DE102020101639A1 - Rotor and axial flux machine - Google Patents

Rotor and axial flux machine Download PDF

Info

Publication number
DE102020101639A1
DE102020101639A1 DE102020101639.5A DE102020101639A DE102020101639A1 DE 102020101639 A1 DE102020101639 A1 DE 102020101639A1 DE 102020101639 A DE102020101639 A DE 102020101639A DE 102020101639 A1 DE102020101639 A1 DE 102020101639A1
Authority
DE
Germany
Prior art keywords
rotor
carrier
axial
flux
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102020101639.5A
Other languages
German (de)
Inventor
Holger Witt
Matthias Gramann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Priority to DE102020101639.5A priority Critical patent/DE102020101639A1/en
Priority to PCT/DE2020/101027 priority patent/WO2021148069A1/en
Publication of DE102020101639A1 publication Critical patent/DE102020101639A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2798Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors

Abstract

Die Erfindung betrifft einen Rotor (1) für eine elektrische, motorisch und/oder generatorisch betreibbare Axialflussmaschine (2), umfassend einen Träger (3), eine Vielzahl von an, auf oder in dem Träger (3) angeordneten, sich radial nach außen erstreckenden Magnetelementen (4), wobei die Magnetelemente (4) in Umfangsrichtung magnetisiert ausgebildet und einzeln oder in Gruppen umfänglich mit entgegengesetzter Magnetisierungsrichtung abwechselnd aufeinanderfolgend angeordnet sind, und eine Vielzahl von an, auf oder in dem Träger (3) angeordneten, umfänglich zwischen den Magnetelementen (4) angeordneten, den Magnetfluss leitenden Flussleitelementen (5). Gemäß der Erfindung weist der Rotor (1) bzw. der Träger (3) auf seiner axialen Rückseite ein Abschirmelement (6) aus magnetisch leitfähigem Material auf.

Figure DE102020101639A1_0000
The invention relates to a rotor (1) for an axial flux machine (2) that can be operated electrically, as a motor and / or as a generator, comprising a carrier (3), a plurality of radially outwardly extending ones arranged on, on or in the carrier (3) Magnetic elements (4), the magnetic elements (4) being magnetized in the circumferential direction and being arranged individually or in groups circumferentially alternately with opposite magnetization direction, and a plurality of arranged on, on or in the carrier (3), circumferentially between the magnetic elements ( 4) arranged, the magnetic flux conducting flux guide elements (5). According to the invention, the rotor (1) or the carrier (3) has a shielding element (6) made of magnetically conductive material on its axial rear side.
Figure DE102020101639A1_0000

Description

Die vorliegende Erfindung betrifft einen Rotor für eine elektrische, motorisch und/oder generatorisch betreibbare Axialflussmaschine, umfassend einen Träger, eine Vielzahl von an, auf oder in dem Träger angeordneten, sich radial von innen nach außen erstreckenden Magnetelementen und eine Vielzahl von umfänglich zwischen den Magnetelementen angeordneten, den Magnetfluss leitenden Flussleitelementen. Die Magnetelemente sind dabei in Umfangsrichtung magnetisiert ausgebildet und einzeln oder in Gruppen umfänglich mit entgegengesetzter Magnetisierungsrichtung abwechselnd aufeinanderfolgend angeordnet. Die Erfindung betrifft darüber hinaus eine Axialflussmaschine.The present invention relates to a rotor for an electric, motor-driven and / or generator-driven axial flux machine, comprising a carrier, a plurality of magnet elements arranged on, on or in the carrier, extending radially from the inside to the outside, and a plurality of circumferentially between the magnet elements arranged, the magnetic flux conducting flux guide elements. The magnetic elements are designed to be magnetized in the circumferential direction and are arranged alternately one behind the other individually or in groups circumferentially with the opposite direction of magnetization. The invention also relates to an axial flow machine.

Aus der DE 10 2013 218 829 A1 ist bereits ein Rotor für eine Axialflussmaschine bekannt. Bei diesem Rotor wird durch die Rotorbleche eine Art Rahmen gebildet, in welchen Inlays integriert werden. Die Rotorbleche weisen dabei einzelne Ausstanzungen sowohl für die Magnete als auch für die Inlays auf.From the DE 10 2013 218 829 A1 a rotor for an axial flux machine is already known. In this rotor, the rotor laminations form a type of frame into which inlays are integrated. The rotor laminations have individual punchings for both the magnets and the inlays.

Weitere Aufbauten von Rotoren für Axialflussmaschinen bzw. von Axialflussmaschinen selbst sind unter anderem beschrieben durch die DE 10 2017 204 434 A1 , die DE 10 2005 053 119 A1 , die DE 10 2004 038 884 A1 , die DE 10 2015 208 281 A1 , die DE 10 2017127 157 A1 oder die WO 2018/015293 A1 .Further structures of rotors for axial flux machines or of axial flux machines themselves are described, inter alia, by the DE 10 2017 204 434 A1 , the DE 10 2005 053 119 A1 , the DE 10 2004 038 884 A1 , the DE 10 2015 208 281 A1 , the DE 10 2017 127 157 A1 or the WO 2018/015293 A1 .

Der magnetische Fluss in einem Axialflussmotor (Elektromotor) ist im Luftspalt zwischen Stator und Rotor axial gerichtet. Ein geblechter Rotor für hohe Drehzahlen und Frequenzen ist in axialer Richtung geschichtet ausgebildet. Der axiale Magnetfluss muss dabei die Kleberschichten überwinden, wodurch der Magnetkreis eine Scherung (zusätzlicher Luftspalt) erfährt und an Effizienz verliert. Hierdurch wiederum verliert der Motor an Kraft. Für den axialen magnetischen Fluss wird oft SMC (soft magnetic components / soft magnetic powder) eingesetzt, da hier ein 3D-Fluss ohne signifikante Wirbelströme möglich ist. Für kleinere Rotoren ist ein homogener SMC Rotor möglich, solange die mechanische Belastung die geringe Festigkeit des SMC nicht übersteigt.The magnetic flux in an axial flux motor (electric motor) is axially directed in the air gap between the stator and rotor. A laminated rotor for high speeds and frequencies is layered in the axial direction. The axial magnetic flux has to overcome the adhesive layers, as a result of which the magnetic circuit experiences a shear (additional air gap) and loses its efficiency. This in turn causes the engine to lose power. For the axial magnetic flux, SMC (soft magnetic components / soft magnetic powder) is often used, since a 3D flux without significant eddy currents is possible here. A homogeneous SMC rotor is possible for smaller rotors as long as the mechanical load does not exceed the low strength of the SMC.

Der Erfindung liegt die Aufgabe zugrunde einen Rotor für eine Axialflussmaschine als auch eine Axialflussmaschine bereitzustellen, die dahingehend optimiert sind, dass das Laufverhalten des Rotors in der Axialflussmaschine bzw. das Laufverhalten der Axialflussmaschine selbst verbessert ist. Mit Vorteil soll ein Rotor bzw. eine Axialflussmaschine geschaffen werden, wobei die auftretenden Leistungsverluste innerhalb einer elektrischen Axialflussmaschine minimiert sind.The invention is based on the object of providing a rotor for an axial flux machine as well as an axial flux machine, which are optimized to the effect that the running behavior of the rotor in the axial flux machine or the running behavior of the axial flux machine itself is improved. A rotor or an axial flux machine should advantageously be created, the power losses occurring within an electrical axial flux machine being minimized.

