DE102020131772A1 - Bearing component, method for its production, and roller bearing or plain bearing - Google Patents
Bearing component, method for its production, and roller bearing or plain bearing Download PDFInfo
- Publication number
- DE102020131772A1 DE102020131772A1 DE102020131772.7A DE102020131772A DE102020131772A1 DE 102020131772 A1 DE102020131772 A1 DE 102020131772A1 DE 102020131772 A DE102020131772 A DE 102020131772A DE 102020131772 A1 DE102020131772 A1 DE 102020131772A1
- Authority
- DE
- Germany
- Prior art keywords
- bearing
- ceramic layer
- bearing component
- electrically insulating
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/24—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
- F16C19/26—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C23/00—Bearings for exclusively rotary movement adjustable for aligning or positioning
- F16C23/02—Sliding-contact bearings
- F16C23/04—Sliding-contact bearings self-adjusting
- F16C23/043—Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/128—Porous bearings, e.g. bushes of sintered alloy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/20—Sliding surface consisting mainly of plastics
- F16C33/203—Multilayer structures, e.g. sleeves comprising a plastic lining
- F16C33/205—Multilayer structures, e.g. sleeves comprising a plastic lining with two layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/20—Sliding surface consisting mainly of plastics
- F16C33/208—Methods of manufacture, e.g. shaping, applying coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/583—Details of specific parts of races
- F16C33/586—Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/64—Special methods of manufacture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Die Erfindung betrifft ein Lagerbauteil (1) und ein Verfahren zu dessen Herstellung, aufweisend einen metallischen Grundkörper (2), der zumindest partiell eine elektrisch isolierende Beschichtung (4) umfassend eine Keramikschicht (6) mit Poren (8) und einen Kunststoff (10) zum Verfüllen der Poren (8) und Beschichten der Keramikschicht (6) aufweist, wobei die Keramikschicht (6) enthaltend mindestens 99 Gew.-% Aluminiumsilikat gebildet ist. Die Erfindung betrifft weiterhin ein Wälzlager oder Gleitlager umfassend mindestens ein derartiges Lagerbauteil (1).The invention relates to a bearing component (1) and a method for its production, having a metallic base body (2) which at least partially has an electrically insulating coating (4) comprising a ceramic layer (6) with pores (8) and a plastic (10) for filling the pores (8) and coating the ceramic layer (6), the ceramic layer (6) being formed to contain at least 99% by weight aluminum silicate. The invention further relates to a rolling bearing or plain bearing comprising at least one bearing component (1) of this type.
Description
Die Erfindung betrifft ein Lagerbauteil, aufweisend einen metallischen Grundkörper, der zumindest partiell eine elektrisch isolierende Beschichtung umfassend eine Keramikschicht mit Poren und einen Kunststoff zum Verfüllen der Poren und Beschichten der Keramikschicht aufweist. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung des Lagerbauteils sowie ein Wälzlager oder Gleitlager umfassend mindestens ein solches Lagerbauteil.The invention relates to a bearing component having a metallic base body which at least partially has an electrically insulating coating comprising a ceramic layer with pores and a plastic for filling the pores and coating the ceramic layer. The invention further relates to a method for producing the bearing component and a roller bearing or plain bearing comprising at least one such bearing component.
Derartige Lagerbauteile und deren Herstellung sowie Verwendung in elektrisch isolierenden Lagern sind aus der
Die
In heutigen Elektromotoren werden zunehmend elektrisch isolierte Wälzlager eingesetzt. Diese können die hochfrequenten Ströme, die beim Einsatz moderner Frequenzumrichter entstehen, zum Teil nicht mehr ausreichend isolieren. Durch die unzureichende elektrische Isolation kommt es zu einer Elektroerosion, also zur Abtragung von Material. Dies führt zu einer signifikanten Erhöhung der Reibung und/oder vorzeitigen Lagerausfällen.Electrically insulated roller bearings are increasingly being used in today's electric motors. Some of these can no longer adequately insulate the high-frequency currents that arise when modern frequency converters are used. The insufficient electrical insulation leads to electroerosion, i.e. the removal of material. This leads to a significant increase in friction and/or premature bearing failure.
