in eV. (The values correspond to the example graphite as cathode K, iron(III) oxide Fe 2 O 3 as n-type semiconductor material nHL and magnesium as anode A.)

Die Kathode K und die Anode A bestehen aus elektronen-leitenden Materialien, die entweder in elementarer Form oder als Legierungen vorliegen können. Die Elektrodenmaterialien werden dabei so ausgewählt, dass der Unterschied zwischen ΦK und ΦA möglichst groß ist. Nicht-limitierende Beispiele für geeignete Kathodenmaterialien sind Gold Au (ΦAu4,8 - 5,4 eV), Selen Se (ΦSe 5,11 eV), Platin Pt (ΦPt 5,32- 5,66 eV), Nickel Ni (ΦNi 5,0 eV) und elektronen-leitender Kohlenstoff C, z.B. Graphit (ΦGraphit 4,7eV). Als nicht-limitierende Beispiele für elektronen-leitenden Kohlenstoff C seien Aktivkohletuch, Graphit (in Form von Partikeln, textilen Flächengebilden oder Folien), Fullerene, Graphen, Kohlenstoffnanoröhrchen genannt. The cathode K and the anode A consist of electron-conducting materials, which can be present either in elemental form or as alloys. The electrode materials are selected in such a way that the difference between Φ K and Φ A is as large as possible. Non-limiting examples of suitable cathode materials are gold Au (Φ Au 4.8 - 5.4 eV), selenium Se (Φ Se 5.11 eV), platinum Pt (Φ Pt 5.32 - 5.66 eV), nickel Ni (Φ Ni 5.0 eV) and electron-conductive carbon C, eg, graphite (Φ graphite 4.7 eV). Non-limiting examples of electron-conducting carbon C are activated carbon cloth, graphite (in the form of particles, textile fabrics or foils), fullerenes, graphene, and carbon nanotubes.

Nicht-limitierende Beispiele für geeignete Anodenmaterialien sind Magnesium Mg (ΦMg 3,7 eV), Barium Ba (ΦBa 1,8 - 2,52 eV), Cesium Cs (ΦCs 1,7 - 2,14 eV), Calcium Ca (ΦCa 2,87 eV), Aluminium Al (ΦAl 4,0 - 4,2 eV).Non-limiting examples of suitable anode materials are magnesium Mg (Φ Mg 3.7 eV), barium Ba (Φ Ba 1.8 - 2.52 eV), cesium Cs (Φ Cs 1.7 - 2.14 eV), calcium Ca (ΦCa 2.87eV), Aluminum Al (ΦAl 4.0 - 4.2eV).

Je nach Ausbildung und Einsatzgebiet des Festkörperbauelements können die den EZR bildenden Flächen der Kathode K und der Anode A kongruent oder (im mathematischen Sinne) ähnlich sein und im Bereich von Quadrat-Mikrometern oder auch Quadrat-Metern dimensioniert sein. Die Kontakt(ierungs)flächen von Kathode K bzw. Anode A mit dem im EZR befindlichen Halbleitermaterial nHL sind möglichst groß. Je nach Ausbildung und Einsatzgebiet sind Stärke (Dicke) von Kathode K bzw. von Anode A unterschiedlich: Bei Ausbildung als photovoltaisches Element wird beispielsweise eine dünne, Nanometer starke Kathode K aus (Blatt)Gold eingesetzt. Bei Ausbildung als (thermo)photovoltaisches Element ist die Kathode K beispielsweise eine Mikrometer oder Millimeter starke Graphitfolie oder besteht aus Nanometer oder Mikrometer messenden Graphitpartikeln. Bei Ausbildung als Energiespeicher liegt die Dimensionierung der (porösen) Elektroden im Dezimeter- bzw. im Liter-Bereich. Geeignete n-Typ-Halbleitermaterialien nHL, die die Bedingungen, EgnHL >2 eV und EFnHL > FK, erfüllen, können beispielsweise den Arbeiten von Shiyou Chen and Lin-Wang Wang, Chem. Mater., 2012, 24 (18), pp. 3659-3666 bzw. von J. Robertson and B. Falabretti, Electronic Structure of Transparent Conducting Oxides, pp. 27-50 in Handbook of Transparent Conductors, Springer, DOI 10.1007/978-1-4419-1638-9) entnommen werden. Wenn Graphit (mit ΦGraphit ca. 4,7 eV) als Kathode K eingesetzt wird, sind dies, als nicht-limitierende Beispiele, ZnO, PbO, FeTiO3, BaTiO3, CuWO3, BiFe2O3, SnO2, TiO2 WO3, Fe2O3, In2O3 und Ga2O3.Depending on the design and field of application of the solid-state component, the surfaces of the cathode K and the anode A that form the EZR can be congruent or similar (in the mathematical sense) and can be dimensioned in the range of square microns or even square meters. The contact(ing) surfaces of cathode K and anode A with the semiconductor material nHL located in the EZR are as large as possible. The strength (thickness) of the cathode K and the anode A are different depending on the design and area of application: in the case of design as a photovoltaic element, for example, a thin, nanometer-thick cathode K made of (leaf) gold is used. When configured as a (thermo)photovoltaic element, the cathode K is, for example, a micrometer or millimeter thick graphite foil or consists of nanometer or micrometer measuring graphite particles. When designed as an energy store, the dimensioning of the (porous) electrodes is in the decimeter or liter range. Suitable n-type nHL semiconductor materials that meet the conditions E gnHL >2 eV and E FnHL > F K , can be found, for example, in the work of Shiyou Chen and Lin-Wang Wang, Chem. Mater., 2012, 24 (18) , pp. 3659-3666 or by J. Robertson and B. Falabretti, Electronic Structure of Transparent Conducting Oxides, pp. 27-50 in Handbook of Transparent Conductors, Springer, DOI 10.1007/978-1-4419-1638-9) be removed. If graphite (with Φ graphite approx. 4.7 eV) is used as cathode K, these are, as non-limiting examples, ZnO, PbO, FeTiO 3 , BaTiO 3 , CuWO 3 , BiFe 2 O 3 , SnO 2 , TiO 2 WO 3 , Fe 2 O 3 , In 2 O 3 and Ga 2 O 3 .