Diese Aufgabe wird jeweils gelöst durch die Gesamtheit der Merkmale der einzelnen unabhängigen Patentansprüche 1 und 9. Bevorzugte Weiterbildungen der Erfindung sind jeweils in den Unteransprüchen definiert.This object is achieved in each case by the entirety of the features of the individual independent claims 1 and 9. Preferred developments of the invention are each defined in the subclaims.

Ein erfindungsgemäß ausgebildeter Rotor für eine elektrische, motorisch und/oder generatorisch betreibbare Axialflussmaschine umfasst einen Träger, eine Vielzahl von an, auf oder in dem Träger angeordneten, sich radial nach außen erstreckenden Magnetelementen und eine Vielzahl von an, auf oder in dem Träger angeordneten, umfänglich zwischen den Magnetelementen angeordneten, den Magnetfluss leitenden Flussleitelementen. Die Magnetelemente sind dabei in Umfangsrichtung magnetisiert ausgebildet und einzeln oder in Gruppen umfänglich mit entgegengesetzter Magnetisierungsrichtung abwechselnd aufeinanderfolgend angeordnet. Erfindungsgemäß weist der Träger bzw. der Rotor auf seiner axialen Rückseite (bzw. der dem Luftspalt abgekehrten axialen Seite) ein Abschirmelement aus magnetisch leitfähigem Material auf. Hierdurch wird der Vorteil erzielt, dass der auf der Rückseite des Rotors in Form von Magnetflusslinien austretende und ein Streufeld bildende Magnetfluss kurzgeschlossen wird und dass austretende Magnetfeld in seiner Stärke minimiert wird. Dadurch wird wiederum das Laufverhalten der elektrischen Maschine verbessert, da durch das Streufeld und den rotierenden Rotor erzeugte Wirbelströme und dadurch verursachte Bremswirkungen weitestgehend vermieden werden können. Die Verlustwärme wird entsprechend reduziert.A rotor designed according to the invention for an electrical, motorized and / or generator operated axial flux machine comprises a carrier, a plurality of radially outwardly extending magnet elements arranged on, on or in the carrier and a plurality of arranged on, on or in the carrier, Flux guide elements which are arranged circumferentially between the magnetic elements and conduct the magnetic flux. The magnetic elements are designed to be magnetized in the circumferential direction and are arranged alternately one behind the other individually or in groups circumferentially with the opposite direction of magnetization. According to the invention, the carrier or the rotor has a shielding element made of magnetically conductive material on its axial rear side (or the axial side facing away from the air gap). This has the advantage that the magnetic flux exiting on the rear side of the rotor in the form of lines of magnetic flux and forming a stray field is short-circuited and the strength of the exiting magnetic field is minimized. This in turn improves the running behavior of the electrical machine, since eddy currents generated by the stray field and the rotating rotor and the braking effects caused by them can be largely avoided. The heat loss is reduced accordingly.

Unter den obigen genannten unterschiedlichen Alternativen von „an“, „auf“ oder „in“ dem Träger sind folgende Ausführungen beispielhaft gemeint:

  • • „an“: Der Träger ist besteht z.B. aus einem innenliegenden Nabenkörper, wobei die Magnete und Flussleitelemente radial außen auf dem Nabenkörper befestigt sind und oder z.B. mittels einem Rings radial auf den Nabenkörper gehalten werden.
  • • „auf“: Der Träger hat einen scheibenförmigen Bereich oder radial rausragende Streben oder andere rausragende Tragelemente, auf dem oder auf denen die magnetisch aktiven Bauteile befestigt sind (z.B. Kleben)
  • • „in“: Der Träger und die Magnetleitelemente sind ähnlich den Figuren angeordnet.
Among the different alternatives of "on", "on" or "in" the carrier mentioned above, the following statements are meant as examples:
  • • "On": The carrier consists, for example, of an internal hub body, with the magnets and flux guide elements being attached to the hub body radially on the outside and, for example, held radially on the hub body by means of a ring.
  • • "On": The carrier has a disk-shaped area or radially protruding struts or other protruding support elements on which the magnetically active components are attached (e.g. gluing)
  • • "in": The carrier and the magnetic guide elements are arranged similar to the figures.

Eine Axialflussmaschine im Sinne der Erfindung ist dadurch gekennzeichnet, dass der im Luftspalt zwischen Rotor und Stator erzeugte Magnetfluss sich in axialer Richtung parallel zur Drehachse der elektrischen Maschine erstreckt. Mit anderen Worten erfolgt die Ausdehnung des Luftspalts in einer Ebene die senkrecht zur Rotationsachse des Rotors ausgebildet ist.An axial flux machine within the meaning of the invention is characterized in that the magnetic flux generated in the air gap between rotor and stator extends in the axial direction parallel to the axis of rotation of the electrical machine. In other words, the air gap is expanded in a plane that is perpendicular to the axis of rotation of the rotor.

Das Magnetflussleitmaterial ist bevorzugt aus Eisenpulver oder aus einer Mischung mit Eisenpulver gebildet. Besonders bevorzugt wird SMC-Material verwendet.The magnetic flux conducting material is preferably formed from iron powder or from a mixture with iron powder. SMC material is particularly preferably used.

In einer besonders bevorzugten Ausführungsform des Trägers weist dieser einen Innenring auf, über den der Rotor drehfest mit einer Welle verbindbar ist, und einen Außenring, der den Rotor in radialer Richtung nach außen begrenzt. Der Träger kann zwischen Innenring und Außenring mit einem Bodenteil ausgebildet sein, über das der Innenring und der Außenring miteinander verbunden sind und welches gemeinsam mit der radialen Außenringfläche des Innenrings und der radialen Innenringfläche des Außenrings einen in Richtung Luftspalt offenen Aufnahmeraum für die Aufnahme der Magnetelemente und der Flussleitelemente des Rotors bildet. Möglich ist auch eine Ausbildung des Trägers als Nabenkonstruktion, die sich bis zum Innenradius des Magnetkreises erstreckt und die mit aufgesetzten Dauermagneten und Flussleitstücken bestückt ausgebildet ist. Ein Faßringband oder eine sonstige Methode (Kleben, Formschluss) hält dann die aufgesetzten Dauermagneten und Flussleitstücke in Position.In a particularly preferred embodiment of the carrier, this has an inner ring, via which the rotor can be connected to a shaft in a rotationally fixed manner, and an outer ring which delimits the rotor outward in the radial direction. The carrier can be formed between the inner ring and the outer ring with a bottom part via which the inner ring and the outer ring are connected to one another and which, together with the radial outer ring surface of the inner ring and the radial inner ring surface of the outer ring, provides a receiving space open in the direction of the air gap for receiving the magnetic elements and which forms the flux guide elements of the rotor. It is also possible to design the carrier as a hub construction which extends as far as the inner radius of the magnetic circuit and which is equipped with attached permanent magnets and flux guide pieces. A ring band or some other method (gluing, form fit) then holds the attached permanent magnets and flux guide pieces in position.