Trotz des Einsatzes von elektrisch isolierenden Wälzlagern zur Unterbrechung des Stromkreises, nehmen in den letzten Jahren die Schäden durch die Elektroerosion stetig zu. Teilweise treten Schäden bereits nach geringer Laufleistung (ab 300.000 km) auf. Im Vergleich zur angestrebten Laufleistung von 1,5 Mio. km, sind Defekte also bereits nach 20 % der geplanten Laufleistung zu beobachten. Als wesentliche Ursache können die pulsweitenmodulierten (PWM) Frequenzumrichter angeführt werden. Diese arbeiten mit sehr hohen Schaltfrequenzen (ca. 3-12 kHz), die zu Spannungsanstiegen von bis zu 8-10 kV/µs führen können. Diese Spannungspulse der PWM-Ausgangsspannung des Frequenzumrichters induzieren parasitäre Ströme in den Motorwellen. Durch die kurzen Spannungspulse wird ein Antwortspektrum mit hohen Spannungsamplituden im hohen Frequenzbereich angeregt. Diese Spannungsamplituden können bis zu 1 kV betragen, das Frequenzspektrum reicht dabei von einigen kHz bis in den MHz-Bereich. Diese hochfrequenten Ströme verursachen die Elektroerosion.Despite the use of electrically insulating roller bearings to interrupt the circuit, damage caused by electrical erosion has increased steadily in recent years. In some cases, damage occurs even after a low mileage (from 300,000 km). Compared to the target mileage of 1.5 million km, defects can be observed after just 20% of the planned mileage. The pulse width modulated (PWM) frequency converters can be cited as the main cause. These work with very high switching frequencies (approx. 3-12 kHz), which can lead to voltage increases of up to 8-10 kV/µs. These voltage pulses of the PWM output voltage of the frequency converter induce parasitic currents in the motor shafts. A response spectrum with high voltage amplitudes in the high frequency range is excited by the short voltage pulses. These voltage amplitudes can be up to 1 kV, with the frequency spectrum ranging from a few kHz to the MHz range. These high-frequency currents cause electrical erosion.
Die aus dem Stand der Technik bekannten elektrisch isolierenden Beschichtungen, umfassend Keramikschichten meist aus Aluminiumoxid oder Aluminiumoxid und einem Zusatz von Titandioxid, stoßen bei hochfrequenten Zirkularströmen hinsichtlich des Isolationsverhaltens an ihre physikalischen Grenzen.The electrically insulating coatings known from the prior art, comprising ceramic layers mostly made of aluminum oxide or aluminum oxide and an addition of titanium dioxide, reach their physical limits with regard to the insulating behavior in the case of high-frequency circular currents.
Es ist Aufgabe der Erfindung, eine dahingehend verbesserte elektrisch isolierende Beschichtung für Lagerbauteile bereitzustellen und damit eine verbesserte Isolation an Lagern zu ermöglichen.It is the object of the invention to provide an electrically insulating coating for bearing components which is improved in this regard and thus to enable improved insulation on bearings.
Die Aufgabe wird für ein Lagerbauteil, aufweisend einen metallischen Grundkörper, der zumindest partiell eine elektrisch isolierende Beschichtung umfassend eine Keramikschicht mit Poren und einen Kunststoff zum Verfüllen der Poren und Beschichten der Keramikschicht aufweist, dadurch gelöst, dass die Keramikschicht enthaltend mindestens 99 Gew.-% Aluminiumsilikat enthaltend Mullit gebildet ist. Es werden damit hohe elektrische Isolationswerte erreicht.The object is achieved for a bearing component, having a metallic base body which at least partially has an electrically insulating coating comprising a ceramic layer with pores and a plastic for filling the pores and coating the ceramic layer, in that the ceramic layer contains at least 99% by weight Aluminum silicate containing mullite is formed. High electrical insulation values are thus achieved.