Das erfindungsgemäße Bauelement entsteht durch elektronen-leitende Kontaktierung oben beschriebener Materialien miteinander. zeigt die energetischen Beziehungen von Kathode K, n-Typ-Halbleitermaterial nHL und Anode A aus im kurzgeschlossenen Zustand zueinander: Sowohl die Grenzfläche von K / nHL als auch die von nHL /A sind Schottky-Kontakte mit Elektronen-Akkumulation (mit ⊕ gekennzeichnet). Diese Grenzflächen sind keine energetischen Barrieren für Elektronen: Selbst bei Raumtemperatur und Dunkelheit können sie die energetisch tiefer gelegene Kathode K verlassen und in die energetisch höher liegende Anode A eintreten - was durch einen kontinuierlichen Anstieg der offenen Klemmenspannung VOC, siehe Beispiel 1, belegt wird. The component according to the invention is created by making electron-conductive contact between the materials described above. shows the energetic relationships of cathode K, n-type semiconductor material nHL and anode A in the short-circuited state to each other: Both the interface of K / nHL and that of nHL /A are Schottky contacts with electron accumulation (marked with ⊕). These interfaces are not energetic barriers for electrons: Even at room temperature and in the dark, they can leave the energetically lower-lying cathode K and enter the energetically higher-lying anode A - which is evidenced by a continuous increase in the open-circuit voltage V OC , see Example 1 .

Zur Funktionsweise: Durch elektromagnetische Strahlung, die mit ausreichend großer Energie auf die Kathode K einwirkt, werden, direkt oder indirekt über Phononen und Plasmonen, Elektronen im Volumen des Kathoden-Materials derart angeregt, dass sie in der Lage sind, das Kathoden-Material zu verlassen und in das Leitungsband von nHL einzutreten, was aufgrund der im Grenzflächenbereich K / nHL bestehenden Elektronen-Akkumulation ⊕ (leicht) möglich ist. Haben die Elektronen weiterhin ausreichend (kinetische) Energie, können sie über die Grenzfläche nHL /A hinweg in das Volumen des energetisch höher gelegenen Anode-Materials A einzutreten - in ist dies mit > gekennzeichnet. (Da das n-Typ-Halbleitermaterial nHL eine Bandlücke EgHL von mehr als 2 eV aufweist, kommt es zu keiner Rekombination mit Löchern aus dem Valenzband.)How it works: Electrons in the volume of the cathode material are excited directly or indirectly via phonons and plasmons by electromagnetic radiation, which acts on the cathode K with sufficient energy, in such a way that they are able to close the cathode material and enter the conduction band of nHL, which is (easily) possible due to the electron accumulation ⊕ existing in the interface region K / nHL. If the electrons still have sufficient (kinetic) energy, they can enter the volume of the energetically higher anode material A via the interface nHL /A - in this is marked with >. (Since the n-type semiconductor material nHL has a band gap E gHL larger than 2 eV, it does not recombine with holes from the valence band.)