In einer anderen möglichen Ausführungsform eines Trägers ist ein Träger ohne Außenring vorgesehen und und/oder ohne Bodenteil (quasi als zentrales Nabenteil mit radial nach außen weisenden Speichen mit radial nachaußen weisendem freien Ende, ohne einen begrenzenden Außenring). Die Magnetelemente sowie die Flussleitelemente können durch eine Verklebung am Träger nach radial innen gehalten werden. Alternativ oder zusätzlich zu einer Verklebung können die Magnetelemente und die Flussleitelemente auch mechanisch durch Krallenelemente, welche dann mittels Streben am innenliegenden nabenartig ausgebildeten Trägerkörper abgestützt werden, fixiert werden.In another possible embodiment of a carrier, a carrier is provided without an outer ring and / or without a base part (quasi as a central hub part with radially outwardly pointing spokes with a radially outwardly pointing free end, without a limiting outer ring). The magnet elements and the flux guide elements can be held radially inward by gluing on the carrier. As an alternative or in addition to gluing, the magnetic elements and the flux guiding elements can also be fixed mechanically by claw elements, which are then supported by means of struts on the inner hub-like carrier body.

Als Trägermaterial werden bevorzugt Materialien mit einem hohem elektrischen spezifischem Widerstand, mit einer hohen mechanischen Zugfestigkeit und mit einer geringen spezifischen Dichte verwendet. Bevorzugte Materialien hierfür können faserverstärkte Kunststoffe oder Aluminium sein.The carrier material used is preferably materials with a high electrical specific resistance, with a high mechanical tensile strength and with a low specific density. Preferred materials for this can be fiber-reinforced plastics or aluminum.

Gemäß einer vorteilhaften Ausgestaltung der Erfindung kann vorgesehen sein, dass Abschirmelement als kreisringscheibenförmiges Blechteil, welches bevorzugt aus Elektroblech gebildet ist, ausgebildet ist. Mit Vorteil ist das Abschirmelement derart ausgebildet, dass es die axiale Rückseite des Rotors zumindest über die Kreisringfläche abdeckt, die innerhalb des Rotors durch die Magnetelemente und die Flussleitelemente abgedeckt ist. Besonders bevorzugt deckt das Abschirmelement die gesamte Rückseite des Trägers bzw. des Rotors ab und erstreckt sich vom Rand der Wellenöffnung, radial nach außen, bis zum Ende des Trägeraußenrings. Das Abschirmelement ist so auszulegen und in seiner axialen Dicke derart zu bemessen und mit einem definierten Abstand zu den Magnetelementen und den Flussleitelementen auf der Rotorrückseite anzuordnen, dass es im Betrieb der elektrischen Maschine nicht in eine magnetische Sättigung geht. Der Vorteil dieser Ausgestaltung liegt darin, dass mit konstruktiv einfachen Mitteln eine effektive Lösung zur Reduzierung der Streufelder auf der Rückseite eines Rotors einer Axialflussmaschine gefunden worden ist.According to an advantageous embodiment of the invention, it can be provided that the shielding element is designed as a sheet metal part in the shape of a circular ring disk, which is preferably formed from electrical steel. The shielding element is advantageously designed in such a way that it covers the axial rear side of the rotor at least over the circular ring surface which is covered within the rotor by the magnetic elements and the flux guide elements. The shielding element particularly preferably covers the entire rear side of the carrier or of the rotor and extends from the edge of the shaft opening, radially outward, to the end of the carrier outer ring. The shielding element is to be designed and dimensioned in its axial thickness in such a way and to be arranged at a defined distance from the magnetic elements and the flux guide elements on the rear of the rotor that it does not become magnetically saturated when the electrical machine is in operation. The advantage of this embodiment is that an effective solution for reducing the stray fields on the back of a rotor of an axial flow machine has been found with structurally simple means.

Alternativ zu einer Ausgestaltung als Blechteil kann das Abschirmelement auch als beschichtete Folie ausgebildet sein, was wiederum vorteilhaft im Hinblick auf den Zusammenbau des Rotors sein kann.As an alternative to a design as a sheet metal part, the shielding element can also be designed as a coated film, which in turn can be advantageous with regard to the assembly of the rotor.

Es kann gemäß einer bevorzugten Weiterentwicklung der Erfindung auch vorgesehen sein, dass der Träger auf seiner Rückseite ein Distanzelement aufweist, welches das Abschirmelement auf einen definierten Abstand zu den Magnetelementen und den Flussleitelementen beabstandet hält. Hierdurch wird eine Möglichkeit geschaffen für unterschiedliche technische Auslegungen der elektrischen Maschine einen definierten Abstand zwischen dem auf der Rotorrückseite angeordneten Abschirmelement und den im Träger angeordneten Magnet- und Flussleitelementen zu gewährleisten.According to a preferred further development of the invention, it can also be provided that the carrier has a spacer element on its rear side, which keeps the shielding element at a defined distance from the magnet elements and the flux guide elements. This creates a possibility for different technical designs of the electrical machine to ensure a defined distance between the shielding element arranged on the rear of the rotor and the magnet and flux guide elements arranged in the carrier.

Des Weiteren kann es gemäß einer ebenfalls vorteilhaften Ausgestaltung der Erfindung vorgesehen sein, dass der Träger ein inneres Trägerringteil und ein äußeres Trägerringteil aufweist, wobei das innere Trägerringteil und das äußere Trägerringteil über ein ringscheibenartig ausgebildetes Trägerbodenteil miteinander verbunden sind. Ferner kann es vorgesehen sein, dass das Distanzelement durch das Trägerbodenteil des Trägers, einteilig mit dem Träger ausgebildet, oder als separates zwischen dem Träger und dem Abschirmelement angeordnetes Bauteil ausgeführt ist. Die vorteilhafte Wirkung dieser Ausgestaltung ist darin begründet, dass durch das Bodenteil des Trägers ein Distanzelement zur axialen Beabstandung des Abschirmelements in den Träger integriert ausgebildet werden kann. Durch ein separates Distanzelement, ob zusätzlich zum Trägerboden oder bei einem bodenlosen Träger, können die gewünschten axialen Abstände zum Abschirmelement sehr flexibel eingestellt werden.Furthermore, according to a likewise advantageous embodiment of the invention, it can be provided that the carrier has an inner carrier ring part and an outer carrier ring part, the inner carrier ring part and the outer carrier ring part being connected to one another via an annular disk-like carrier base part. Furthermore, it can be provided that the spacer element is formed in one piece with the carrier through the carrier base part of the carrier, or is designed as a separate component arranged between the carrier and the shielding element. The advantageous effect of this embodiment is based on the fact that a spacer element for axially spacing the shielding element can be integrated into the carrier through the base part of the carrier. With a separate spacer element, whether in addition to the carrier base or in the case of a base-less carrier, the desired axial distances from the shielding element can be set very flexibly.