Ziel war es, die Impedanz Z (Wechselstromwiderstand) auch bei höheren Frequenzen f zu erhöhen, um durch den höheren Widerstand einen geringeren Stromdurchfluss durch ein Lager zu erreichen, um so die Elektroerosion zu minimieren. Die Impedanz einer elektrisch isolierenden Beschichtung bestimmt sich aus dem ohmschen Widerstand R (in der Praxis i.d.R. > 50 MΩ) und der Kapazität C der Beschichtund. Die frequenzabhängige Impedanz Z sinkt sowohl mit zunehmender Frequenz f, als auch mit zunehmender Kapazität C. Heutige Lager mit thermisch gespritzten elektrischen Isolationsschichten weisen schon bei einer Frequenz von f=50 Hz nur noch eine Impedanz Z von ca. 1,5 MΩ auf, was nur noch einem Bruchteil des Gleichstromwiderstandes entspricht. Ströme mit Frequenzen von mehreren kHz passieren die Lager nahezu ungehindert und führen so zu vermehrter Elektroerosion.The aim was to increase the impedance Z (alternating current resistance) even at higher frequencies f in order to achieve a lower current flow through a bearing due to the higher resistance, in order to minimize electrical erosion. The impedance of an electrically insulating coating is determined from the ohmic resistance R (usually > 50 MΩ in practice) and the capacitance C of the coating and. The frequency-dependent impedance Z decreases both with increasing frequency f and with increasing capacitance C. Today's bearings with thermally sprayed electrical insulation layers only have an impedance Z of approx. 1.5 MΩ at a frequency of f=50 Hz, which corresponds to only a fraction of the DC resistance. Currents with frequencies of several kHz pass the bearings almost unhindered and thus lead to increased electrical erosion.
Um die elektrische Isolationswirkung auch bei höheren Frequenzen zu erhalten, ist eine Verkleinerung der Kapazität C erforderlich. Bei gleichem Material könnte dies durch eine Vergrößerung der Schichtdicke bewerkstelligt werden. Eine Halbierung der Kapazität würde etwa eine Verdopplung der Schichtdicke bedeuten. Damit steigen allerdings die Herstellungskosten der Beschichtung erheblich. Außerdem könnte, aufgrund der dickeren Schichten, ein Austausch bereits verbauter Lager wegen der veränderten Durchmesser nicht mehr möglich sein, was eine erfolgreiche Markteinführung einer derartigen Lösung nahezu unmöglich machen würde.In order to maintain the electrical insulation effect even at higher frequencies, the capacitance C has to be reduced. With the same material, this could be achieved by increasing the layer thickness. Halving the capacitance would roughly mean doubling the layer thickness. However, this increases the production costs of the coating considerably. In addition, due to the thicker layers, replacing already installed bearings might no longer be possible due to the changed diameter, which would make a successful market launch of such a solution almost impossible.
Aus den genannten Gründen wurde die Kapazität C durch eine Kombination aus Werkstoff- und Prozesstechnik reduziert. Auf physikalischer Ebene bestimmt die materialabhängige relative Dielektrizitätskonstante (Permittivität) εr der Isolationsschicht die Kapazität C der Beschichtung. Je geringer die Permittivität εr ist, desto geringer wird die Kapazität C.For the reasons mentioned, the capacity C was reduced by a combination of material and process technology. On the physical level, the material-dependent relative dielectric constant (permittivity) εr of the insulating layer determines the capacitance C of the coating. The lower the permittivity εr, the lower the capacitance C.