Wenn n-Typ-Halbleiter-freie Anteile von Kathode K und Anode A zu einem Stromkreis verbunden sind, sind ausreichend „heiße“ Elektronen in der Lage, elektrische Arbeit zu verrichten, da sie von der energetisch höher liegende Anode A über den äußeren Anteil des Stromkreises wieder zur Kathode K zurückfließen. Somit eignet sich das Bauelement u.a. auch als (thermo)photovoltaische Zelle zur direkten Umwandlung von Wärmeenergie in elektrische Energie.If n-type, semiconductor-free parts of the cathode K and anode A are connected to form a circuit, sufficient "hot" electrons are able to perform electrical work, since they are transferred from the energetically higher-lying anode A via the outer part of the Circuit flow back to the cathode K. The component is therefore also suitable as a (thermo)photovoltaic cell for the direct conversion of thermal energy into electrical energy.

Für die jeweilige elektronen-leitende Kontaktierung der eingesetzten Materialien können bekannte (Halbleiter)Technologien wie spin coating, (elektrostatische) Fixierung von (Nano)Kristallen, Kathodenzerstäubung (Sputtern), atomic layer deposition (ALD), Epitaxie, chemical vapor deposition (CVD), physical vapor deposition (PVD), chemical bath deposition (CBD) oder (elektro)chemische Methoden eingesetzt werden. Einzuhaltende Parameter, wie zum Beispiel Kontaktierungsbedingungen (Temperatur, Druck, Gasatmosphäre, Luftfeuchtigkeit, pH von Lösungen), stöchiometrische Zusammensetzung der Elektroden- und/oder Halbleitermaterialien, deren Rauigkeit, deren Stellung in der thermoelektrischen bzw. elektrochemischen Spannungsreihe, Ausbildung von (Dipol- )Schichten, Kristallgröße, Kristallflächenorientierung, Kristallinität, Kristallwasser(anteil), Art und Ausmaß der Gitterdefekte, Art und Ausmaß der Dotierung, Gitteranpassung, Schichtmorphologie, Dicke der aufgebrachten Schicht(en), deren Porosität, etc., sind dem Fachmann geläufig, sind in weiten Bereichen variierbar und sind (auf Basis gewonnener Versuchsergebnisse) optimierbar.Known (semiconductor) technologies such as spin coating, (electrostatic) fixation of (nano)crystals, cathode sputtering (sputtering), atomic layer deposition (ALD), epitaxy, chemical vapor deposition (CVD) can be used for the respective electron-conductive contacting of the materials used. , physical vapor deposition (PVD), chemical bath deposition (CBD) or (electro)chemical methods can be used. Parameters to be observed, such as contacting conditions (temperature, pressure, gas atmosphere, humidity, pH of solutions), stoichiometric composition of the electrode and/or semiconductor materials, their roughness, their position in the thermoelectric or electrochemical voltage series, formation of (dipole) Layers, crystal size, crystal face orientation, crystallinity, (proportion) of crystal water, type and extent of lattice defects, type and extent of doping, lattice matching, layer morphology, thickness of the applied layer(s), their porosity, etc., are known to the person skilled in the art, are in widely variable and can be optimized (on the basis of test results obtained).

Beispiel (als sog. „proof of concept“ ausgelegt):

  • Eingesetzte Materialien:
    • *) Das Material für die Kathode K ist Graphit mit ΦK4,7 eV.
    • *) Das Material für die Anode A ist Magnesium mit ΦA 3,7 eV.
    • *) Das n-Typ-Halbleitermaterial nHL ist Eisen(III)oxid Fe2O3. Gemäß Literatur wird von einer Energieposition des Leitungsbands LB von 5,1 eV; einer Fermi-Energie EFFe2O3 von 5,3 eV, einer Energieposition des Valenzbands VB von 7,5 eV und einer Bandlücke EgFe2O3 von 2,4 eV ausgegangen.
Example (designed as a so-called “proof of concept”):
  • Materials used:
    • *) The material for the cathode K is graphite with Φ K 4.7 eV.
    • *) The material for the anode A is magnesium with Φ A 3.7 eV.
    • *) The n-type semiconductor material nHL is iron(III) oxide Fe 2 O 3 . According to the literature, an energy position of the conduction band LB of 5.1 eV; a Fermi energy E FFe2O3 of 5.3 eV, an energy position of the valence band VB of 7.5 eV and a band gap E gFe2O3 of 2.4 eV.