Des Weiteren kann die Erfindung auch dahingehend weiterentwickelt sein, dass das Abschirmelement drehfest mit dem Träger verbunden ist. Der Vorteil dieser Ausgestaltung ist, dass in dem Abschirmelement selbst keine Wirbelströme durch eine Relativbewegung zwischen Abschirmelement und Träger erzeugt werden und hierdurch auftretende Verluste vermieden werden - im Gegensatz zu einer Abschirmung durch ein ortsfestes Gehäuse, bei der systembedingt entsprechende Wirbelströme im Gehäuse erzeugt und damit einhergehende Verluste entstehen.Furthermore, the invention can also be further developed in such a way that the shielding element is connected to the carrier in a rotationally fixed manner. The advantage of this configuration is that no eddy currents are generated in the shielding element itself by a relative movement between the shielding element and the carrier and losses that occur as a result are avoided - in contrast to shielding by a stationary housing, in which System-related, corresponding eddy currents are generated in the housing and associated losses arise.

In einer ebenfalls bevorzugten Ausgestaltung der Erfindung kann auch vorgesehen sein, dass die Flussleitelemente aus SMC-Material hergestellt sind. Alternativ können diese auch durch laminierte Bleche, insbesondere aus Elektroblech, gebildet sein.In a likewise preferred embodiment of the invention, it can also be provided that the flux guide elements are made from SMC material. Alternatively, these can also be formed by laminated metal sheets, in particular made of electrical steel sheet.

In einer anderen vorteilhaften Ausführungsform kann der Rotor als Nabenkonstruktion umgesetzt sein, die bis ca. zum Innenradius des Magnetkreises besteht und mit aufgesetzten Dauermagneten und Flussleitstücken versehen ist. In another advantageous embodiment, the rotor can be implemented as a hub construction, which exists up to approximately the inner radius of the magnetic circuit and is provided with attached permanent magnets and flux guide pieces.

Ein Faßringband oder eine sonstige Methode (Kleben, Formschluss) hält dann die aufgesetzten Dauermagneten und Flussleitstücke in Position.A ring band or some other method (gluing, form fit) then holds the attached permanent magnets and flux guide pieces in position.

Die der Erfindung zugrundeliegende Aufgabe wird darüber hinaus gelöst durch eine Axialflussmaschine mit einem erfindungsgemäß ausgebildeten Rotor. Eine derartige Axialflussmaschine umfasst einen Rotor mit einem Träger und mit einer Vielzahl von Magnetelementen und mit einer Vielzahl von den Magnetfluss leitenden Flussleitelementen, die an, auf oder indem Träger angeordnet sind, und einen Stator mit einer Mehrzahl von Spulenmagneten, wobei der Stator an einer ersten axialen Rotorseite unter Bildung eines ersten Luftspalts angeordnet ist und ein Magnetfeld erzeugt, welches sich im Wesentlichen in axialer Richtung in Richtung Rotor erstreckt. Besonders bevorzugt ist die Axialflussmaschine in H-Anordnung ausgebildet und weist einen in der Mitte angeordneten drehfest angeordneten Stator sowie links und rechts vom Stator, axial über jeweils einen Luftspalt beabstandet angeordnet, jeweils einen Rotor auf.The object on which the invention is based is also achieved by an axial flux machine with a rotor designed according to the invention. Such an axial flux machine comprises a rotor with a carrier and with a plurality of magnetic elements and with a plurality of the magnetic flux-conducting flux guide elements, which are arranged on, on or in the carrier, and a stator with a plurality of coil magnets, the stator on a first Axial rotor side is arranged to form a first air gap and generates a magnetic field which extends substantially in the axial direction in the direction of the rotor. Particularly preferably, the axial flux machine is designed in an H-arrangement and has a stator arranged in the center, non-rotatably arranged, and a rotor each to the left and right of the stator, axially spaced by an air gap in each case.

Nachfolgend wird die Erfindung anhand von Figuren ohne Beschränkung des allgemeinen Erfindungsgedankens näher erläutert werden.The invention is explained in more detail below with reference to figures without restricting the general inventive concept.

Es zeigen:

  • 1 eine Axialflussmaschine gemäß dem Stand der Technik in Perspektivansicht in schematischer Darstellung, mit einem zwischen zwei Statoren angeordneten Rotor,
  • 2 eine weitere Axialflussmaschine gemäß dem Stand der Technik in Perspektivansicht in schematischer Darstellung, in H-Anordnung,
  • 3 einen erfindungsgemäßen Rotor in einem Axialschnitt, in schematischer Darstellung,
  • 4 den Rotor gemäß 3 in zwei verschiedenen Perspektivansichten, wobei in der oberen Ansicht eine Ansicht von vorn und in der unteren Ansicht eine Ansicht von hinten auf den Rotor dargestellt ist,
  • 5 schematisch den Verlauf der Feldlinien im Rotor, Luftspalt, Stator und auf der Rückseite des Rotors für den Fall ohne eine magnetische Abschirmung,
  • 6 die magnetische Flussdichte entlang einer imaginären Schnittlinie, bei einer Rotorausführung ohne magnetische Abschirmung (siehe 5),
  • 7 schematisch den Verlauf der Feldlinien im Rotor, Luftspalt, Stator und auf der Rückseite des Rotors für den Fall mit einer magnetischen Abschirmung bei einem erfindungsgemäß ausgebildeten Rotor, und
  • 8 in Analogie zu 6 die magnetische Flussdichte entlang einer imaginären Schnittlinie bei einer Ausgestaltung mit Abschirmelement gemäß der Erfindung (siehe 7).
Show it:
  • 1 an axial flux machine according to the prior art in a perspective view in a schematic representation, with a rotor arranged between two stators,
  • 2 a further axial flow machine according to the prior art in a perspective view in a schematic representation, in an H-arrangement,
  • 3 a rotor according to the invention in an axial section, in a schematic representation,
  • 4th the rotor according to 3 in two different perspective views, the top view showing a front view and the bottom view showing a rear view of the rotor,
  • 5 schematically the course of the field lines in the rotor, air gap, stator and on the back of the rotor for the case without a magnetic shield,
  • 6th the magnetic flux density along an imaginary line of intersection, with a rotor design without magnetic shielding (see 5 ),
  • 7th schematically the course of the field lines in the rotor, air gap, stator and on the rear side of the rotor for the case with a magnetic shield in a rotor designed according to the invention, and
  • 8th In analogy to 6th the magnetic flux density along an imaginary line of intersection in an embodiment with a shielding element according to the invention (see 7th ).