Bei hohen Frequenzen ergibt sich daraus ein Zusammenhang zwischen Impedanz Z und Permittivität εr von Z proportional zu 1/εr. Die höhere Impedanz Z trägt bei praxisrelevanten Frequenzen zur Vermeidung von vorzeitigen Schäden, die die Lebensdauer eines Lagers signifikant reduzieren, bei. Darüber hinaus kann, bei einem auf 1,5 Mio. Fahrtkilometer ausgelegten Lager, eine Absenkung der Permittivität εr um 33 % eine Erhöhung der Lebensdauer um 500.000 km bedeuten. Da die Elektroerosion erst ab einem bestimmten Grenzstrom eintritt und die Absenkung der Permittivität εr eine Unterschreitung des Grenzstroms zur Folge haben kann, handelt es sich hierbei um eine konservative Schätzung. Die realen Potentiale hinsichtlich der Laufleistung werden durch den Einsatz eines erfindungsgemäßen Lagerbauteils noch deutlich höher bewertet.At high frequencies, this results in a relationship between the impedance Z and the permittivity εr of Z proportional to 1/εr. At frequencies relevant in practice, the higher impedance Z helps to avoid premature damage, which significantly reduces the service life of a bearing. In addition, for a bearing designed for 1.5 million kilometers, a 33% reduction in permittivity εr can mean an increase in service life of 500,000 km. Since electroerosion only occurs above a certain limiting current and the lowering of the permittivity εr can result in the current falling below the limiting current, this is a conservative estimate. The real potentials in terms of mileage are rated even higher by using a bearing component according to the invention.
Im Vergleich zu Aluminiumoxid konnte das für die Keramikschicht eingesetzte Aluminiumsilikat enthaltend Mullit, insbesondere weiterhin Korund, ausgehend von der materialspezifischen Kenngröße der relativen Permittivität εr, die elektrische Isolation signifikant verbessern. Bei Mullit (3 Al2O3 · 2 SiO2) handelt es sich um die einzige thermodynamisch stabile Phase im System Al2O3·SiO2. Aluminiumsilikat enthaltend Mullit und insbesondere weiterhin Korund zeigt signifikant gesteigerte Impedanzen im Vergleich zu Referenzschichten aus Aluminumoxid. Die Permittivität εr von Al2O3 liegt bei etwa 8,5, während die Permittivität εr von Aluminiumsilikat Al2O3+SiO2 bereits bei etwa 7,2 liegt.Compared to aluminum oxide, the aluminum silicate used for the ceramic layer containing mullite, in particular corundum, was able to significantly improve the electrical insulation, based on the material-specific parameter of the relative permittivity εr. Mullite (3 Al 2 O 3 .2 SiO 2 ) is the only thermodynamically stable phase in the Al 2 O 3 .SiO 2 system. Aluminum silicate containing mullite and in particular also corundum shows significantly increased impedances compared to reference layers made of aluminum oxide. The permittivity εr of Al 2 O 3 is around 8.5, while the permittivity εr of aluminum silicate Al 2 O 3 +SiO 2 is already around 7.2.
Es hat sich als vorteilhaft erwiesen, wenn die Keramikschicht enthaltend ein Aluminiumsilikat mit einem Anteil an Al2O3 im Bereich von 70 bis 80 Gew.-% und an SiO2 im Bereich von 20 bis 30 Gew.-% gebildet ist. Besonders bevorzugt ist es, wenn die Keramikschicht enthaltend ein Aluminiumsilikat mit einem Anteil an Al2O3 von 77 Gew.-% und an SiO2 von 23 Gew.-% gebildet ist.It has proven to be advantageous if the ceramic layer is formed containing an aluminum silicate with a proportion of Al 2 O 3 in the range from 70 to 80% by weight and SiO 2 in the range from 20 to 30% by weight. It is particularly preferred if the ceramic layer is formed containing an aluminum silicate with a proportion of Al 2 O 3 of 77% by weight and of SiO 2 of 23% by weight.
Insbesondere ist es bevorzugt, wenn die Keramikschicht überwiegend aus Mullit gebildet ist. Es hat sich bewährt, wenn die Keramikschicht überwiegend aus Mullit gebildet ist und weiterhin Korund aufweist.In particular, it is preferred if the ceramic layer is predominantly formed from mullite. It has proven useful if the ceramic layer is predominantly made of mullite and also has corundum.