Modifizierung der eingesetzten Materialoberflächen:

  • *) Eine ca. 0,3 mm starke Graphitfolie (Sigraflex®) wird auf einer Seite mechanisch mit Sandpapier aufgeraut. Diese Fläche wird mit einer wässrigen Lösung einer ca. 2,0%iger (w/v) Eisen(III)nitrat Fe(NO3)3*6H2O für ca. 60 min bedeckt. Überschüssige Lösung wird anschließend mit einem weichen Papiertuch entfernt.
  • *) Der ca. 17 mm lange Anteil eines 20 x 3,2 x 0,3 mm messendes Magnesiumbands wird für ca. 2 Sekunden in verdünnte Salpetersäure getaucht, wodurch unter Wasserstoffentwicklung die anhaftende Oxidschicht entfernt wird. Überschüssige Säure wird mit einem weichen Papiertuch entfernt.
Modification of the material surfaces used:
  • *) An approx. 0.3 mm thick graphite foil (Sigraflex®) is mechanically roughened on one side with sandpaper. This area is covered with an aqueous solution of an approx. 2.0% (w/v) iron(III) nitrate Fe(NO 3 ) 3 *6H 2 O for approx. 60 min. Excess solution is then removed with a soft paper towel.
  • *) The approx. 17 mm long part of a magnesium strip measuring 20 x 3.2 x 0.3 mm is immersed in diluted nitric acid for approx. 2 seconds, whereby the adhering oxide layer is removed while hydrogen is evolved. Excess acid is removed with a soft paper towel.

Zusammenbau des Bauelements:

  • *) Ein (flächig etwas größerer) Streifen der Graphitfolie wird mit der mit Eisen(III)nitratLösung behandelten Seite auf den oxidfreien Anteil des Magnesiumbandes plaziert. Dieses Konstrukt wird vorsichtig auf einen Arm eines eingeschalteten Haarglätters (,CeraStyle Mini Hair Straightener‘ (Moser Profiline)) platziert. Behandelte Graphitfolie und Magnesiumband werden durch (händisches) Zusammendrücken der Arme über eine Dauer von ca. 3 min innig miteinander kontaktiert. Der dabei ausgeübte Druck und die herrschende Temperatur von ca. 180°C bewirken, dass das Wasser der aufgebrachten Eisen(III)nitrat-Lösung verdampft und gleichzeitig Eisen(III)nitrat in Eisen(III)oxid (unter Abspaltung von NOx) umgewandelt wird. Hierdurch entsteht auch der durch Eisen(III)oxid vermittelte elektronen-leitende Kontakt zwischen Graphit-Kathode und Magnesium-Anode.
Assembling the component:
  • *) A (slightly larger) strip of graphite foil is placed on the oxide-free portion of the magnesium strip with the side treated with iron(III) nitrate solution. This construct is carefully placed on one arm of a powered hair straightener ('CeraStyle Mini Hair Straightener' (Moser Profiline)). Treated graphite foil and magnesium strip are intimately contacted by (manually) pressing the arms together for a period of about 3 minutes. The pressure exerted and the prevailing temperature of approx. 180°C cause the water in the iron(III) nitrate solution applied to evaporate and at the same time iron(III) nitrate is converted into iron(III) oxide (with the elimination of NO x ). will. This also creates the iron(III) oxide mediated electron-conducting contact between graphite cathode and magnesium anode.

Das Konstrukt wird mit einem transparenten Klebeband derart verklebt, dass die Enden von sowohl Graphitfolie und als auch Magnesiumband frei bleiben. Anschließend wird es zwischen zwei passenden Objektträgern aus Glas mit Klammern fixiert.The construct is taped with a transparent adhesive tape in such a way that the ends of both the graphite foil and the magnesium tape remain free. It is then fixed between two suitable glass slides with clamps.

Die Integration in einen Stromkreis des derart hergestellten Bauelements erfolgt dadurch, dass das freie Ende der (kathodischen) Graphitfolie mit dem Pluspol eines Multimeters verbindet und das freie Ende des (anodischen) Magnesiumbands mit dem Minuspol.The component produced in this way is integrated into a circuit by connecting the free end of the (cathodic) graphite foil to the positive pole of a multimeter and the free end of the (anodic) magnesium strip to the negative pole.

Bei Messungen des Kurzschlussstroms ISC finden sich bei Raumtemperatur und Raumlicht durchweg Werte von 5 µA/cm2. Bei Sonnenschein werden, durch den auf die Kathode K gerichteten Brennfleck einer Lupe, Werte um 500 µA/cm2 erzielt. Erfolgt die Messung der offenen Klemmenspannung VOC unmittelbar nach einer derartigen ISC-Messung, so finden sich VOC-Werte um 1,3 Volt. Im weiteren Verlauf, ohne zusätzliche Einwirkung elektromagnetischer Strahlung auf die Kathode K, gehen dann die VOC-Werte auf ca. 0,7 Volt zurück. - Selbst bei Raumtemperatur und Dunkelheit kommt es dann, innerhalb von ca. acht Stunden, zu einem Wiederanstieg des VOC-Wertes auf ca. 1,2 Volt. Wird beim maximalen VOC-Wert eine ISC-Messung vorgenommen, so finden sich initial Stromwerte von 400 µA/cm2, die dann kontinuierlich innerhalb von ca. 5 min auf Werte um 7 µA/cm2 abfallen. - Somit eignet sich das Bauelement als Energiespeicher, u.a. auch in Form eines sich selbstaufladenden Kondensators.Measurements of the short-circuit current I SC consistently show values of 5 µA/cm 2 at room temperature and room light. When the sun is shining, values of around 500 μA/cm 2 are achieved through the focal point of a magnifying glass directed at the cathode K. If the open terminal voltage V OC is measured immediately after such an I SC measurement, then V OC values are found around 1.3 volts. In the further course, without the additional effect of electromagnetic radiation on the cathode K, the V OC values then drop to around 0.7 volts. - Even at room temperature and in the dark, the V OC value then rises again to around 1.2 volts within around eight hours. If an I SC measurement is carried out at the maximum V OC value, current values of 400 µA/cm 2 are initially found, which then continuously drop to values of around 7 µA/cm 2 within approx. 5 minutes. - Thus, the component is suitable as an energy store, including in the form of a self-charging capacitor.

Die offene Klemmenspannung VOC des (in Epoxy eingegossenen) Bauelements ist, über Monate hinweg, mit ca. 1,3 Volt konstant, was sich auch in fehlender Korrosion der Anode A widerspiegelt.The open terminal voltage V OC of the component (encapsulated in epoxy) is constant at about 1.3 volts for months, which is also reflected in the lack of corrosion of the anode A.

Claims (4)

Festkörperbauelement umfassend - eine Kathode K, die elektromagnetischer Strahlung aussetzbar ist, - eine Anode A, - einen Elektrodenzwischenraum EZR, der von gegenüberliegenden Flächen von Kathode K und Anode A gebildet wird, - ein Halbleitermaterial HL im Elektrodenzwischenraum EZR, wobei zur Erzielung eines gerichteten Elektronenflusses zwischen Kathode K und Anode A - die Austrittsarbeit ΦK des Materials der Kathode K größer ist als die Austrittsarbeit ΦA des Materials der Anode A, - das Halbleitermaterial HL sowohl die Kathode K als auch die Anode A im Elektrodenzwischenraum EZR kontaktiert und ein n-Typ-Halbleitermaterial nHL ist, dessen Bandlücke EgHL größer als 2,0 eV ist und dessen Fermi-Energieposition EFnHL gleich oder größer als die Austrittsarbeit ΦK der Kathode K ist, - zwischen der Kathode K, dem n-Typ-Halbleitermaterial nHL und der Anode A elektronen-leitender Kontakt besteht, und - Bereiche der Kathode K und der Anode A, die nicht mit dem n-Typ-Halbleitermaterial nHL kontaktiert sind, zur Bildung eines Stromkreises über Stromsammler und gegebenenfalls einen Verbraucher miteinander verbindbar sind.Solid-state component comprising - a cathode K, which can be exposed to electromagnetic radiation, - an anode A, - an electrode space EZR, which is formed by opposite surfaces of cathode K and anode A, - a semiconductor material HL in the electrode space EZR, wherein to achieve a directed electron flow between cathode K and anode A - the work function Φ K of the material of the cathode K is greater than the work function Φ A of the material of the anode A, - the semiconductor material HL contacts both the cathode K and the anode A in the space between the electrodes EZR and an n- type semiconductor material nHL, whose band gap E gHL is greater than 2.0 eV and whose Fermi energy position E FnHL is equal to or greater than the work function Φ K of the cathode K, - between the cathode K, the n-type semiconductor material nHL and the anode A is in electron-conductive contact, and - regions of the cathode K and the anode A which are not connected to the n-type semiconductor material nHL are contacted to form a circuit via current collectors and optionally a consumer can be connected to each other. Festkörperbauelement nach Anspruch 1,wobei das Material der Kathode K elektronen-leitender Kohlenstoff ist.solid state device claim 1 ,wherein the material of the cathode K is electron-conductive carbon. Festkörperbauelement nach Anspruch 1 oder 2,wobei das Material der Anode A Magnesium oder eine Magnesiumlegierung ist.solid state device claim 1 or 2 ,wherein the material of the anode A is magnesium or a magnesium alloy. Festkörperbauelement nach einem der Ansprüche 1 bis 3, wobei das n-Typ-Halbleitermaterial nHL ZnO, Fe2O3, PbO, FeTiO3, BaTiO3, CuWO3, BiFe2O3, SnO2, TiO2, WO3, In2O3 oder Ga2O3 ist.Solid state device according to one of Claims 1 until 3 , wherein the n-type semiconductor material nHL is ZnO, Fe 2 O 3 , PbO, FeTiO 3 , BaTiO 3 , CuWO 3 , BiFe 2 O 3 , SnO 2 , TiO 2 , WO 3 , In 2 O 3 or Ga 2 O 3 is.
DE102021003370.1A 2021-06-30 2021-06-30 solid state device Withdrawn DE102021003370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102021003370.1A DE102021003370A1 (en) 2021-06-30 2021-06-30 solid state device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021003370.1A DE102021003370A1 (en) 2021-06-30 2021-06-30 solid state device