1 zeigt eine Axialflussmaschine 2 gemäß dem Stand der Technik in Perspektivansicht in schematischer Darstellung, mit einem zwischen zwei Statoren 11 angeordneten Rotor 1 in ihrem prinzipiellen Aufbau. Die Axialflussmaschine 2 umfasst einen Rotor 1, der hier schematisch ohne seine Trägerteile aber mit umfänglich abwechselnd aufeinanderfolgenden Magnetelementen 4 und Flussleitelementen 5 gezeigt ist. In der oberen Darstellung ist ein erster Stator 11 in einer Draufsicht von innen gezeigt, so dass hier gut die einzelnen Statorspulen des Stators 11 erkennbar sind. Mit Vorteil sind jeweils zwei benachbarte Statorspulen zusammengeschaltet, wobei sich über insgesamt sechs benachbarte Statorspulen drei um jeweils 120 Winkelgrad versetzt angesteuerte Statorspulenpakete ergeben. Würde der erste Stator 11, der oberen Darstellung um 180 Winkelgrad nach unten geklappt und unter Bildung eines ersten Luftspaltes 13 vom Rotor 1 axial beabstandet gehalten, würde sich die einheitliche kompakte Axialflussmaschine 2 im „zusammengesetzten“ Zustand ergeben. In der unteren Darstellung ist eine Draufsicht auf das verbleibende Stator-Rotorpaket gezeigt, wobei der zweite Stator 11, axial durch einen zweiten Luftspalt 13 beabstandet unterhalb des Rotors 1 angeordnet ist. 1 shows an axial flow machine 2 according to the prior art in a perspective view in a schematic representation, with one between two stators 11 arranged rotor 1 in their basic structure. The axial flow machine 2 includes a rotor 1 , the one here schematically without its carrier parts but with circumferentially alternating magnetic elements 4th and flux guide elements 5 is shown. In the illustration above is a first stator 11 shown in a plan view from the inside, so that here the individual stator coils of the stator 11 are recognizable. Advantageously, two adjacent stator coils are connected together, with a total of six adjacent stator coils resulting in three stator coil packs, each controlled offset by 120 angular degrees. Would be the first stator 11 , the upper illustration folded down by 180 degrees and forming a first air gap 13th from the rotor 1 kept axially spaced, the unitary compact axial flow machine would 2 in the "assembled" state. In the illustration below, a plan view of the remaining stator rotor core is shown, with the second stator 11 , axially through a second air gap 13th spaced below the rotor 1 is arranged.

2 zeigt eine weitere Axialflussmaschine 2 gemäß dem Stand der Technik in Perspektivansicht in schematischer Darstellung, in H-Anordnung. Dabei ist axial beidseitig eines mittig angeordneten Stators 11 mit Statorspulen, jeweils beabstandet durch einen Luftspalt 13, ein Rotor 1 angeordnet. 2 shows another axial flow machine 2 according to the prior art in a perspective view in a schematic representation, in an H-arrangement. A centrally arranged stator is axially on both sides 11 with stator coils, each spaced by an air gap 13th , a rotor 1 arranged.

3 zeigt einen erfindungsgemäßen Rotor 1 in einem Axialschnitt, in schematischer Darstellung. Der Rotor 1 umfasst einen ringscheibenartig ausgebildeten Träger 3, eine Vielzahl von in dem Träger 3 angeordneten, sich radial nach außen erstreckenden Magnetelementen 4, und eine Vielzahl von in dem Träger 3 angeordneten, umfänglich zwischen den Magnetelementen 4 angeordneten, den Magnetfluss leitenden Flussleitelementen 5,
wobei der Träger 3 auf seiner axialen Rückseite ein Abschirmelement 6 aus magnetisch leitfähigem Material aufweist. Der Träger 3 weist einen Trägerinnenring 8 auf, über den der Rotor 1 drehfest mit einer nicht dargestellten Welle verbindbar ist, und einen Trägeraußenring 9, der den Rotor 1 in radialer Richtung nach außen begrenzt. Der Träger 3 weist zwischen Trägerinnenring 8 und Trägeraußenring 9 ein Trägerbodenteil 10 auf, über das der Trägerinnenring 8 und der Trägeraußenring 9 miteinander verbunden sind und welches gemeinsam mit der radialen Außenringfläche des Trägerinnenrings 8 und der radialen Innenringfläche des Trägeraußenrings 9 einen in Richtung Luftspalt 13 offenen Aufnahmeraum für die Aufnahme der Magnetelemente 4 und der Flussleitelemente 5 des Rotors 1 bildet. Das Abschirmelement 6 ist als ringscheibenförmiges Blechteil ausgebildet und überdeckt die rückseitige Kreisringfläche des Trägers 3 vollständig. Der Figur ist auch gut entnehmbar, dass das Abschirmelement 6 über das Trägerbodenteil 10 des Trägers 3 axial von den Magnetelementen 4 und den Flussleitelementen 5 beabstandet ist. In dieser Ausführung ist das Distanzelement 7 durch das integrierte Trägerbodenteil 10 gebildet. Im dargestellten Ausführungsbeispiel sind die Flussleitelemente 5 aus SMC-Material gebildet, welches in die Aufnahmeräume zwischen die Magnetelemente 4 eingepresst ist und über eine vom Trägeraußenring 8 radial nach innen weisende Kante gegen ein Herausfallen aus dem Aufnahmeraum gesichert ist.
3 shows a rotor according to the invention 1 in an axial section, in a schematic representation. The rotor 1 comprises a carrier designed in the manner of an annular disk 3 , a variety of in the carrier 3 arranged, radially outwardly extending magnetic elements 4th , and a variety of in the carrier 3 arranged, circumferentially between the magnetic elements 4th arranged, the magnetic flux conducting flux guide elements 5 ,
being the carrier 3 a shielding element on its axial rear side 6th made of magnetically conductive material. The carrier 3 has an inner ring 8th on over which the rotor 1 is rotatably connectable to a shaft, not shown, and a carrier outer ring 9 holding the rotor 1 limited in the radial direction to the outside. The carrier 3 points between carrier inner ring 8th and carrier outer ring 9 a support base part 10 on over which the inner carrier ring 8th and the carrier outer ring 9 are connected to each other and which together with the radial outer ring surface of the carrier inner ring 8th and the radial inner ring surface of the carrier outer ring 9 one in the direction of the air gap 13th open receiving space for receiving the magnetic elements 4th and the flux guide elements 5 of the rotor 1 forms. The shielding element 6th is designed as an annular disk-shaped sheet metal part and covers the rear circular ring surface of the carrier 3 Completely. The figure also clearly shows that the shielding element 6th over the carrier base part 10 of the wearer 3 axially from the magnetic elements 4th and the flux guide elements 5 is spaced. In this version, the spacer element is 7th thanks to the integrated support base 10 educated. In the illustrated embodiment, the flux guide elements 5 made of SMC material, which is in the receiving spaces between the magnetic elements 4th is pressed in and over one of the carrier outer ring 8th radially inwardly facing edge is secured against falling out of the receiving space.

4 zeigt den Rotor 1 gemäß 3 in zwei verschiedenen Perspektivansichten, wobei in der oberen Ansicht eine Ansicht von schräg vorn und in der unteren Ansicht eine Ansicht von schräg hinten auf den Rotor 1 dargestellt ist. Dabei ist in der oberen Ansicht durch die in die Magnetelemente 4 eingezeichneten Pfeile gut die sich umfänglich abwechselnde Magnetrichtung erkennbar, während in der unteren Darstellung gezeigt ist, dass das Abschirmelement 6 derart ausgebildet ist, dass es sich in etwa über die rückseitige kreisringförmige Fläche des Trägers 3 erstreckt, auf der zwischen Trägerinnenring 8 und Trägeraußenring 9 auf der Trägerinnenseite die Magnetelemente 4 und Flussleitelemente 5 angeordnet sind. 4th shows the rotor 1 according to 3 in two different perspective views, the top view being an oblique view from the front and the bottom view being a view obliquely from the rear of the rotor 1 is shown. In the upper view through the in the magnetic elements 4th The circumferentially alternating magnetic direction can be easily recognized by the arrows drawn in, while the lower illustration shows that the shielding element 6th is designed such that it extends approximately over the rear circular surface of the carrier 3 extends on the between the carrier inner ring 8th and carrier outer ring 9 the magnetic elements on the inside of the carrier 4th and flux guide elements 5 are arranged.

5 zeigt schematisch den Verlauf der Feldlinien im Rotor 1, Luftspalt 13, Stator 11 und auf der Rückseite des Rotors 1 für den Fall ohne eine magnetische Abschirmung. Die dargestellten Feldlinien verlaufen ohne Abschirmung auch im Bereich des stehenden Gehäuses oder andere Bauteile in der Nähe der Rückseite des Rotors 1. Falls diese Bauteile aus elektrisch leitendem Material bestehen, wird bei einer Rotationsbewegung des Rotors 1 in diesem Material ein wechselndes Magnetfeld erzeugt, welches Wirbelströme erzeugt. Diese Wirbelströme wirken bremsend auf den Rotor und erzeugen Verlustwärme. 5 shows schematically the course of the field lines in the rotor 1 , Air gap 13th , Stator 11 and on the back of the rotor 1 for the case without a magnetic shield. The field lines shown also run without shielding in the area of the upright housing or other components near the rear of the rotor 1 . If these components are made of electrically conductive material, a rotational movement of the rotor 1 an alternating magnetic field is generated in this material, which generates eddy currents. These eddy currents have a braking effect on the rotor and generate heat loss.

In 6 ist beispielhaft die magnetische Flussdichte entlang einer imaginären Schnittlinie dargestellt. Auf der X-Achse ist dabei die Wegstrecke im Luftspalt Und außerhalb des Luftspalts) in mm in einem Bereich von -10 mm bis +30 mm abgebildet, während auf der Y-Achse die magnetische Feldstärke B im Luftspalt in Tesla, in einem Bereich zwischen 10-2 und 10° Tesla angegeben ist. Es zeigt sich das die Feldstärke B auch in größeren Abständen zur rückseitigen Oberfläche der Magnete noch merkbar vorhanden ist.In 6th the magnetic flux density is shown as an example along an imaginary cutting line. On the X-axis the distance in the air gap and outside the air gap) is shown in mm in a range from -10 mm to +30 mm, while on the Y-axis the magnetic field strength B in the air gap in Tesla, in a range between 10 -2 and 10 ° Tesla is given. It can be seen that the field strength B is still noticeably present at greater distances from the rear surface of the magnets.

Im Realfall wird die Flussdichte auf der Rückseite des Rotors zusätzlich durch die induzierten Magnetfelder aufgrund der stromdurchflossenen Wicklungen im Stator beeinflusst. Je nach Phasenlage zwischen Bestromung der Wicklung und Rotorlage wird das Magnetfeld auf der Rückseite verstärkt. Dies ist in den schematischen Darstellungen der 5 und 6 nicht berücksichtigt.In the real case, the flux density on the back of the rotor is also influenced by the induced magnetic fields due to the current-carrying windings in the stator. Depending on the phase position between the current supply to the winding and the rotor position, the magnetic field is strengthened on the rear side. This is in the schematic representations of the 5 and 6th not taken into account.

7 zeigt schematisch den Verlauf der magnetischen Feldlinien im Rotor 1, Luftspalt 13, Stator 11 und auf der Rückseite des Rotors 1 für den Fall mit einer magnetischen Abschirmung mit einem Abschirmelement 6 bei einem erfindungsgemäß ausgebildeten Rotor 1. 7 zeigt ein ähnliches Bild wie 5, jedoch mit einer durch ein Abschirmelement 6 realisierten magnetischen Isolierung auf der Rückseite des Rotors 1. Die Feldlinien auf der Rückseite des Rotors 1 werden im Material des Abschirmelements 6 kurzgeschlossen und im Bereich hinter dem Abschirmelement 6 (oberhalb des Abschirmelements 6) ist kaum noch eine magnetische Flussdichte vorhanden. 7th shows schematically the course of the magnetic field lines in the rotor 1 , Air gap 13th , Stator 11 and on the back of the rotor 1 in the case of magnetic shielding with a shielding element 6th in the case of a rotor designed according to the invention 1 . 7th shows a picture similar to 5 , but with one through a shielding element 6th implemented magnetic insulation on the back of the rotor 1 . The field lines on the back of the rotor 1 are in the material of the shielding element 6th short-circuited and in the area behind the shielding element 6th (above the shielding element 6th ) there is hardly any magnetic flux density left.

Dies ist auch in 8 ersichtlich. Auf der X-Achse ist dabei die Wegstrecke im Luftspalt Und außerhalb des Luftspalts) in mm, analog zur Auflösung in 6, in einem Bereich von -10 mm bis +30 mm abgebildet, während auf der Y-Achse, in einer deutlich feineren Auflösung als in 6, die magnetische Feldstärke B im Luftspalt in Tesla, in einem Bereich zwischen 10-5 und 100 Tesla angegeben ist. Bei einem Abstand von zirka 9 mm bis 10 mm zeigt sich eine erhöhte Flussdichte aufgrund der sammelnden und kurzschließenden Wirkung des Abschirmelements 6. Ab einem Bereich oberhalb von zirka 11 mm ist die Flussdichte ca. um den Faktor 100 kleiner als in 6. Da sich das Abschirmelement 6 mit dem Rotor 1 mit dreht, entstehen in diesem keine Wirbelströme aufgrund einer Relativbewegung zum Magnetfeld, wie dies der Fall für z.B. eine stehende Gehäusewand aus elektrisch leitfähigem Material wäre. So dass die Anforderungen bezüglich Vermeidung von Wirbelströmen in der magnetischen Abschirmung deutlich geringer ausfallen als bei im Falle einer möglichen Relativbewegung (wie dies z.B. bei einem Motorgehäuse ohne magnetische Abschirmung der Fall wäre).This is also in 8th evident. On the X-axis there is the distance in the air gap and outside the air gap) in mm, analogous to the resolution in 6th , in a range from -10 mm to +30 mm, while on the Y-axis, in a much finer resolution than in 6th , the magnetic field strength B in the air gap is given in Tesla, in a range between 10 -5 and 10 0 Tesla. At a distance of approximately 9 mm to 10 mm, there is an increased flux density due to the collecting and short-circuiting effect of the shielding element 6th . From an area above approx. 11 mm, the flux density is approx. 100 times smaller than in 6th . Since the shielding element 6th with the rotor 1 with rotates, no eddy currents arise in this due to a movement relative to the magnetic field, as would be the case, for example, for a standing housing wall made of electrically conductive material. So that the requirements regarding the avoidance of eddy currents in the magnetic shield are significantly lower than in the case of a possible relative movement (such as this, for example would be the case with a motor housing without magnetic shielding).

Die Erfindung ist nicht auf die in den Figuren dargestellten Ausführungsformen beschränkt. Die vorstehende Beschreibung ist daher nicht als beschränkend, sondern als erläuternd anzusehen. Die nachfolgenden Patentansprüche sind so zu verstehen, dass ein genanntes Merkmal in zumindest einer Ausführungsform der Erfindung vorhanden ist. Dies schließt die Anwesenheit weiterer Merkmale nicht aus. Sofern die Patentansprüche und die vorstehende Beschreibung ‚erste‘ und ‚zweite‘ Merkmal definieren, so dient diese Bezeichnung der Unterscheidung zweier gleichartiger Merkmale, ohne eine Rangfolge festzulegen.The invention is not limited to the embodiments shown in the figures. The above description is therefore not to be regarded as restrictive, but rather as explanatory. The following patent claims are to be understood in such a way that a named feature is present in at least one embodiment of the invention. This does not exclude the presence of further features. If the patent claims and the above description define “first” and “second” features, this designation serves to distinguish between two similar features without defining an order of precedence.