Die Keramikschicht kann weiterhin < 1 Gew.-% TiO2 enthalten, um eine Einfärbung der Keramikschicht zu bewirken. Alternativ kann eine Einfärbung erreicht werden, wenn die Keramikschicht 0,1 bis 3 Gew.-% Cr2O3 enthaltend ausgebildet ist.The ceramic layer can also contain <1% by weight of TiO 2 in order to color the ceramic layer. Alternatively, coloring can be achieved if the ceramic layer is designed to contain 0.1 to 3% by weight of Cr 2 O 3 .
Die Keramikschicht ist insbesondere mittels thermischen Spritzens gebildet. Dabei bildet sich ein Anteil an Poren in der Keramikschicht von bis zu 30 Vol.-%, insbesondere im Bereich von 5 bis 9 Vol.-%, aus. Dabei können sowohl eine geschlossene Porosität wie auch eine offene Porosität vorliegen. Im Bereich der Oberfläche der Keramikschicht liegende und von dort zugängliche Poren werden mit Kunststoff verschlossen.The ceramic layer is formed in particular by means of thermal spraying. A proportion of pores of up to 30% by volume, in particular in the range from 5 to 9% by volume, forms in the ceramic layer. Both closed porosity and open porosity can be present. Pores in the area of the surface of the ceramic layer that are accessible from there are sealed with plastic.
Der Kunststoff ist insbesondere ein elektrisch isolierender Kunststoff. In einer bevorzugten Ausführungsform ist der Kunststoff durch mindestens einen Stoff aus der Gruppe umfassend ein Harz, Siloxan, Polyester, Acryl, gebildet.The plastic is in particular an electrically insulating plastic. In a preferred embodiment, the plastic is formed by at least one substance from the group consisting of a resin, siloxane, polyester, and acrylic.
Eine Schichtdicke D der elektrisch isolierenden Beschichtung beträgt vorzugsweise 0,05 bis 2,0 mm. Die Schichtdicke D ist nach unten aufgrund der Erfordernis eines minimalen elektrischen Isolationsvermögens begrenzt und nach oben durch die Einbaumaße für das Lagerbauteil.A layer thickness D of the electrically insulating coating is preferably 0.05 to 2.0 mm. The lower limit of the layer thickness D is due to the requirement for a minimum electrical insulation capacity and the upper limit due to the installation dimensions for the bearing component.
Es hat sich bewährt, wenn das erfindungsgemäße Lagerbauteil durch einen Lagerring eines Wälzlagers oder eines Gleitlagers gebildet ist.It has proven useful if the bearing component according to the invention is formed by a bearing ring of a roller bearing or a plain bearing.
Ein Verfahren zur Ausbildung des erfindungsgemäßen Lagerbauteils mit den folgenden Schritten hat sich bewährt:
- • Reinigen des metallischen Grundkörpers;
- • Ausbilden der Keramikschicht auf dem metallischen Grundkörper mittels thermischen Spritzens;
- • Aufbringen des Kunststoffs auf die Keramikschicht, so dass deren (zugängliche) Poren verfüllt und die Keramikschicht beschichtet wird; und
- • Aushärten des Kunststoffs.
- • cleaning of the metal body;
- • forming the ceramic layer on the metallic base body by means of thermal spraying;
- • Application of the plastic to the ceramic layer so that its (accessible) pores are filled and the ceramic layer is coated; and
- • Hardening of the plastic.
Die Verwendung eines Aluminiumsilikatpulvers mit einem Al2O3-Anteil im Bereich von 70 bis 80 Gew.-% und einem SiO2-Anteil im Bereich von 20 bis 30 Gew.-% ist bevorzugt. Die mittels thermischen Spitzens gebildete Keramikschicht aus einem derart zusammengesetzten Aluminiumsilikat zeigt hohe Impedanzwerte. Besonders bevorzugt ist es, wenn die Keramikschicht enthaltend ein Aluminiumsilikat mit einem Anteil an Al2O3 von 77 Gew.-% und an SiO2 von 23 Gew.-% gebildet ist.The use of an aluminum silicate powder with an Al 2 O 3 content in the range from 70 to 80% by weight and an SiO 2 content in the range from 20 to 30% by weight is preferred. The ceramic layer formed by means of thermal spikes from an aluminum silicate composed in this way shows high impedance values. It is particularly preferred if the ceramic layer is formed containing an aluminum silicate with a proportion of Al 2 O 3 of 77% by weight and of SiO 2 of 23% by weight.