Publications (1)

Publication Number Publication Date
DE102021003370A1 true DE102021003370A1 (en) 2023-01-05

Family

ID=84493062

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021003370.1A Withdrawn DE102021003370A1 (en) 2021-06-30 2021-06-30 solid state device

Country Status (1)

Country Link
DE (1) DE102021003370A1 (en)

Similar Documents

Publication Publication Date Title
Yang et al. Highly ordered ZnO/ZnFe 2 O 4 inverse opals with binder-free heterojunction interfaces for high-performance photoelectrochemical water splitting
Saravanakumar et al. NiCo 2 S 4 nanosheet-decorated 3D, porous Ni film@ Ni wire electrode materials for all solid-state asymmetric supercapacitor applications
Bai et al. Boosting the efficiency of quantum dot sensitized solar cells up to 7.11% through simultaneous engineering of photocathode and photoanode
Chappel et al. Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18 nm SnO2 colloids
Hodes et al. Electrocatalytic electrodes for the polysulfide redox system
Balasingam et al. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges
Tennakone et al. Nanoporous n-/selenium/p-CuCNS photovoltaic cell
Yang et al. Visible light illuminated high-performance WO3-TiO2-BiVO4 nanocomposite photoanodes capable of energy self-storage for photo-induced cathodic protection
Zhang et al. Highly efficient, stable and reproducible CdSe-sensitized solar cells using copper sulfide as counter electrodes
Wu et al. Performance and electron transport properties of TiO2 nanocomposite dye-sensitized solar cells
Ganapathy et al. Cauliflower-like SnO 2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells
CN103972611A (en) Composite protective layer, photoelectrode structure, and photoelectrochemical cell
Yoo et al. Titanium nitride thin film as a novel charge collector in TCO-less dye-sensitized solar cell
Bozheyev et al. Efficient charge transfer at a homogeneously distributed (NH 4) 2 Mo 3 S 13/WSe 2 heterojunction for solar hydrogen evolution
Li et al. Electrodeposition and characterization of copper bismuth selenide semiconductor thin films
KR102593751B1 (en) Ultra-stable rechargeable manganese battery with solid-liquid-gas reaction
Azaceta et al. ZnO–ionic liquid hybrid films: electrochemical synthesis and application in dye-sensitized solar cells
Allam et al. Ternary Ti–Mo–Ni mixed oxide nanotube arrays as photoanode materials for efficient solar hydrogen production
Rajavedhanayagam et al. Cu2NiSnS4/graphene nanohybrid as a newer counter electrode to boost-up the photoconversion efficiency of dye sensitized solar cell
DE102021003370A1 (en) solid state device
DE102020002061B4 (en) solid state device
Harilal et al. Fabrication of Silver Peroxide–Zinc Rechargeable Battery
KR101710421B1 (en) Photo-electrode composed of CuO/ZnO nanorod-nanobranch structure and method of forming the structure
DE102021003372A1 (en) solid state device
DE102021003464A1 (en) solid state device

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee