DE102019112545A1 - Semiconductor component and method for its production - Google Patents
Semiconductor component and method for its production Download PDFInfo
- Publication number
- DE102019112545A1 DE102019112545A1 DE102019112545.6A DE102019112545A DE102019112545A1 DE 102019112545 A1 DE102019112545 A1 DE 102019112545A1 DE 102019112545 A DE102019112545 A DE 102019112545A DE 102019112545 A1 DE102019112545 A1 DE 102019112545A1
- Authority
- DE
- Germany
- Prior art keywords
- semiconductor layers
- layer
- semiconductor
- dielectric
- sidewall spacers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 233
- 238000000034 method Methods 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- 125000006850 spacer group Chemical group 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims description 63
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 41
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 41
- 238000005530 etching Methods 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 22
- 229910052732 germanium Inorganic materials 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 239000010410 layer Substances 0.000 description 463
- 230000008569 process Effects 0.000 description 38
- 229910052814 silicon oxide Inorganic materials 0.000 description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 26
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 24
- 239000003989 dielectric material Substances 0.000 description 23
- 238000005229 chemical vapour deposition Methods 0.000 description 20
- 238000000231 atomic layer deposition Methods 0.000 description 17
- 239000011810 insulating material Substances 0.000 description 14
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 13
- 238000001039 wet etching Methods 0.000 description 10
- 238000005240 physical vapour deposition Methods 0.000 description 9
- 238000001020 plasma etching Methods 0.000 description 8
- 239000000872 buffer Substances 0.000 description 7
- 239000011241 protective layer Substances 0.000 description 7
- 229910010038 TiAl Inorganic materials 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 229910052770 Uranium Inorganic materials 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- -1 InAlAs Inorganic materials 0.000 description 5
- 239000012774 insulation material Substances 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 5
- 239000002070 nanowire Substances 0.000 description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- 229910004191 HfTi Inorganic materials 0.000 description 4
- 229910008484 TiSi Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229910005542 GaSb Inorganic materials 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 3
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910004129 HfSiO Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910004200 TaSiN Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- MJGARAGQACZIPN-UHFFFAOYSA-N aluminum hafnium(4+) oxygen(2-) Chemical compound [O--].[O--].[Al+3].[Hf+4] MJGARAGQACZIPN-UHFFFAOYSA-N 0.000 description 2
- ONRPGGOGHKMHDT-UHFFFAOYSA-N benzene-1,2-diol;ethane-1,2-diamine Chemical compound NCCN.OC1=CC=CC=C1O ONRPGGOGHKMHDT-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 2
- 229910021334 nickel silicide Inorganic materials 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 208000032750 Device leakage Diseases 0.000 description 1
- 229910005898 GeSn Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- OWZREIFADZCYQD-NSHGMRRFSA-N deltamethrin Chemical compound CC1(C)[C@@H](C=C(Br)Br)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 OWZREIFADZCYQD-NSHGMRRFSA-N 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 229940104869 fluorosilicate Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000051 modifying effect Effects 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823418—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823437—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823468—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/0886—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
- H01L29/0669—Nanowires or nanotubes
- H01L29/0673—Nanowires or nanotubes oriented parallel to a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/161—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
- H01L29/165—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/167—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41791—Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42384—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
- H01L29/42392—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66439—Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66545—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66553—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6656—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66636—Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/775—Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78684—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3081—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3083—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/3086—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
- H01L29/0649—Dielectric regions, e.g. SiO2 regions, air gaps
- H01L29/0653—Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1083—Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Bei einem Verfahren zum Herstellen einer Halbleitervorrichtung wird eine Finnenstruktur, bei der erste Halbleiterschichten und zweite Halbleiterschichten abwechselnd aufeinandergestapelt werden, über einer unteren Finnenstruktur hergestellt. Über der Finnenstruktur wird eine Opfergatestruktur mit Seitenwand-Abstandshaltern hergestellt. Ein Source-/Drain-Bereich der Finnenstruktur, der nicht von der Opfergatestruktur bedeckt ist, wird entfernt. Die zweiten Halbleiterschichten werden seitlich ausgespart. An seitlichen Enden der ausgesparten zweiten Halbleiterschichten werden dielektrische Innen-Abstandshalter hergestellt. Die ersten Halbleiterschichten werden seitlich ausgespart. Eine Source-/Drain-Epitaxialschicht wird so hergestellt, dass sie seitliche Enden der ausgesparten ersten Halbleiterschichten kontaktiert. Die zweiten Halbleiterschichten werden entfernt, sodass die ersten Halbleiterschichten in einem Kanalbereich freigelegt werden. Um die ersten Halbleiterschichten wird eine Gatestruktur hergestellt.In a method for manufacturing a semiconductor device, a fin structure in which first semiconductor layers and second semiconductor layers are alternately stacked on one another is produced over a lower fin structure. A sacrificial gate structure with sidewall spacers is made over the fin structure. A source / drain region of the fin structure that is not covered by the sacrificial gate structure is removed. The second semiconductor layers are left out laterally. Dielectric inner spacers are produced at the lateral ends of the recessed second semiconductor layers. The first semiconductor layers are cut out laterally. A source / drain epitaxial layer is fabricated to contact lateral ends of the recessed first semiconductor layers. The second semiconductor layers are removed, so that the first semiconductor layers are exposed in a channel region. A gate structure is produced around the first semiconductor layers.
Description
Verwandte AnmeldungRelated registration
Die vorliegende Anmeldung beansprucht die Priorität der am 31. Juli 2018 eingereichten vorläufigen US-Patentanmeldung mit dem Aktenzeichen 62/712.868, die durch Bezugnahme aufgenommen ist.The present application claims priority from U.S. Provisional Application No. 62 / 712,868, filed on July 31, 2018, which is incorporated by reference.