Auch eine Anpassung der Spritzparameter zur Reduktion der amorphen Anteile in der Keramikschicht führt zu einer Verbesserung der elektrischen Isolationseigenschaften der Keramikschicht. Die Ausbildung eines amorphen Anteils wird in diesem Fall ausgehend von dem SiO2-Anteil vermutet. Um eine solche Reduktion amorpher Anteile zu erreichen, wird bevorzugt eine Reduktion der Temperatur der Spritzpartikel eingestellt. Dazu wird bevorzugt ein Prozessgas aus Argon beim Thermischen Spritzen eingesetzt, wobei dem Argon maximal bis zu 5 Standardliter pro Minute an Wasserstoff zugesetzt sind. Die amorphen Anteile der Keramikschicht werden dadurch gezielt reduziert und deren kristalline Anteile erhöht. Die kristallinen Anteile erhöhen zusätzlich zu der ausgewählten Zusammensetzung umfassend Mullit das elektrische Isolationsvermögen der KeramikschichtAdjusting the spraying parameters to reduce the amorphous components in the ceramic layer also leads to an improvement in the electrical insulation properties of the ceramic layer. In this case, the formation of an amorphous portion is presumed based on the SiO 2 portion. In order to achieve such a reduction in amorphous components, a reduction in the temperature of the sprayed particles is preferably set. For this purpose, a process gas of argon is preferably used in thermal spraying, with the argon being added at most to 5 standard liters per minute of hydrogen are. The amorphous parts of the ceramic layer are reduced in a targeted manner and their crystalline parts are increased. In addition to the selected composition comprising mullite, the crystalline fractions increase the electrical insulating capacity of the ceramic layer
Thermisch gespritztes Aluminiumsilikat weist eine rein weiße Farbe mit vereinzelnten schwarzen Punkten auf. Es hat sich daher bewährt, dem Aluminiumsilikat eine geringe Menge an TiO2, insbesondere im Bereich von < 1 Gew.-%, beizumischen, um einen gräulichen Farbton der Keramikschicht zu erhalten. Es konnte festgestellt werden, dass ein solcher TiO2-Zusatz dabei keinen deutlichen Einfluss auf die Impedanz der Keramikschicht aufweist. Alternativ kann eine Einfärbung erreicht werden, wenn die Keramikschicht enthaltend 0,1 bis 3 Gew.-% Cr2O3 ausgebildet ist.Thermally sprayed aluminum silicate is pure white in color with scattered black dots. It has therefore proven useful to add a small amount of TiO 2 , in particular in the range of <1% by weight, to the aluminum silicate in order to obtain a greyish hue in the ceramic layer. It could be determined that such a TiO 2 additive has no significant influence on the impedance of the ceramic layer. Alternatively, coloring can be achieved if the ceramic layer is formed to contain 0.1 to 3% by weight of Cr 2 O 3 .
Ein Wälzlager oder Gleitlager, umfassend zumindest einen ein- oder mehrteiligen Lagerinnenring und einen ein- oder mehrteiligen Lageraußenring hat sich bewährt, bei welchem ein Teil des Lagerinnenringes aufweisend eine, einen Lagerinnendurchmesser bildende erste Oberfläche und/oder ein Teil des Lageraußenringes aufweisend eine, einen Lageraußendurchmesser bildende zweite Oberfläche durch ein erfindungsgemäßes Lagerbauteil gebildet ist.A rolling bearing or plain bearing comprising at least one single or multi-part bearing inner ring and one single or multi-part bearing outer ring has proven itself, in which a part of the bearing inner ring has a first surface forming a bearing inner diameter and/or a part of the bearing outer ring has a bearing outer diameter forming second surface is formed by a bearing component according to the invention.