BezugszeichenlisteList of reference symbols

11
Rotorrotor
22
AxialflussmaschineAxial flow machine
33
Trägercarrier
44th
MagnetelementMagnetic element
55
FlussleitelementFlux guide element
66th
AbschirmelementShielding element
77th
DistanzelementSpacer element
88th
inneres Trägerringteilinner carrier ring part
99
äußeres Trägerringteilouter carrier ring part
1010
TrägerbodenteilCarrier base part
1111
Statorstator
1212th
SpulenmagnetCoil magnet
1313th
LuftspaltAir gap

ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDED IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant was generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturPatent literature cited

  • DE 102013218829 A1 [0002]DE 102013218829 A1 [0002]
  • DE 102017204434 A1 [0003]DE 102017204434 A1 [0003]
  • DE 102005053119 A1 [0003]DE 102005053119 A1 [0003]
  • DE 102004038884 A1 [0003]DE 102004038884 A1 [0003]
  • DE 102015208281 A1 [0003]DE 102015208281 A1 [0003]
  • DE 102017127157 A1 [0003]DE 102017127157 A1 [0003]
  • WO 2018/015293 A1 [0003]WO 2018/015293 A1 [0003]

Claims (11)

Rotor (1) für eine elektrische, motorisch und/oder generatorisch betreibbare Axialflussmaschine (2), umfassend - einen Träger (3), - eine Vielzahl von an, auf oder in dem Träger (3) angeordneten, sich radial von innen nach außen erstreckenden Magnetelementen (4), wobei die Magnetelemente (4) in Umfangsrichtung magnetisiert ausgebildet und einzeln oder in Gruppen umfänglich mit entgegengesetzter Magnetisierungsrichtung abwechselnd aufeinanderfolgend angeordnet sind, - und eine Vielzahl von an, auf oder in dem Träger (3) angeordneten, umfänglich zwischen den Magnetelementen (4) angeordneten, den Magnetfluss leitenden Flussleitelementen (5), dadurch gekennzeichnet, dass der Träger (3) beziehungsweise der Rotor (1) auf seiner axialen Rückseite ein Abschirmelement (6) aus magnetisch leitfähigem Material aufweist.A rotor (1) for an electric, motor-driven and / or generator-driven axial flux machine (2), comprising - a carrier (3), - a plurality of radially extending from the inside to the outside, arranged on, on or in the carrier (3) Magnetic elements (4), the magnetic elements (4) being magnetized in the circumferential direction and being arranged individually or in groups circumferentially alternately with opposite magnetization direction, - and a plurality of circumferentially arranged on, on or in the carrier (3) between the magnetic elements (4) arranged, the magnetic flux conducting flux guide elements (5), characterized in that the carrier (3) or the rotor (1) has a shielding element (6) made of magnetically conductive material on its axial rear side. Rotor (1) nach Anspruch 1, dadurch gekennzeichnet, dass Abschirmelement (6) als ringscheibenförmiges Blechteil ausgebildet ist.Rotor (1) Claim 1 , characterized in that the shielding element (6) is designed as an annular disk-shaped sheet metal part. Rotor (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Träger (3) bzw. der Rotor (1) auf seiner Rückseite ein Distanzelement (7) aufweist, welches das Abschirmelement (6) auf einen definierten axialen Abstand zu den Magnetelementen (4) und den Flussleitelementen (5) beabstandet hält.Rotor (1) according to one of the preceding claims, characterized in that the carrier (3) or the rotor (1) has a spacer element (7) on its rear side, which sets the shielding element (6) at a defined axial distance from the magnetic elements (4) and the flux guide elements (5) spaced apart. Rotor (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Träger (3) ein inneres Trägerringteil (8) und ein äußeres Trägerringteil (9) aufweist, wobei das innere Trägerringteil (8) und das äußere Trägerringteil (9) über ein ringscheibenartig ausgebildetes Trägerbodenteil (10) miteinander verbunden sind.Rotor (1) according to one of the preceding claims, characterized in that the carrier (3) has an inner carrier ring part (8) and an outer carrier ring part (9), the inner carrier ring part (8) and the outer carrier ring part (9) via a support base part (10) designed in the manner of an annular disk are connected to one another. Rotor (1) nach einem der vorstehenden Ansprüche 3 oder 4, dadurch gekennzeichnet, dass das Distanzelement (7) durch das Trägerbodenteil (10) des Trägers (3) gebildet und einteilig mit dem Träger (3) ausgebildet, oder als separates zwischen dem Träger (3) und dem Abschirmelement (6) angeordnetes Bauteil ausgeführt ist.Rotor (1) according to one of the preceding Claims 3 or 4th , characterized in that the spacer element (7) formed by the carrier base part (10) of the carrier (3) and formed in one piece with the carrier (3), or designed as a separate component arranged between the carrier (3) and the shielding element (6) is. Rotor (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Abschirmelement (6) drehfest mit dem Träger (3) verbunden ist.Rotor (1) according to one of the preceding claims, characterized in that the shielding element (6) is non-rotatably connected to the carrier (3). Rotor (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Flussleitelemente (5) aus SMC-Material hergestellt sind oder durch laminierte Bleche, insbesondere aus Elektroblech, gebildet sind.Rotor (1) according to one of the preceding claims, characterized in that the flux guide elements (5) are made of SMC material or are formed by laminated sheets, in particular made of electrical sheet. Rotor (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Träger (3) als Nabe ausgebildet ist, wobei die Magnetelemente (4) und die Flussleitelemente (5) durch ein umfänglich verlaufendes Faßringband auf der Nabe zusammengehalten werden und mit dieser kraftschlüssig verbunden sind.Rotor (1) according to one of the preceding claims, characterized in that the carrier (3) is designed as a hub, the magnetic elements (4) and the flux guiding elements (5) being held together by a circumferentially extending ring band on the hub and frictionally connected to it are connected. Motorisch und/oder generatorisch betreibbare Axialflussmaschine (2), dadurch gekennzeichnet, dass die Axialflussmaschine (2) einen Rotor (1) nach einem der vorstehenden Ansprüche aufweist. Axial flux machine (2) which can be operated as a motor and / or generator, characterized in that the axial flux machine (2) has a rotor (1) according to one of the preceding claims. Axialflussmaschine (2) nach Anspruch 9, umfassend - einen Rotor (1) mit einem Träger (3) und mit einer Vielzahl von Magnetelementen (4) und mit einer Vielzahl von den Magnetfluss leitenden Flussleitelementen (5), die an, auf oder in dem Träger (3) angeordnet sind, und - einen Stator (11) mit einer Mehrzahl von Spulenmagneten (12), der an einer ersten axialen Rotorseite unter Bildung eines ersten Luftspalts (13) angeordnet ist, und der ein Magnetfeld erzeugt, welches sich im Wesentlichen in axialer Richtung in Richtung Rotor (1) erstreckt.Axial flux machine (2) according to Claim 9 , comprising - a rotor (1) with a carrier (3) and with a plurality of magnetic elements (4) and with a plurality of flux-conducting elements (5) which conduct the magnetic flux and which are arranged on, on or in the carrier (3), and - a stator (11) with a plurality of coil magnets (12), which is arranged on a first axial rotor side with the formation of a first air gap (13), and which generates a magnetic field which extends essentially in the axial direction in the direction of the rotor ( 1) extends. Axialflussmaschine (2) nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Axialflussmaschine (2) in H-Anordnung ausgebildet ist und einen in der Mitte angeordneten drehfest angeordneten Stator (11) sowie links und rechts vom Stator (11), axial über jeweils einen Luftspalt (13) beabstandet angeordnet, jeweils einen Rotor (1) aufweist.Axial flux machine (2) according to Claim 9 or 10 , characterized in that the axial flow machine (2) is designed in an H-arrangement and a stator (11) arranged in the middle and arranged in a rotationally fixed manner as well as to the left and right of the stator (11), axially spaced apart by an air gap (13), respectively has a rotor (1).
DE102020101639.5A 2020-01-24 2020-01-24 Rotor and axial flux machine Withdrawn DE102020101639A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102020101639.5A DE102020101639A1 (en) 2020-01-24 2020-01-24 Rotor and axial flux machine
PCT/DE2020/101027 WO2021148069A1 (en) 2020-01-24 2020-12-04 Rotor and axial flux machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020101639.5A DE102020101639A1 (en) 2020-01-24 2020-01-24 Rotor and axial flux machine