Hintergrund der ErfindungBackground of the Invention
Da die Halbleiterindustrie in dem Streben nach höherer Bauelementdichte, höherer Leistung und niedrigeren Kosten bis in den Bereich der Nanometer-Technologie-Prozessknoten vorgedrungen ist, haben Herausforderungen durch Herstellungs- und Entwurfsprobleme zur Entwicklung von dreidimensionalen Entwürfen geführt, wie etwa von Multi-Gate-Feldeffekttransistoren (Multi-Gate-FETs), die Finnen-Feldeffekttransistoren (FinFETs) und Gate-all-around-FETs (GAA-FETs) umfassen. Bei einem FinFET ist eine Gate-Elektrode benachbart zu drei Seitenflächen eines Kanalbereichs angeordnet, wobei eine dielektrische Gateschicht dazwischen geschichtet ist. Da die Gatestruktur die Finne auf drei Seiten umschließt, hat der Transistor im Wesentlichen drei Gates, die den Strom durch den Finnen- oder Kanalbereich steuern. Leider ist die vierte Seite, der untere Teil des Kanals, von der Gate-Elektrode weit entfernt, und sie lässt sich daher mit den Gates schlecht steuern. Im Gegensatz dazu sind bei einem GAA-FET alle Seitenflächen des Kanalbereichs von der Gate-Elektrode umschlossen, was eine vollständigere Verarmung in dem Kanalbereich ermöglicht und zu geringeren Kurzkanaleffekten auf Grund einer stärkeren Vorschwellwert-Stromschwankung (sub-threshold current swing; SS) und einer geringeren Drain-induzierten Barrierenabsenkung (drain-induced barrier lowering; DIBL) führt. Wenn die Transistor-Abmessungen weiter bis in den Bereich der Sub-10-15-nm-Technologieknoten verkleinert werden, sind weitere Verbesserungen des GAA-FET erforderlich.As the semiconductor industry has advanced to the level of nanometer technology process nodes in the pursuit of higher device density, higher performance, and lower cost, challenges from manufacturing and design problems have led to the development of three-dimensional designs, such as multi-gate field effect transistors (Multi-gate FETs), which include fin field effect transistors (FinFETs) and gate all-around FETs (GAA-FETs). In a FinFET, a gate electrode is arranged adjacent to three side faces of a channel region, with a dielectric gate layer being sandwiched between them. Since the gate structure encloses the fin on three sides, the transistor essentially has three gates that control the current through the fin or channel region. Unfortunately, the fourth side, the lower part of the channel, is far from the gate electrode and is therefore difficult to control with the gates. In contrast, in a GAA-FET, all side surfaces of the channel area are enclosed by the gate electrode, which enables more complete depletion in the channel area and less short-channel effects due to a greater sub-threshold current swing (SS) and one leads to a lower drain-induced barrier lowering (DIBL). If the transistor dimensions are further reduced down to the sub-10-15 nm technology node range, further improvements to the GAA-FET are required.
Figurenlistelist of figures
Die vorliegende Erfindung lässt sich am besten anhand der nachstehenden detaillierten Beschreibung in Verbindung mit den beigefügten Zeichnungen verstehen. Es ist zu beachten, dass entsprechend der üblichen Praxis in der Branche verschiedene Elemente nicht maßstabsgetreu gezeichnet sind und nur der Erläuterung dienen. Vielmehr können der Übersichtlichkeit der Erörterung halber die Abmessungen der verschiedenen Elemente beliebig vergrößert oder verkleinert sein.
- Die
1A bis1D zeigen verschiedene Darstellungen eines GAA-FET-Bauelements gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
2A bis2D zeigen verschiedene Darstellungen eines GAA-FET-Bauelements gemäß weiteren Ausführungsformen der vorliegenden Erfindung. -
3 zeigt eine Darstellung einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. -
4 zeigt eine Darstellung einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. -
5 zeigt eine Darstellung einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. -
6 zeigt eine Darstellung einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. -
7 zeigt eine Darstellung einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. -
8 zeigt eine Darstellung einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. -
9 zeigt eine Darstellung einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. -
10 zeigt eine Darstellung einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
11A und11B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
12A und12B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
13A und13B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
14A und14B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
15A und15B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
16A und16B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
17A und17B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
18A und18B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
19A und19B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
20A und20B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
21A und21B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer Ausführungsform der vorliegenden Erfindung. - Die
22A und22B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer weiteren Ausführungsform der vorliegenden Erfindung. - Die
23A und23B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer weiteren Ausführungsform der vorliegenden Erfindung. - Die
24A und24B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer weiteren Ausführungsform der vorliegenden Erfindung. - Die
25A und25B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer weiteren Ausführungsform der vorliegenden Erfindung. - Die
26A und26B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer weiteren Ausführungsform der vorliegenden Erfindung. - Die
27A und27B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer weiteren Ausführungsform der vorliegenden Erfindung. - Die
28A und28B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer weiteren Ausführungsform der vorliegenden Erfindung. - Die
29A und29B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer weiteren Ausführungsform der vorliegenden Erfindung. - Die
30A und30B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer weiteren Ausführungsform der vorliegenden Erfindung. - Die
31A und31B zeigen Darstellungen einer von mehreren Stufen eines Herstellungsprozessablaufs für ein GAA-FET-Bauelement gemäß einer weiteren Ausführungsform der vorliegenden Erfindung.
- The
1A to1D show various representations of a GAA-FET component according to an embodiment of the present invention. - The
2A to2D show various representations of a GAA-FET component according to further embodiments of the present invention. -
3 shows an illustration of one of several stages of a manufacturing process flow for an ATM FET Component according to an embodiment of the present invention. -
4 shows an illustration of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. -
5 shows an illustration of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. -
6 shows an illustration of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. -
7 shows an illustration of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. -
8th shows an illustration of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. -
9 shows an illustration of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. -
10 shows an illustration of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
11A and11B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
12A and12B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
13A and13B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
14A and14B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
15A and15B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
16A and16B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
17A and17B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
18A and18B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
19A and19B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
20A and20B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
21A and21B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to an embodiment of the present invention. - The
22A and22B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to a further embodiment of the present invention. - The
23A and23B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to a further embodiment of the present invention. - The
24A and24B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to a further embodiment of the present invention. - The
25A and25B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to a further embodiment of the present invention. - The
26A and26B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to a further embodiment of the present invention. - The
27A and27B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to a further embodiment of the present invention. - The
28A and28B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to a further embodiment of the present invention. - The
29A and29B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to a further embodiment of the present invention. - The
30A and30B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to a further embodiment of the present invention. - The
31A and31B show illustrations of one of several stages of a manufacturing process flow for a GAA-FET component according to a further embodiment of the present invention.
Detaillierte BeschreibungDetailed description
Es dürfte klar sein, dass die nachstehende Beschreibung viele verschiedene Ausführungsformen oder Beispiele zum Implementieren verschiedener Merkmale der Erfindung bereitstellt. Nachstehend werden spezielle Beispiele für Komponenten und Anordnungen beschrieben, um die vorliegende Erfindung zu vereinfachen. Diese sind natürlich lediglich Beispiele und sollen nicht beschränkend sein. Zum Beispiel sind Abmessungen von Elementen nicht auf den angegebenen Bereich oder die angegebenen Werte beschränkt, sondern sie können von Prozessbedingungen und/oder gewünschten Eigenschaften des Bauelements abhängig sein. Außerdem kann die Herstellung eines ersten Elements über oder auf einem zweiten Element in der nachstehenden Beschreibung Ausführungsformen umfassen, bei denen das erste und das zweite Element in direktem Kontakt hergestellt werden, und sie kann auch Ausführungsformen umfassen, bei denen zusätzliche Elemente zwischen dem ersten und dem zweiten Element so hergestellt werden können, dass das erste und das zweite Element nicht in direktem Kontakt sind. Verschiedene Elemente können der Einfachheit und Übersichtlichkeit halber beliebig in verschiedenen Maßstäben gezeichnet sein.It should be understood that the description below provides many different embodiments or examples for implementing various features of the invention. Specific examples of components and arrangements are described below to simplify the present invention. These are of course only examples and are not intended to be limiting. For example, element dimensions are not limited to the specified range or values, but may depend on process conditions and / or desired properties of the component. In addition, the manufacture of a first member above or on a second member in the description below may include embodiments in which the first and second members are made in direct contact, and may also include embodiments in which additional members are between the first and the second members second element can be made so that the first and second elements are not in direct contact are. For the sake of simplicity and clarity, different elements can be drawn arbitrarily on different scales.
Darüber hinaus können hier räumlich relative Begriffe, wie etwa „darunter befindlich“, „unter“, „untere(r)“/„unteres“, „darüber befindlich“, „obere(r)“/„oberes“ und dergleichen, zur einfachen Beschreibung der Beziehung eines Elements oder einer Struktur zu einem oder mehreren anderen Elementen oder Strukturen verwendet werden, die in den Figuren dargestellt sind. Die räumlich relativen Begriffe sollen zusätzlich zu der in den Figuren dargestellten Orientierung andere Orientierungen der in Gebrauch oder in Betrieb befindlichen Vorrichtung umfassen. Die Vorrichtung kann anders ausgerichtet werden (um 90 Grad gedreht oder in einer anderen Orientierung), und die räumlich relativen Deskriptoren, die hier verwendet werden, können ebenso entsprechend interpretiert werden. Darüber hinaus kann der Begriff „hergestellt aus“ entweder „weist auf“ oder „besteht aus“ bedeuten. In der vorliegenden Erfindung bedeutet die Wendung „ein Element aus der Gruppe
Bei den folgenden Ausführungsformen können Materialien, Konfigurationen, Abmessungen, Schritte und/oder Prozesse bei einer Ausführungsform auch bei einer anderen Ausführungsform verwendet werden, wenn nicht anders angegeben, und ihre detaillierte Erläuterung kann entfallen.In the following embodiments, materials, configurations, dimensions, steps and / or processes in one embodiment can be used in another embodiment, unless otherwise stated, and their detailed explanation can be omitted.
In den letzten 10 Jahren sind Kanal-Materialien mit hoher Trägerbeweglichkeit und Bauelement-Architekturen untersucht worden, um die Lebensdauer gemäß dem Mooreschen Gesetz zu verlängern. Reines Ge und SiGe mit einer hohen Ge-Konzentration sind auf Grund ihrer höheren Löcher- und Elektronen-Eigenbeweglichkeit aussichtsreiche Kandidaten für diese Materialien. Für eine wohltemperierte Bauelement-Skalierung von Lg < 12 nm werden Nanodraht- und Nanoschichtstrukturen verwendet, um eine bessere Kurzkanalkontrolle zu ermöglichen. Daher werden Ge- oder SiGe-Nanodraht-Bauelemente als potentielle und aussichtsreiche Kandidaten für weiter verkleinerte Logikbauelement-Anwendungen angesehen. Für eine bessere Ge-Nanodraht-Bauelementleistung sind mehrere Probleme zu lösen, zum Beispiel (1) hohe Grenzflächenzustandsdichte (Dit) unter Gate-Seitenwand-Abstandshaltern und (2) hoher Bauelement-Leckstrom auf Grund eines geringen Bandabstands von Ge (0,66 eV) im Vergleich zu Si (1,2 eV).In the past 10 years, channel materials with high carrier mobility and component architectures have been investigated in order to extend the service life according to Moore's law. Pure Ge and SiGe with a high Ge concentration are promising candidates for these materials due to their higher hole and electron mobility. For a well-tempered device scaling of Lg <12 nm, nanowire and nano-layer structures are used to enable better short-channel control. Therefore, Ge or SiGe nanowire devices are viewed as potential and promising candidates for further downsized logic device applications. There are several problems to be solved for better Ge nanowire device performance, for example (1) high interface state density (Dit) under gate sidewall spacers and (2) high device leakage current due to a small band gap of Ge (0.66 eV) ) compared to Si (1.2 eV).
In der vorliegenden Erfindung werden eine Bauelementstruktur und ein Verfahren zu deren Herstellung bereitgestellt, um die vorgenannten Probleme zu lösen.In the present invention, a device structure and a method of manufacturing the same are provided to solve the above problems.
Die
Wie in den
Eine Gatestruktur
Außerdem ist eine Source-/Drain-Epitaxialschicht
Der GAA-FET, der in den
Wie in
Bei einigen Ausführungsformen sind die Gate-Seitenwand-Abstandshalter
Die
Wie in den
Eine Gatestruktur
Außerdem ist eine Source-/Drain-Epitaxialschicht
Der GAA-FET, der in den
Wie in
Bei einigen Ausführungsformen sind die ersten Gate-Seitenwand-Abstandshalter
Die
Wie in
Das Substrat
Wie in
Die ersten Halbleiterschichten
Bei einigen Ausführungsformen bestehen die ersten Halbleiterschichten
In
Die ersten Halbleiterschichten
Bei einigen Ausführungsformen ist die untere erste Halbleiterschicht (die Schicht, die dem Substrat
Bei einigen Ausführungsformen umfasst die Maskenschicht
Wie in
Die Finnenstrukturen
In
Eine Breite
Nachdem die Finnenstruktur
Bei einigen Ausführungsformen werden eine oder mehrere Finnen-Deckschichten
Wie in
Nach der Herstellung der isolierenden Isolationsschicht
Die Opfergatestruktur
Dann wird ein Strukturierungsprozess an der Maskenschicht durchgeführt, und die Opfergate-Elektrodenschicht wird zu der Opfergatestruktur
Nachdem die Opfergatestruktur hergestellt worden ist, wird eine Schutzschicht
Die
Wie in den
Nachdem die Schutzschicht
Anschließend werden die S/D-Bereiche der Finnenstruktur durch Trocken- und/oder Nassätzung nach unten auf gleiche Höhe wie die Oberseite der isolierenden Isolationsschicht
Wie in den
Wie in den
Wie in den
Wie in den
Nachdem die Hohlräume
Anschließend wird eine Deckschicht
Die Deckschicht
Wie in den
Nachdem die Opfergatestrukturen entfernt worden sind, werden die zweiten Halbleiterschichten
Die zweiten Halbleiterschichten
Nachdem die Drähte aus den ersten Halbleiterschichten
Bei bestimmten Ausführungsformen umfasst die dielektrische Gateschicht
Die Gate-Elektrodenschicht
Bei bestimmten Ausführungsformen sind eine oder mehrere Austrittsarbeits-Einstellschichten
Es ist klar, dass die GAA-FETs weitere CMOS-Prozesse durchlaufen, um verschiedene Strukturelemente, wie etwa Kontakte/Durchkontaktierungen, metallische Verbindungsschichten, dielektrische Schichten, Passivierungsschichten usw., herzustellen.It is clear that the GAA-FETs go through further CMOS processes to produce various structural elements such as contacts / vias, metallic connection layers, dielectric layers, passivation layers, etc.
Die
Nachdem die in den
Wie in den
Wie in den
Wie in den
Wie in den
Nachdem die Hohlräume
Anschließend wird eine Deckschicht
Die Deckschicht
Wie in den
Nachdem die Opfergatestrukturen entfernt worden sind, werden die zweiten Halbleiterschichten
Die zweiten Halbleiterschichten
Nachdem die Drähte aus den ersten Halbleiterschichten
Bei bestimmten Ausführungsformen umfasst die dielektrische Gateschicht
Die Gate-Elektrodenschicht
Bei bestimmten Ausführungsformen sind eine oder mehrere Austrittsarbeits-Einstellschichten
Es ist klar, dass die GAA-FETs weitere CMOS-Prozesse durchlaufen, um verschiedene Strukturelemente, wie etwa Kontakte/Durchkontaktierungen, metallische Verbindungsschichten, dielektrische Schichten, Passivierungsschichten usw., herzustellen.It is clear that the GAA-FETs go through further CMOS processes to produce various structural elements such as contacts / vias, metallic connection layers, dielectric layers, passivation layers, etc.
Verschiedene Ausführungsformen oder Beispiele, die hier beschrieben werden, bieten mehrere Vorzüge gegenüber dem Stand der Technik. Zum Beispiel sind in der vorliegenden Erfindung die Kanäle (Halbleiterdrähte) nicht in Kontakt mit Gate-Seitenwand-Abstandshaltern, und die Gate-Seitenwand-Abstandshalter sind in Kontakt mit der Source-/Drain-Epitaxialschicht (SiP-Schicht). Dadurch kann eine Grenzflächenzustandsdichte (Dit) unter den Gate-Seitenwand-Abstandshaltern reduziert werden. Außerdem kann durch Verwenden eines Materials mit einem größeren Bandabstand als dem des Ge oder des SiGe der Kanäle zum Kontaktieren der Enden der Kanäle der Ge-Band-Band-Kanal-Leckstrom reduziert werden. Darüber hinaus kann der Substrat-Leckstrom reduziert werden, da sich eine verbliebene Schicht der dielektrischen Materialschicht an der Unterseite der Source-/Drain-Epitaxialschicht befindet.Various embodiments or examples described here offer several advantages over the prior art. For example, in the present invention, the channels (semiconductor wires) are not in contact with gate sidewall spacers and the gate sidewall spacers are in contact with the source / drain epitaxial layer (SiP layer). This can reduce an interface state density (Dit) under the gate sidewall spacers. In addition, by using a material with a larger band gap than that of the Ge or SiGe of the channels for contacting the ends of the channels, the Ge band band channel leakage current can be reduced. In addition, the substrate leakage current can be reduced because there is a remaining layer of the dielectric material layer on the underside of the source / drain epitaxial layer.
Es ist klar, dass hier nicht unbedingt alle Vorzüge erörtert worden sind, kein spezieller Vorzug für alle Ausführungsformen oder Beispiele erforderlich ist und andere Ausführungsformen oder Beispiele andere Vorzüge bieten können.It is clear that not all of the merits have been discussed, no particular merit is required for all embodiments or examples, and other embodiments or examples may offer other merits.
Gemäß einem Aspekt der vorliegenden Erfindung wird bei einem Verfahren zum Herstellen einer Halbleitervorrichtung eine Finnenstruktur, bei der erste Halbleiterschichten und zweite Halbleiterschichten abwechselnd aufeinandergestapelt werden, über einer unteren Finnenstruktur hergestellt. Über der Finnenstruktur wird eine Opfergatestruktur mit Seitenwand-Abstandshaltern hergestellt. Die Seitenwand-Abstandshalter werden in einer Richtung senkrecht zu einer Hauptfläche eines Halbleitersubstrats hergestellt. Ein Source-/Drain-Bereich der Finnenstruktur, der nicht von der Opfergatestruktur bedeckt ist, wird entfernt. Die zweiten Halbleiterschichten werden seitlich ausgespart. An seitlichen Enden der ausgesparten zweiten Halbleiterschichten werden dielektrische Innen-Abstandshalter hergestellt. Die ersten Halbleiterschichten werden seitlich ausgespart. Eine Source-/Drain-Epitaxialschicht wird so hergestellt, dass sie seitliche Enden der ausgesparten ersten Halbleiterschicht kontaktiert. Die zweiten Halbleiterschichten werden entfernt, sodass die ersten Halbleiterschichten in einem Kanalbereich freigelegt werden. Um die ersten Halbleiterschichten wird eine Gatestruktur hergestellt. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen befindet sich eine Grenzfläche zwischen mindestens einer der ersten Halbleiterschichten und der Source-/Drain-Epitaxialschicht unter einem der Seitenwand-Abstandshalter. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen befindet sich die Grenzfläche näher an der Gatestruktur als eine Mittellinie des einen der Seitenwand-Abstandshalter. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen sind die Seitenwand-Abstandshalter nicht in Kontakt mit den ersten Halbleiterschichten. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen umfasst das Herstellen der dielektrischen Innen-Abstandshalter das Herstellen einer dielektrischen Schicht und das Ätzen der dielektrischen Schicht, wobei die Source-/Drain-Epitaxialschicht durch einen Teil der dielektrischen Schicht von der unteren Finnenstruktur getrennt wird. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist ein Material der Seitenwand-Abstandshalter von einem Material der dielektrischen Innen-Abstandshalter verschieden. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist das Material der dielektrischen Innen-Abstandshalter Siliziumnitrid. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist das Material der Seitenwand-Abstandshalter SiOC, SiCON oder SiCN. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen bestehen die ersten Halbleiterschichten aus Ge oder Si1-xGex, wobei 0,5 ≤ x < 1 ist, und die zweiten Halbleiterschichten bestehen aus Sii-yGey, wobei 0,2 ≤ y ≤ 0,6 ist und x > y ist.According to one aspect of the present invention, in a method for manufacturing a semiconductor device, a fin structure in which first semiconductor layers and second semiconductor layers are stacked alternately is produced over a lower fin structure. A sacrificial gate structure with sidewall spacers is made over the fin structure. The sidewall spacers are made in a direction perpendicular to a main surface of a semiconductor substrate. A source / drain region of the fin structure that is not covered by the sacrificial gate structure is removed. The second semiconductor layers are left out laterally. Dielectric inner spacers are produced at the lateral ends of the recessed second semiconductor layers. The first semiconductor layers are cut out laterally. A source / drain epitaxial layer is fabricated to contact lateral ends of the recessed first semiconductor layer. The second semiconductor layers are removed, so that the first semiconductor layers are exposed in a channel region. A gate structure is produced around the first semiconductor layers. In one or more of the above and subsequent embodiments, an interface between at least one of the first semiconductor layers and the source / drain epitaxial layer is under one of the sidewall spacers. In one or more of the above and subsequent embodiments, the interface is closer to the gate structure than a center line of one of the sidewall spacers. In one or more of the above and subsequent embodiments, the sidewall spacers are not in contact with the first semiconductor layers. In one or more of the above and subsequent embodiments, fabricating the interior dielectric spacers includes fabricating a dielectric layer and etching the dielectric layer, the source / Drain epitaxial layer is separated from the lower fin structure by part of the dielectric layer. In one or more of the above and subsequent embodiments, a material of the sidewall spacers is different from a material of the dielectric inner spacers. In one or more of the above and subsequent embodiments, the material of the dielectric spacers is silicon nitride. In one or more of the above and subsequent embodiments, the material of the sidewall spacers is SiOC, SiCON or SiCN. In one or more of the above and subsequent embodiments, the first semiconductor layers consist of Ge or Si 1-x Ge x , where 0.5 x x <1, and the second semiconductor layers consist of Si iy Ge y , where 0.2 y y ≤ 0.6 and x> y.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird bei einem Verfahren zum Herstellen einer Halbleitervorrichtung eine Finnenstruktur, bei der erste Halbleiterschichten und zweite Halbleiterschichten abwechselnd aufeinandergestapelt werden, über einer unteren Finnenstruktur hergestellt. Über der Finnenstruktur wird eine Opfergatestruktur mit Seitenwand-Abstandshaltern hergestellt. Die Seitenwand-Abstandshalter werden in einer Richtung senkrecht zu einer Hauptfläche eines Halbleitersubstrats hergestellt. Die zweiten Halbleiterschichten in einem Source-/Drain-Bereich der Finnenstruktur, der nicht von der Opfergatestruktur bedeckt ist, werden entfernt. eine dielektrische Schicht wird hergestellt. Die dielektrische Schicht und die ersten Halbleiterschichten in dem Source-/Drain-Bereich werden so geätzt, dass dielektrische Innen-Abstandshalter an seitlichen Enden der zweiten Halbleiterschichten entstehen. Die ersten Halbleiterschichten werden seitlich ausgespart. Eine Source-/Drain-Epitaxialschicht wird so hergestellt, dass sie seitliche Enden der ausgesparten ersten Halbleiterschichten kontaktiert. Die zweiten Halbleiterschichten werden entfernt, sodass die ersten Halbleiterschichten in einem Kanalbereich freigelegt werden. Um die ersten Halbleiterschichten wird eine Gatestruktur hergestellt. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen befindet sich eine Grenzfläche zwischen mindestens einer der ersten Halbleiterschichten und der Source-/Drain-Epitaxialschicht unter einem der Seitenwand-Abstandshalter. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen sind die Seitenwand-Abstandshalter nicht in Kontakt mit den ersten Halbleiterschichten. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist ein Material der Seitenwand-Abstandshalter von einem Material der dielektrischen Innen-Abstandshalter verschieden. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist das Material der dielektrischen Innen-Abstandshalter Siliziumnitrid. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist das Material der Seitenwand-Abstandshalter SiOC, SiCON oder SiCN. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen bestehen die ersten Halbleiterschichten aus Ge oder Si1-xGex, wobei 0,5 ≤ x < 1 ist, und die zweiten Halbleiterschichten bestehen aus Si1-yGey, wobei 0,2 ≤ y ≤ 0,6 ist und x > y ist. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen bleibt ein Teil der dielektrischen Schicht auf den Seitenwand-Abstandshaltern zurück, nachdem die dielektrischen Innen-Abstandshalter hergestellt worden sind. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen wird die Source-/Drain-Epitaxialschicht durch einen Teil der dielektrischen Schicht von der unteren Finnenstruktur getrennt.According to a further aspect of the present invention, in a method for producing a semiconductor device, a fin structure in which first semiconductor layers and second semiconductor layers are stacked alternately is produced above a lower fin structure. A sacrificial gate structure with sidewall spacers is made over the fin structure. The sidewall spacers are made in a direction perpendicular to a main surface of a semiconductor substrate. The second semiconductor layers in a source / drain region of the fin structure that is not covered by the sacrificial gate structure are removed. a dielectric layer is produced. The dielectric layer and the first semiconductor layers in the source / drain region are etched such that internal dielectric spacers are formed at lateral ends of the second semiconductor layers. The first semiconductor layers are cut out laterally. A source / drain epitaxial layer is fabricated to contact lateral ends of the recessed first semiconductor layers. The second semiconductor layers are removed, so that the first semiconductor layers are exposed in a channel region. A gate structure is produced around the first semiconductor layers. In one or more of the above and subsequent embodiments, an interface between at least one of the first semiconductor layers and the source / drain epitaxial layer is under one of the sidewall spacers. In one or more of the above and subsequent embodiments, the sidewall spacers are not in contact with the first semiconductor layers. In one or more of the above and subsequent embodiments, a material of the sidewall spacers is different from a material of the dielectric inner spacers. In one or more of the above and subsequent embodiments, the material of the dielectric spacers is silicon nitride. In one or more of the above and subsequent embodiments, the material of the sidewall spacers is SiOC, SiCON or SiCN. In one or more of the above and subsequent embodiments, the first semiconductor layers consist of Ge or Si 1-x Ge x , where 0.5 x x <1, and the second semiconductor layers consist of Si 1-y Ge y , where 0.2 ≤ y ≤ 0.6 and x> y. In one or more of the above and subsequent embodiments, a portion of the dielectric layer remains on the sidewall spacers after the inner dielectric spacers have been fabricated. In one or more of the above and subsequent embodiments, the source / drain epitaxial layer is separated from the lower fin structure by a portion of the dielectric layer.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird bei einem Verfahren zum Herstellen einer Halbleitervorrichtung eine Finnenstruktur, bei der erste Halbleiterschichten und zweite Halbleiterschichten abwechselnd aufeinandergestapelt werden, über einer unteren Finnenstruktur hergestellt. Über der Finnenstruktur wird eine Opfergatestruktur mit Seitenwand-Abstandshaltern hergestellt. Die Seitenwand-Abstandshalter werden auf gegenüberliegenden Seitenflächen der Opfergatestruktur hergestellt. Ein Source-/Drain-Bereich der Finnenstruktur wird entfernt. Die zweiten Halbleiterschichten werden seitlich ausgespart. An seitlichen Enden der ausgesparten zweiten Halbleiterschichten werden dielektrische Innen-Abstandshalter hergestellt. Die ersten Halbleiterschichten werden seitlich ausgespart. Eine Source-/Drain-Epitaxialschicht wird so hergestellt, dass sie seitliche Enden der ausgesparten ersten Halbleiterschichten kontaktiert. eine Zwischenschichtdielektrikum-Schicht wird hergestellt. Die Opfergatestruktur wird entfernt. Die zweiten Halbleiterschichten werden entfernt, sodass die ersten Halbleiterschichten in einem Kanalbereich freigelegt werden. Um die ersten Halbleiterschichten wird eine Gatestruktur hergestellt. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist ein Material der Seitenwand-Abstandshalter von einem Material der dielektrischen Innen-Abstandshalter verschieden.According to a further aspect of the present invention, in a method for producing a semiconductor device, a fin structure in which first semiconductor layers and second semiconductor layers are stacked alternately is produced above a lower fin structure. A sacrificial gate structure with sidewall spacers is made over the fin structure. The sidewall spacers are made on opposite side surfaces of the sacrificial gate structure. A source / drain region of the fin structure is removed. The second semiconductor layers are left out laterally. Dielectric inner spacers are produced at the lateral ends of the recessed second semiconductor layers. The first semiconductor layers are cut out laterally. A source / drain epitaxial layer is fabricated to contact lateral ends of the recessed first semiconductor layers. an interlayer dielectric layer is produced. The victim gate structure is removed. The second semiconductor layers are removed, so that the first semiconductor layers are exposed in a channel region. A gate structure is produced around the first semiconductor layers. In one or more of the above and subsequent embodiments, a material of the sidewall spacers is different from a material of the dielectric inner spacers.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung weist eine Halbleitervorrichtung Folgendes auf: Halbleiterdrähte, die vertikal angeordnet sind und jeweils einen Kanalbereich aufweisen; eine Source-/Drain-Epitaxialschicht, die mit Enden der Halbleiterdrähte verbunden ist; eine Gatestruktur mit Seitenwand-Abstandshaltern, die um die Halbleiterdrähte hergestellt sind; und dielektrische Innen-Abstandshalter, die zwischen der Gatestruktur und der Source-/Drain-Epitaxialschicht angeordnet sind. Eine Grenzfläche zwischen mindestens einem der Halbleiterdrähte und der Source-/Drain-Epitaxialschicht befindet sich unter einem der Seitenwand-Abstandshalter. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen sind die Seitenwand-Abstandshalter nicht in Kontakt mit den Halbleiterdrähten. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen befindet sich die Grenzfläche näher an der Gatestruktur als eine Mittellinie des einen der Seitenwand-Abstandshalter. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen weisen die Enden der Halbleiterdrähte einen V- oder U-förmigen Querschnitt auf. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist ein Material der Seitenwand-Abstandshalter von einem Material der dielektrischen Innen-Abstandshalter verschieden. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist das Material der dielektrischen Innen-Abstandshalter Siliziumnitrid. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist das Material der Seitenwand-Abstandshalter SiOC, SiCON oder SiCN. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen bestehen die Halbleiterdrähte aus Ge oder Si1-xGex, wobei 0,5 ≤ x < 1 ist. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen weist die Source-/Drain-Epitaxialschicht SiP auf. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen befinden sich alle dielektrischen Innen-Abstandshalter unter den Seitenwand-Abstandshaltern.According to a further aspect of the present invention, a semiconductor device has the following: semiconductor wires which are arranged vertically and each have a channel region; a source / drain epitaxial layer connected to ends of the semiconductor wires; a gate structure with sidewall spacers made around the semiconductor wires; and interior dielectric spacers disposed between the gate structure and the source / drain epitaxial layer. An interface between at least one of the semiconductor wires and the source / drain epitaxial layer is under one of the sidewall spacers. In one or more of the above and subsequent embodiments, the sidewall spacers are not in contact with the semiconductor wires. In one or more of the above and subsequent embodiments, the interface is closer to the gate structure than a center line of one of the sidewall spacers. In one or more of the above and subsequent embodiments, the ends of the semiconductor wires have a V-shaped or U-shaped cross section. In one or more of the above and subsequent embodiments, a material of the sidewall spacers is different from a material of the dielectric inner spacers. In one or more of the above and subsequent embodiments, the material of the dielectric spacers is silicon nitride. In one or more of the above and subsequent embodiments, the material of the sidewall spacers is SiOC, SiCON or SiCN. In one or more of the above and subsequent embodiments, the semiconductor wires are made of Ge or Si 1-x Ge x , where 0.5 x x <1. In one or more of the above and subsequent embodiments, the source / drain epitaxial layer has SiP. In one or more of the above and subsequent embodiments, all of the interior dielectric spacers are located beneath the sidewall spacers.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung weist eine Halbleitervorrichtung Folgendes auf: Halbleiterdrähte, die vertikal angeordnet sind und jeweils einen Kanalbereich aufweisen; eine Source-/Drain-Epitaxialschicht, die mit Enden der Halbleiterdrähte verbunden ist; eine Gatestruktur mit Seitenwand-Abstandshaltern, die um die Halbleiterdrähte hergestellt sind; dielektrische Innen-Abstandshalter, die zwischen der Gatestruktur und der Source-/Drain-Epitaxialschicht angeordnet sind; und zweite Seitenwand-Abstandshalter, die auf den ersten Seitenwand-Abstandshaltern angeordnet sind. Die ersten Seitenwand-Abstandshalter sind nicht in Kontakt mit den Halbleiterdrähten. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen sind die zweiten Seitenwand-Abstandshalter nicht in Kontakt mit den Halbleiterdrähten. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen befindet sich eine Grenzfläche zwischen mindestens einem der Halbleiterdrähte und der Source-/Drain-Epitaxialschicht unter einem der ersten Seitenwand-Abstandshalter. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen befindet sich eine Grenzfläche zwischen mindestens einem der dielektrischen Innen-Abstandshalter und der Source-/Drain-Epitaxialschicht außerhalb eines Bereichs unter einem der ersten Seitenwand-Abstandshalter. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist ein Material der zweiten Seitenwand-Abstandshalter gleich einem Material der dielektrischen Innen-Abstandshalter. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist ein Material der ersten Seitenwand-Abstandshalter von dem Material der dielektrischen Innen-Abstandshalter verschieden. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist das Material der dielektrischen Innen-Abstandshalter Siliziumnitrid. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen ist das Material der ersten Seitenwand-Abstandshalter SiOC, SiCON oder SiCN. Bei einer oder mehreren der vorstehenden und nachfolgenden Ausführungsformen bestehen die Halbleiterdrähte aus Ge oder Si1-xGex, wobei 0,5 ≤ x < 1 ist.According to a further aspect of the present invention, a semiconductor device has the following: semiconductor wires which are arranged vertically and each have a channel region; a source / drain epitaxial layer connected to ends of the semiconductor wires; a gate structure with sidewall spacers made around the semiconductor wires; interior dielectric spacers disposed between the gate structure and the source / drain epitaxial layer; and second sidewall spacers disposed on the first sidewall spacers. The first sidewall spacers are not in contact with the semiconductor wires. In one or more of the above and subsequent embodiments, the second sidewall spacers are not in contact with the semiconductor wires. In one or more of the above and subsequent embodiments, an interface between at least one of the semiconductor wires and the source / drain epitaxial layer is under one of the first sidewall spacers. In one or more of the above and subsequent embodiments, an interface between at least one of the interior dielectric spacers and the source / drain epitaxial layer is outside a region under one of the first sidewall spacers. In one or more of the above and subsequent embodiments, a material of the second sidewall spacers is the same as a material of the dielectric inner spacers. In one or more of the above and subsequent embodiments, a material of the first sidewall spacers is different from the material of the dielectric inner spacers. In one or more of the above and subsequent embodiments, the material of the dielectric spacers is silicon nitride. In one or more of the above and subsequent embodiments, the material of the first sidewall spacers is SiOC, SiCON or SiCN. In one or more of the above and subsequent embodiments, the semiconductor wires are made of Ge or Si 1-x Ge x , where 0.5 x x <1.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung weist eine Halbleitervorrichtung Folgendes auf: Halbleiterdrähte, die vertikal angeordnet sind und jeweils einen Kanalbereich aufweisen; eine Source-/Drain-Epitaxialschicht, die mit Enden der Halbleiterdrähte verbunden ist; eine Gatestruktur mit Seitenwand-Abstandshaltern, die um die Halbleiterdrähte hergestellt sind; und dielektrische Innen-Abstandshalter, die zwischen der Gatestruktur und der Source-/Drain-Epitaxialschicht angeordnet sind. Die Seitenwand-Abstandshalter sind nicht in Kontakt mit den Halbleiterdrähten.According to a further aspect of the present invention, a semiconductor device has the following: semiconductor wires which are arranged vertically and each have a channel region; a source / drain epitaxial layer connected to ends of the semiconductor wires; a gate structure with sidewall spacers made around the semiconductor wires; and interior dielectric spacers disposed between the gate structure and the source / drain epitaxial layer. The sidewall spacers are not in contact with the semiconductor wires.
Vorstehend sind Merkmale verschiedener Ausführungsformen beschrieben worden, sodass Fachleute die Aspekte der vorliegenden Erfindung besser verstehen können. Fachleuten dürfte klar sein, dass sie die vorliegende Erfindung ohne Weiteres als eine Grundlage zum Gestalten oder Modifizieren anderer Verfahren und Strukturen zum Erreichen der gleichen Ziele und/oder zum Erzielen der gleichen Vorzüge wie bei den hier vorgestellten Ausführungsformen verwenden können. Fachleute dürften ebenfalls erkennen, dass solche äquivalenten Auslegungen nicht von dem Grundgedanken und Schutzumfang der vorliegenden Erfindung abweichen und dass sie hier verschiedene Änderungen, Ersetzungen und Abwandlungen vornehmen können, ohne von dem Grundgedanken und Schutzumfang der vorliegenden Erfindung abzuweichen.Features of various embodiments have been described above so that those skilled in the art can better understand the aspects of the present invention. It will be apparent to those skilled in the art that they can readily use the present invention as a basis for designing or modifying other methods and structures to achieve the same goals and / or to achieve the same benefits as the embodiments presented herein. Those skilled in the art should also recognize that such equivalent interpretations do not depart from the spirit and scope of the present invention and that they can make various changes, substitutions and modifications without departing from the spirit and scope of the present invention.
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862712868P | 2018-07-31 | 2018-07-31 | |
US62/712,868 | 2018-07-31 | ||
US16/396,405 | 2019-04-26 | ||
US16/396,405 US11038043B2 (en) | 2018-07-31 | 2019-04-26 | Semiconductor device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102019112545A1 true DE102019112545A1 (en) | 2020-02-06 |
Family
ID=69168303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102019112545.6A Granted DE102019112545A1 (en) | 2018-07-31 | 2019-05-14 | Semiconductor component and method for its production |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102354010B1 (en) |
DE (1) | DE102019112545A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4328975A1 (en) * | 2022-08-25 | 2024-02-28 | Samsung Electronics Co., Ltd. | Semiconductor devices |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11695055B2 (en) * | 2020-03-03 | 2023-07-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Passivation layers for semiconductor devices |
US11581414B2 (en) * | 2020-03-30 | 2023-02-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate-all-around devices with optimized gate spacers and gate end dielectric |
US11387346B2 (en) | 2020-04-24 | 2022-07-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate patterning process for multi-gate devices |
US11557659B2 (en) * | 2020-04-29 | 2023-01-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate all around transistor device and fabrication methods thereof |
DE102020119859A1 (en) * | 2020-04-29 | 2021-11-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | FORMATION OF HYBRID ISOLATION REGIONS THROUGH RECESSING AND RE-SEPARATION |
US11637066B2 (en) * | 2020-04-30 | 2023-04-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit and method for forming the same |
US11532702B2 (en) * | 2020-05-19 | 2022-12-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Source/drain isolation structures for leakage prevention |
DE102020127567A1 (en) * | 2020-05-20 | 2021-11-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING IT |
US11437492B2 (en) | 2020-05-20 | 2022-09-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method of manufacture |
US11271113B2 (en) | 2020-06-12 | 2022-03-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device structure and method for forming the same |
US11728401B2 (en) * | 2020-10-30 | 2023-08-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structures and methods thereof |
US11670550B2 (en) | 2021-01-21 | 2023-06-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Nanostructure field-effect transistor device and method of forming |
US11710737B2 (en) | 2021-02-05 | 2023-07-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Hybrid semiconductor device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8969149B2 (en) * | 2013-05-14 | 2015-03-03 | International Business Machines Corporation | Stacked semiconductor nanowires with tunnel spacers |
US9647098B2 (en) * | 2014-07-21 | 2017-05-09 | Samsung Electronics Co., Ltd. | Thermionically-overdriven tunnel FETs and methods of fabricating the same |
US9773886B1 (en) * | 2016-03-15 | 2017-09-26 | Samsung Electronics Co., Ltd. | Nanosheet and nanowire devices having doped internal spacers and methods of manufacturing the same |
US9653289B1 (en) * | 2016-09-19 | 2017-05-16 | International Business Machines Corporation | Fabrication of nano-sheet transistors with different threshold voltages |
KR102564325B1 (en) * | 2017-01-04 | 2023-08-07 | 삼성전자주식회사 | Semiconductor devices having channel regions |
US10410931B2 (en) * | 2017-01-09 | 2019-09-10 | Samsung Electronics Co., Ltd. | Fabricating method of nanosheet transistor spacer including inner spacer |
-
2019
- 2019-05-14 DE DE102019112545.6A patent/DE102019112545A1/en active Granted
- 2019-07-30 KR KR1020190092266A patent/KR102354010B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4328975A1 (en) * | 2022-08-25 | 2024-02-28 | Samsung Electronics Co., Ltd. | Semiconductor devices |
Also Published As
Publication number | Publication date |
---|---|
KR102354010B1 (en) | 2022-01-21 |
KR20200014235A (en) | 2020-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102019112545A1 (en) | Semiconductor component and method for its production | |
DE102016115986B4 (en) | SEMICONDUCTOR COMPONENT AND METHOD FOR MANUFACTURING IT | |
DE102017119141B4 (en) | A method of manufacturing a semiconductor device and a semiconductor device | |
DE102017122830B4 (en) | METHOD FOR MANUFACTURING A SEMICONDUCTOR COMPONENT | |
DE102019116859A1 (en) | METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE, AND A SEMICONDUCTOR DEVICE | |
DE102019116939A1 (en) | METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE | |
DE102019122576A1 (en) | SEPARATE EPITAXIAL LAYERS FOR NANO WIRE STACK GAA DEVICE | |
DE102017124637A1 (en) | A manufacturing method of a semiconductor device and a semiconductor device | |
DE102017114981A1 (en) | A method of manufacturing a semiconductor device and semiconductor device | |
DE102019115937A1 (en) | METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE | |
DE102019126920A1 (en) | METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE AND A SEMICONDUCTOR DEVICE | |
DE102017126511A1 (en) | Semiconductor device and manufacturing method thereof | |
DE102019114114B4 (en) | METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE | |
DE102017126225A1 (en) | METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE AND A SEMICONDUCTOR DEVICE | |
DE102019206553A1 (en) | Semiconductor device with improved gate-source / drain metallization isolation | |
DE102020130964A1 (en) | VERTICALLY ORIENTED COMPLEMENTARY TRANSISTOR | |
DE102018103075B4 (en) | Method for manufacturing a semiconductor device and a semiconductor device | |
DE102018108821A1 (en) | METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE | |
DE102018122810B4 (en) | Method of manufacturing a semiconductor device | |
DE102021109107A1 (en) | GATE STRUCTURES AND METHODS OF FORMING THEM | |
DE102019125889A1 (en) | METHOD OF MANUFACTURING A SEMICONDUCTOR COMPONENT AND A SEMICONDUCTOR COMPONENT | |
DE102017110442A1 (en) | Finfet device with epitaxial structures surrounding the ribs and their manufacturing process | |
DE102020102405A1 (en) | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF | |
DE102020121511A1 (en) | METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE AND A SEMICONDUCTOR DEVICE | |
DE102020109927B4 (en) | SEMICONDUCTOR COMPONENT AND METHOD FOR THE PRODUCTION THEREOF |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division |