Die elektrisch isolierende Beschichtung bildet insbesondere zumindest die erste Oberfläche und/oder die zweite Oberfläche. Optional bedeckt die elektrisch isolierende Beschichtung weiterhin mindestens eine daran angrenzende Stirnfläche des ein- oder mehrteiligen Lagerinnenringes und/oder des ein- oder mehrteiligen Lageraußenringes. Dadurch erfolgt eine elektrische Isolation des jeweiligen Lagerringes zu einem Anschlussbauteil, wie einer Welle, einer Achse, einem Gehäuse und dergleichen, mit dem der Lagerring am Einsatzort des Lagers verbunden wird.In particular, the electrically insulating coating forms at least the first surface and/or the second surface. Optionally, the electrically insulating coating also covers at least one adjacent end face of the one-part or multi-part bearing inner ring and/or the one-part or multi-part bearing outer ring. As a result, the respective bearing ring is electrically insulated from a connection component, such as a shaft, an axle, a housing and the like, to which the bearing ring is connected at the point of use of the bearing.
Als Wälzlager haben sich Zylinderrollenlager, Nadellager, Kegelrollenlager, Kugellager, Tonnenlager, Schrägkugellager und dergleichen bewährt. Als Gleitlager können selbstschmierende Gleitlager, hydrodynamische Gleitlager oder hydrostatische Gleitlager eingesetzt werden.Cylindrical roller bearings, needle bearings, tapered roller bearings, ball bearings, spherical roller bearings, angular contact ball bearings and the like have proven themselves as roller bearings. Self-lubricating plain bearings, hydrodynamic plain bearings or hydrostatic plain bearings can be used as plain bearings.
Die
-
1 ein Lagerbauteil in Form eines Lagerringes mit elektrisch isolierender Beschichtung; -
2 einen Schnitt durch ein Lagerbauteil in Form eines Lagerringes mit elektrisch isolierender Beschichtung in dreidimensionaler Darstellung; -
3 einen Schnitt durchden Lagerring gemäß 2 ; -
4 ein Wälzlager mit einem Lagerbauteil; und -
5 ein Gleitlager mit einem Lagerbauteil;
-
1 a bearing component in the form of a bearing ring with an electrically insulating coating; -
2 a section through a bearing component in the form of a bearing ring with an electrically insulating coating in a three-dimensional representation; -
3 according to a section through thebearing ring 2 ; -
4 a rolling bearing with a bearing component; and -
5 a sliding bearing with a bearing component;
Die
BezugszeichenlisteReference List
- 1, 1'1, 1'
- Lagerbauteilbearing component
- 22
- Grundkörperbody
- 33
- Lagerringbearing ring
- 3a1, 3a23a1, 3a2
- Lagerinnenringbearing inner ring
- 3b3b
- Lageraußenringbearing outer ring
- 44
- Beschichtungcoating
- 55
- Stirnflächeface
- 66
- Keramikschichtceramic layer
- 77
- erste Oberflächefirst surface
- 88th
- zweite Oberflächesecond surface
- 99
- Wälzkörperrolling elements
- 1010
- Kunststoffplastic
- 1111
- Wälzlagerroller bearing
- 1212
- Gleitlagerbearings
- DD
- Schichtdickelayer thickness
ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDED IN DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents cited by the applicant was generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturPatent Literature Cited
- WO 2014174382 A1 [0002]WO 2014174382 A1 [0002]
- JP 2016014413 A2 [0003]JP 2016014413 A2 [0003]
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020131772.7A DE102020131772A1 (en) | 2020-12-01 | 2020-12-01 | Bearing component, method for its production, and roller bearing or plain bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020131772.7A DE102020131772A1 (en) | 2020-12-01 | 2020-12-01 | Bearing component, method for its production, and roller bearing or plain bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102020131772A1 true DE102020131772A1 (en) | 2022-06-02 |
Family
ID=81586122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102020131772.7A Ceased DE102020131772A1 (en) | 2020-12-01 | 2020-12-01 | Bearing component, method for its production, and roller bearing or plain bearing |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102020131772A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050094910A1 (en) | 2003-10-31 | 2005-05-05 | Ntn Corporation | Rolling bearing assembly having an improved resistance to electric corrosion |
US20090304318A1 (en) | 2005-10-27 | 2009-12-10 | Nsk Ltd | Electrolytic Erosion Preventing Insulated Rolling Bearing, Manufacturing Method Thereof, and Bearing Device |
WO2014174382A1 (en) | 2013-04-25 | 2014-10-30 | Coatec Gmbh | Bearing ring, electrically insulating coating and method for applying an electrically insulating coating |
JP2016014413A (en) | 2014-07-01 | 2016-01-28 | 日本精工株式会社 | Insulating rolling bearing for the prevention of electrolytic corrosion |
-
2020
- 2020-12-01 DE DE102020131772.7A patent/DE102020131772A1/en not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050094910A1 (en) | 2003-10-31 | 2005-05-05 | Ntn Corporation | Rolling bearing assembly having an improved resistance to electric corrosion |
US20090304318A1 (en) | 2005-10-27 | 2009-12-10 | Nsk Ltd | Electrolytic Erosion Preventing Insulated Rolling Bearing, Manufacturing Method Thereof, and Bearing Device |
WO2014174382A1 (en) | 2013-04-25 | 2014-10-30 | Coatec Gmbh | Bearing ring, electrically insulating coating and method for applying an electrically insulating coating |
JP2016014413A (en) | 2014-07-01 | 2016-01-28 | 日本精工株式会社 | Insulating rolling bearing for the prevention of electrolytic corrosion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2989338B1 (en) | Bearing ring and method for applying an electrically insulating coating | |
DE69925943T2 (en) | Spark plug with built-in resistor | |
DE102012204052B4 (en) | High-voltage bushing with conductive inserts for direct voltage and method for their production | |
DE102009014753A1 (en) | Bearing ring with electrical insulation and process for its preparation | |
DE102010039065B4 (en) | Grounding device for grounding a shaft | |
DE102018221429A1 (en) | Prechamber spark plug cap, process for its production and prechamber spark plug | |
DE102020131772A1 (en) | Bearing component, method for its production, and roller bearing or plain bearing | |
EP1793474A2 (en) | Rolling bearing arrangement with an electrically insulating coating | |
DE102012202155A1 (en) | roller bearing | |
DE69409588T2 (en) | Electrode for suppressing electrical noise waves and method for producing the same | |
DE102005043636A1 (en) | Spark plug with higher durability and resistance to carbon contamination | |
WO2013143807A1 (en) | Rolling bearing with an electrically insulating lacquer coating | |
EP3688774B1 (en) | Insulation system, insulation substance and insulation material for producing the insulation system | |
DE102013226667B4 (en) | Spark plug with seal made of a non-conductive material | |
EP2837073A1 (en) | Over-voltage arrester | |
WO2017140577A1 (en) | Compact dry-type transformer comprising an electrical winding, and method for manufacturing an electrical winding | |
WO2017140606A1 (en) | Oil-water heat exchanger, in particular for the internal combustion engine of a motor vehicle | |
DE69816299T2 (en) | Implementation for an electrical device | |
DE102020201509A1 (en) | Rolling bearing with an electrically insulating layer and method for applying an electrically insulating layer | |
EP3410451B1 (en) | Shield ring for a transformer coil | |
DE102013216995B3 (en) | Method for operating a bearing arrangement | |
DE102014010777A1 (en) | High voltage cables | |
DE102017212026A1 (en) | Shield ring and / or pitch compensation for a transformer coil | |
DE102021112997A1 (en) | Coating and coating processes for electrical machines | |
DE102018117212A1 (en) | Spark plug with polymer sealing ring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R002 | Refusal decision in examination/registration proceedings | ||
R003 | Refusal decision now final |