Publications (1)

Publication Number Publication Date
DE102020101639A1 true DE102020101639A1 (en) 2021-07-29

Family

ID=73855609

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102020101639.5A Withdrawn DE102020101639A1 (en) 2020-01-24 2020-01-24 Rotor and axial flux machine

Country Status (2)

Country Link
DE (1) DE102020101639A1 (en)
WO (1) WO2021148069A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004038884A1 (en) 2003-08-11 2005-05-12 Gen Motors Corp Electric traction vehicle, has axial flux traction motor coupled to set of wheels and including rotor that is rotatably coupled to stator in axial alignment and rotates by time varying stator magnetic field
DE102005053119A1 (en) 2005-11-08 2007-05-10 Robert Bosch Gmbh Relative rotation angle position adjusting device for use between camshaft and drive wheel, has housing rotatably supported on camshaft, connected with drive wheel in torque proof manner, and forming component of adjusting gear
DE102013218829A1 (en) 2013-09-19 2015-03-19 Siemens Aktiengesellschaft Rotor for an electric machine, method for manufacturing a rotor and electric machine
DE102015208281A1 (en) 2015-05-05 2016-11-10 Robert Bosch Gmbh Rotor for axial flow machine
WO2018015293A1 (en) 2016-07-18 2018-01-25 Universiteit Gent Stator for an axial flux machine and method for producing the same
DE102017204434A1 (en) 2017-03-16 2018-09-20 Siemens Aktiengesellschaft Method and arrangement for measuring a gas temperature distribution in a combustion chamber
DE102017127157A1 (en) 2017-11-17 2019-05-23 Gkn Sinter Metals Engineering Gmbh Rotor for an axial flux motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044866A (en) * 2007-08-09 2009-02-26 Fujitsu General Ltd Axial air-gap electric motor
GB0821815D0 (en) * 2008-11-28 2009-01-07 Cummins Generator Technologies Rotating electrical machine
JP2010142080A (en) * 2008-12-15 2010-06-24 Daikin Ind Ltd Axial gap type rotary electric machine
JP2010166661A (en) * 2009-01-14 2010-07-29 Daikin Ind Ltd Rotary electric machine, driving method for rotary electric machine, and compressor
GB0902390D0 (en) * 2009-02-13 2009-04-01 Isis Innovation Electric machine - flux

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004038884A1 (en) 2003-08-11 2005-05-12 Gen Motors Corp Electric traction vehicle, has axial flux traction motor coupled to set of wheels and including rotor that is rotatably coupled to stator in axial alignment and rotates by time varying stator magnetic field
DE102005053119A1 (en) 2005-11-08 2007-05-10 Robert Bosch Gmbh Relative rotation angle position adjusting device for use between camshaft and drive wheel, has housing rotatably supported on camshaft, connected with drive wheel in torque proof manner, and forming component of adjusting gear
DE102013218829A1 (en) 2013-09-19 2015-03-19 Siemens Aktiengesellschaft Rotor for an electric machine, method for manufacturing a rotor and electric machine
DE102015208281A1 (en) 2015-05-05 2016-11-10 Robert Bosch Gmbh Rotor for axial flow machine
WO2018015293A1 (en) 2016-07-18 2018-01-25 Universiteit Gent Stator for an axial flux machine and method for producing the same
DE102017204434A1 (en) 2017-03-16 2018-09-20 Siemens Aktiengesellschaft Method and arrangement for measuring a gas temperature distribution in a combustion chamber
DE102017127157A1 (en) 2017-11-17 2019-05-23 Gkn Sinter Metals Engineering Gmbh Rotor for an axial flux motor

Also Published As

Publication number Publication date
WO2021148069A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
EP2696469B1 (en) Rotor for a permanently excited synchronous engine
DE102009002739B4 (en) Electric machine
EP2709238B1 (en) Permanently excited synchronous machine with ferrite magnets
EP2766976B1 (en) Optimized spider rotor internal geometry
DE112009002090T5 (en) Rotating electric machine
DE102012219003A1 (en) Rotor assembly for, e.g. rotary inner rotor permanent magnet machine, has pole piece held obliquely to radial direction extending web at rear end region while a web extends to magnetic yoke portion from radial center axis of pole piece
DE2165152B2 (en) ELECTRIC SYNCHRONOUS MACHINE
DE102018215864A1 (en) Rotor of an electric motor and electric motor
DE2953033C2 (en) Rotor of an electrical machine with pronounced poles
EP2942858B1 (en) Laminated rotor core
DE4439690A1 (en) Induction motor
EP2319164B1 (en) Rotor for an electric machine with a reduced cogging torque
DE2844590A1 (en) DISC ANCHOR MACHINE
DE112020000164T5 (en) Electric machine with internal permanent magnets and flow-distributing cavities
DE102020101639A1 (en) Rotor and axial flux machine
EP2658095A1 (en) Electric machine with slit rotor shaft
DE10037787B4 (en) Permanent magnet synchronous machine
DE202015009390U1 (en) Rotor as well as electrical machine
DE102010036828A1 (en) Annular stator for electro-dynamic machine, has U-shaped core metal sheets that are provided with two parallel legs for guiding magnetic flux within each coil
DE102020101640A1 (en) Rotor, method of manufacturing a rotor and electric axial flux machine
DE102017222056A1 (en) Rotor or stator of an electric machine
DE832452C (en) Electrical machine, preferably asynchronous machine
DE102020107162B3 (en) Rotor for an axial flux machine, method for manufacturing a rotor for an axial flux machine and axial flux machine
DE102015219488A1 (en) Electric drive motor
DE102020101849A1 (en) A rotor for an axial flux machine, a method for producing a rotor for an axial flux machine and an axial flux machine

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee