DE102019009147A1 - Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit - Google Patents

Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit Download PDF

Info

Publication number
DE102019009147A1
DE102019009147A1 DE102019009147.7A DE102019009147A DE102019009147A1 DE 102019009147 A1 DE102019009147 A1 DE 102019009147A1 DE 102019009147 A DE102019009147 A DE 102019009147A DE 102019009147 A1 DE102019009147 A1 DE 102019009147A1
Authority
DE
Germany
Prior art keywords
sensor
processing unit
data
measuring device
gesture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019009147.7A
Other languages
English (en)
Inventor
Mohammad Kabany
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B Horizon GmbH
Original Assignee
B Horizon GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B Horizon GmbH filed Critical B Horizon GmbH
Priority to DE102019009147.7A priority Critical patent/DE102019009147A1/de
Publication of DE102019009147A1 publication Critical patent/DE102019009147A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity

Abstract

Die Erfindung betrifft eine Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit, umfassend zumindest eine Vorrichtung zur Messung von Druck und/oder Feuchtigkeit, umfassend zumindest einen Sensor zur Messung von Druck und/oder Feuchtigkeit, wobei der Sensor zumindest einen Kondensator mit zumindest zwei Elektroden umfasst, welche, insbesondere in einer horizontalen Richtung entlang eines und auf einem, insbesondere flexiblem, Trägermaterial zueinander angeordnet sind. Dabei ist zwischen den Elektroden zumindest eine dielektrische Schicht angeordnet. Die Erfindung ist dadurch gekennzeichnet, dass auf einer einem Trägermaterial abgewandte Seite zumindest eine Elektrode und/oder die dielektrische Schicht zumindest stellenweise, zumindest eine, zumindest teilweise flüssigkeitsdurchlässige und/oder flüssigkeitsabsorbierende Feuchteschicht angeordnet ist. Dabei sind somit die zumindest eine Elektrode und/oder die dielektrische Schicht in einer Querrichtung zwischen dem Trägermaterial und der Feuchteschicht angeordnet. So verändert sich eine Kapazität durch die auf die dielektrische Schicht zumindest teilweise treffende Flüssigkeit zumindest teilweise, wobei eine Verarbeitungseinheit dazu eingerichtet und dafür vorgesehen ist Messwerte des Sensors zu messen und/oder zu speichern. So entsteht ein kapazitiver Feuchtesensor. Die Erfindung ist dadurch gekennzeichnet, dass von der Verarbeitungseinheit die von dem Sensor gemessenen Daten an eine zentrale CPU gesendet werden, wobei diese Daten von der Verarbeitungseinheit verarbeitet werden.

Description

  • Die vorliegende Erfindung betrifft eine Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit sowie ein Verfahren zur Messung von Druck und/oder Feuchtigkeit umfassend die jeweiligen Oberbegriffe der Patentansprüche 1.
  • Das erfindungsgemäße Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit umfasst zumindest einen Sensor zur Messung von Druck und/oder Feuchtigkeit, wobei der Sensor zumindest einen Kondensator mit zumindest zwei Elektroden umfasst, welche, insbesondere in einer horizontalen Richtung, entlang eines und auf einem, insbesondere flexiblen, Trägermaterial zueinander angeordnet sind, wobei zwischen den Elektroden zumindest eine dielektrische Schicht angeordnet ist.
  • Die Anmeldung offenbart auch ein Verfahren zur Steuerung eines Nutzungsobjektes mittels eines hier beschriebenen Messystems. Das heißt alle für das Messystem offenbarten Merkmale sind auch für das hier beschriebene Verfahren offenbart und umgekehrt.
  • Die horizontale Richtung ist vorzugsweise eine Haupterstreckungsrichtung des flexiblen Trägermaterials.
  • „Flexibel“ heißt in diesem Zusammenhang dass das Trägermaterial zumindest stellenweise biegsam und damit elastisch ist.
  • Insbesondere kann es sich bei dem Trägermaterial um einen Webstoff oder um einen sonstigen Bekleidungsstoff, wie zum Beispiel ein Polyester handeln.
  • Die dielektrische Schicht beabstandet damit die beiden Elektroden in einer horizontalen und/oder in einer dazu senkrechten Querrichtung.
  • Erfindungsgemäß ist auf einer dem Trägermaterial abgewandten Seite zumindest eine Elektrode und/oder der dielektrischen Schicht zumindest stellenweise, zumindest eine, zumindest teilweise flüssigkeitsdurchlässige und/oder flüssigkeitsabsorbierende Feuchteschicht angeordnet, wobei somit die zumindest eine Elektrode und/oder dielektrische Schicht in einer Querrichtung zwischen dem Trägermaterial und der Feuchteschicht angeordnet sind, sodass eine Kapazität durch die auf die dielektrische Schicht zumindest teilweise treffende Flüssigkeit, zumindest teilweise verändert, wobei eine Verarbeitungseinheit dazu eingerichtet und dafür vorgesehen ist, die Messwerte des Sensors zu messen und/oder zu speichern, sodass ein kapazitiver Feuchtesensor entsteht.
  • Ein kapazitiver Feuchtesensor ist im Prinzip ein Kondensator, dessen Dielektrikum vorzugsweise aus einem hygroskopischen Polymerschicht besteht, die entsprechend der Feuchtigkeit der Umgebungsluft Feuchtigkeit aufnimmt (absorbiert) oder abgibt (desorbiert) bis ein Gleichgewichtszustand (Diffusionsgefälle ist = 0) erreicht ist. Dabei verändert sich die Dielektrizitätskonstante des Polymermaterials als Funktion eines Feuchtegehalts.
  • Die Aufgabe der Verarbeitungseinheit besteht unter anderem darin, vorzugsweise auch aus einer gemessenen Umgebungstemperatur und dem feuchtigkeitsabhängigen Kapazitätswert des Sensors die relative Feuchte möglichst genau zu ermitteln.
  • Erfindungsgemäß werden von der Verarbeitungseinheit die von dem Sensor gemessenen Daten an eine zentrale CPU (Central Processing Unit) gesendet, wobei diese Daten von der Verarbeitungseinheit verarbeitet werden.
  • Gemäß zumindest einer Ausführungsform umfasst das Messystem zumindest ein 2D- und/oder 3D-Gestenerkennungssystem, welches, zum Beispiel nur gemeinsam mit der Vorrichtung zur Messung von Druck und/oder Feuchtigkeit, einen Nutzer identifizieren und/oder zumindest einen Anwendungsbefehl an ein Nutzungsobjekt ausgibt.
  • Die CPU und die Verarbeitungseinheit sind vorzugsweise verschieden voneinander. Die CPU und die Verarbeitungseinheit sind zum Beispiel voneinander beabstandet angeordnet. Insbesondere können die Verarbeitungseinheit und die CPU nicht auf einem gemeinsamen Träger und/oder Substrat angeordnet sein, sofern der Träger nicht das Trägermaterial, also zum Beispiel einem Textil, ist.
  • Auch ist denkbar, dass die hier beanspruchte Vorrichtung und insbesondere die Sensoren, auf einer Innenfläche eines Reifen verbaut sind. Auch ist denkbar, dass die Sensoren sogar mit in das Material des Reifen eingefügt sind. Dabei ist vorstellbar, dass die Sensoren alle in das Material eingefügt und damit von dem Material des Reifens ummantelt sind und die Verarbeitungseinheiten auf der Innenfläche des Reifens angeordnet sind. Alternativ können jedoch auch die Verarbeitungseinheiten in das Material des Reifens eingefügt sein. Die Sensoren können dann den Reifeninnendruck, die Reifeninnentemperatur und/oder die Einzel- oder Gesamtlaufzeit des Reifens erfassen.
  • Gemäß zumindest einer Ausführungsform umfasst die Messvorrichtung zumindest eines Vorrichtung zur Messung von Druck und/oder Feuchtigkeit, wobei die Vorrichtung zumindest einen Sensor zur Messung von Druck und/oder Feuchtigkeit aufweist, wobei der Sensor zumindest einen Kondensator mit zumindest zwei Elektroden umfasst, welche insbesondere in einer horizontalen Richtung entlang eines und auf einem insbesondere flexiblen Trägermaterial zueinander angeordnet sind, wobei zwischen den Elektroden zumindest eine dielektrische Schicht angeordnet ist.
  • Erfindungsgemäß ist auf eine dem Trägermaterial abgewandten Seite zumindest eine Elektrode und/oder dielektrische Schicht zumindest stellenweise, zumindest eine, zumindest teilweise flüssigkeitsdurchlässige und/oder flüssigkeitsabsorbierende Schicht (= Feuchteschicht) angeordnet, wobei somit die zumindest eine Elektrode und/oder dielektrische Schicht in Querrichtung zwischen dem Trägermaterial und der Feuchteschicht angeordnet sind, sodass eine Kapazität durch die auf die dielektrische Schicht zumindest teilweise treffende Flüssigkeit, zumindest teilweise verändert wird, wobei eine Verarbeitungseinheit dazu eingerichtet und dafür vorgesehen ist diese Messwerte des Sensors zu messen und/oder zu speichern, sodass ein kapazitiver Feuchtesensor entsteht.
  • Erfindungsgemäß werden von der Verarbeitungseinheit die von dem Sensor gemessenen Daten an eine zentrale CPU (Central Processing Unit) gesendet, wobei diese Daten von der Verarbeitungseinheit verarbeitet werden.
  • Gemäß zumindest einer Ausführungsform ist die Vorrichtung in einem Ansteuerungselement, insbesondere in einem Lenkrad, verbaut, wobei anhand eines elektrischen Hautwiderstands des Nutzers, einem Griffdruck und/oder einer Griffposition und/oder einer Hauttemperatur den Nutzer erkennt und/oder anhand dieser Daten das Nutzungsobjekt, insbesondere ein Fahrzeug, gesteuert wird. Denkbar ist dann, dass entlang der Umfangsrichtung des Lenkrades einer oder mehrere der Sensoren angeordnet sind. Hierzu können die Sensoren auf der Oberfläche des Lenkrades oder leicht unterhalb der Lenkradoberfläche eingebaut sein. Zum Beispiel können die Sensoren dann in den Kunststoffmantel des Lenkrades integriert verbaut sein. Die Haut des Nutzers würde dann nicht in unmittelbaren Kontakt mit den Sensoren kommen.
  • Gemäß zumindest einer Ausführungsform ist mittels des 2D- und/oder 3D-Gestenerkennungssystem das Nutzungsobjekt steuerbar ist. Hierzu kann das Gestenerkennungssystem in einem Fond eines Fahrzeugs abseits des Ansteuerungsmittels verbaut sein. In zumindest einer Ausführungsform umfasst zur Erkennung der Gesten das Gestenerkennungssystem zumindest ein Detektionsmittel, zum Beispiel eine Kamera und/oder einen Sensor, wie etwas einen Infrarotsensor.
  • Gemäß zumindest einer Ausführungsform führt das 2D- und/oder 3D-Gestenerkennungssystem zunächst eine Vorabnutzergestenerkennung und/oder eine Vorabsteuerungserkennung durch, wobei erst nachdem die CPU die entsprechende Geste mit in der Datenbank der CPU hinterlegen Steuerungsgesten verglichen und die entsprechende Geste einer Gruppe von Steuerungsgesten zugeordnet hat der Sensor ein Feinauswahl einer Geste der Gruppe von vorausgewählten Geste vornimmt, sodass die dann durch die Feinauswahl gewonnene Geste im Wesentlichen derjenigen entspricht, welche durch den Nutzer getätigt wurde, sodass über diese dann ausgewählte Geste das Nutzungsobjekt steuerbar ist.
  • Die einzelnen Gesten zu einen Datenclustern und/oder Datenblops zusammengefasst sind. Hierzu ist denkbar, dass jede einzelne oder einen Gruppe von Gesten durch das Gestenerkennungssystem erfasst werden aus den so erfassten Bilddaten in eine oder mehrerer Gestenklassen klassifiziert werden, das heißt eingruppiert werden, der Vergleich dieser Daten mit in der Datenbank hinterlegten Gestendaten einen Klassifikationsvergleich von Datenklassen der Gestendaten mit Datenklassen der Datenbankgestendaten umfasst, wobei eine Klassifikation der jeweiligen Geste auf Basis von Bewegungsvektoren eines Körperteils des Nutzers derart durchgeführt wird, dass zunächst aus der zeitlichen Bewegung des Körperteils ein Bewegungsprofil erstellt wird, wobei das Bewegungsprofil des Körperteils Bewegungsvektoren desselbigen umfasst, und weiter wobei die CPU die einzelnen Gesten, welche über einen vorgegebenen Zeitraum gesammelt wurden zu sogenannten Datenblops oder Datenclustern zusammenfasst, die dann in ihrer Form und/oder Ausdehnung klassifiziert werden.
  • Gemäß zumindest einer Ausführungsform entspricht zumindest eine Datenklasse der Gestendate zumindest einem Datentyp einer in der CPU hinterlegten Geste.
  • Gemäß zumindest einer Ausführungsform ist durch die Gestensteuerung eine Fahrtrichtung, eine Fahrgeschwindigkeit des Nutzungsobjektes oder ein sonstiges Bedienelements des Nutzungsobjektes bedienbar ist.
  • Als Datencluster bezeichnet man im Sinne der Erfindung eine Gruppe von Datenobjekten mit ähnlichen Eigenschaften. Die Menge der in einem Datensatz gefundenen Cluster bezeichnet man als Clustering ein Verfahren zur Berechnung einer solchen Gruppierung als Clusteranalyse. Nicht zu einem Cluster gehörende Datenobjekte bezeichnet man als Ausreißer, Outlier oder Noise.
  • Die Kernidee eines Clusters ist, dass Datenobjekte im selben Cluster über „ähnliche“ Eigenschaften verfügen und sich von Objekten, die nicht im selben Cluster sind, dadurch unterscheiden.
  • Im Falle von nur einer Geste, also wenn eine einzige Geste zur (An)steuerung eines Nutzungsobjekts ausreicht kann dieses auch einem, vorzugsweise genau einem Blop oder Cluster zugeordnet werden.
  • Dies kann deshalb vorteilhaft sein, da Fehlanalysen durch störende Außeneinflüsse wie plötzliche Belichtung durch zum Beispiel die Sonne oder intern durch Regelungen der optischen Komponente mehrheitlich ausgeschlossen werden können. Die Verfolgung der Objekte (das heißt die Verfolgung zum Beispiel eines Körperteils, wie der Hand des Nutzers) erlaubt darüber hinaus auch eine Aussage über die Bewegungsrichtung und damit auch über die Aufenthaltsdauer in einem bestimmten virtuellen Segmentbereich vor der Kamera.
  • Es sei angemerkt, dass anstatt oder zusätzlich zur obig beschriebenen Gestensteuerung und Gestenklassifikation ebenso auch über den Sensor der obig beschriebenen Vorrichtung in der gleichen Art und Weise erfolgen kann.
  • Der Sensor und/oder die Verarbeitungseinheit und/oder die zentrale CPU können mittels einer Batterie oder einer Festnetzstromversorgung mit elektrischer Energie versorgt werden.
  • Alternativ oder zusätzlich ist die Erzeugung von elektrischer Energie zur Versorgung des Sensors und/oder Verarbeitungseinheit mittels sogenannten „Energy Harvesting“ möglich.
  • Als Energy Harvesting (wörtlich übersetzt Energie-Ernten) bezeichnet man die Gewinnung kleiner Mengen von elektrischer Energie aus Quellen wie Umgebungstemperatur, Vibrationen oder Luftströmungen für mobile Geräte mit geringer Leistung. Die dafür eingesetzten Strukturen werden auch als Nanogenerator bezeichnet. Energy Harvesting vermeidet bei Drahtlostechnologien Einschränkungen durch kabelgebundene Stromversorgung oder Batterien.
  • Möglichkeiten des Energy Harvesting:
    • - Piezoelektrische Kristalle erzeugen bei Krafteinwirkung, beispielsweise durch Druck oder Vibration, elektrische Spannungen. Diese Kristalle können an oder auf dem Trägermaterial angeordnet sein.
    • - Thermoelektrische Generatoren und pyroelektrische Kristalle gewinnen aus Temperaturunterschieden elektrische Energie. Diese Generatoren können an oder auf dem Trägermaterial angeordnet sein.
    • - Über Antennen kann die Energie von Radiowellen, eine Form von elektromagnetischer Strahlung, aufgefangen und energetisch verwendet werden. Ein Beispiel dafür sind die passiven RFIDs. Diese Antennen können an oder auf dem Trägermaterial angeordnet sein.
    • - Photovoltaik, elektrische Energie aus der Umgebungsbeleuchtung.
    • - Osmose.
  • Ein Energiespeicher der Vorrichtung kann Teil einer Verarbeitungseinheit sein. Hierzu können eine oder mehrere der Verarbeitungseinheiten einen solchen Energiespeicher (lokale Energiespeicher) aufweisen. Zum Beispiel weist nur eine oder einige der Verarbeitungseinheiten einen solchen Energiespeicher auf, sodass eine dieser Verarbeitungseinheiten eine andere Verarbeitungseinheit (nämlich eine solche, welche keinen Energiespeicher aufweist) mit elektrischer Energie versorgt.
  • Auch ist denkbar, dass die Energiespeichereinheit(en) der Verarbeitungseinheit(en) die CPU mit elektrischer Energie ganz oder teilweise versorgt. Zum Beispiel kann so die CPU an keine weiteren Energiespeicher und/oder Energieversorgungsleitungen angeschlossen sein.
  • Über das oben genannte Energy Harvesting kann zumindest einer der Energiespeicher geladen werden.
  • Die Energieübertragung zwischen den Sensoren und/oder den Verarbeitungseinheiten und/oder der CPU kann ganz oder teilweise drahtlos erfolgen.
    Zu der drahtlosen Energieübertragungen im Nahfeld, auch als nicht strahlende Kopplung bezeichnet, zählt beispielsweise die indukvtive Kopplung, basierend auf dem magnetischen Fluss. Häufig wird die Bezeichnung der drahtlosen Energieübertragung synonym für die induktive Energieübertragung verwendet, da diese in praktischen Anwendungen eine dominante Rolle einnimmt. Bei der nicht strahlenden Kopplung im Nahfeld spielen Wellenphänomene keine Rolle.
  • Zum Beispiel geschieht die drahtlose Energieübertragung zwischen den einzelnen Elementen mittels induktiver Kopplung, resonanter induktiver Kopplung und/oder kapazitiver Kopplung.
  • Gemäß zumindest einer Ausführungsform weist das Messvorrichtung zumindest zwei Sensoren auf, wobei durch die Verarbeitungseinheit die Sensoren in Gruppen aus zumindest einem Sensor auf Basis zumindest einem der folgenden Kriterien unterteilt werden:
    • - Anordnungsort des Sensors oder der Sensoren auf dem Trägermaterial, wobei das Trägermaterial in Flächengebiete eingeteilt ist, und innerhalb eines Flächengebiets nur Sensoren einer Gruppe angeordnet sind,
    • - Flächenausdehnung eines Sensors.
  • Gemäß zumindest einer Ausführungsform umfasst die Messvorrichtung zumindest zwei Vorrichtungen zur Messung von Druck und/oder Feuchtigkeit, wobei jede Verarbeitungseinheit Ihre von den Sensoren empfangenen Daten an die zentrale CPU weiterleitet. Die Datenverbindung zwischen der Verarbeitungseinheit und der zentralen CPU kann kabelgebunden (mit Datenverbindungen) oder aber Wireless erfolgen. Hierzu kann zumindest eine Verarbeitungseinheit eine Bluetooth Verbindung zu der zentralen CPU aufbauen.
  • Gemäß zumindest einer Ausführungsform umfasst zumindest eine Vorrichtung zumindest zwei Sensoren. Insofern kann eine Sensorgruppe bereits durch diese zwei Sensoren gebildet sein. Die beiden Sensoren könne dann durch eine gemeinsame Verarbeitungseinheit gesteuert und/oder geregelt werden.
  • Denkbar ist, dass die Vielzahl von Verarbeitungseinheiten ein Verarbeitungsnetzwerk ausbilden, wobei die Erfassung, Verarbeitung und/oder Weitergabe der Sensordaten und/oder der Verarbeitungsdaten eines jeden Sensors und/oder einer jeden Verarbeitungseinheit durch zumindest eine Steuerungseinrichtung (Master) gesteuert wird. Die Steuerungseinheit kann identisch mit der oben beschriebenen CPU sein.
  • Es ist jedoch auch möglich, dass eine oder mehrere der Verarbeitungseinheiten den Master darstellen, welcher die übrigen Verarbeitungseinheiten (Slave) und/oder die übrigen Sensoren (Slave) steuern.
  • Zum Beispiel kann eine der Verarbeitungseinheiten und/oder die CPU nach Inbetriebnahme der Vorrichtung (zum Beispiel nach einem Anschalten der Vorrichtung), solche Sensoren auswählen, welche für eine vorgebbare Nutzungsdauer in Betrieb genommen werden. Alternativ können auch alle oder einige Sensoren in Betrieb genommen werden, dann jedoch ist vorstellbar, dass eine Verarbeitungseinheit und/oder die CPU, insbesondere zum Zwecke der Energieersparnis, nur Daten einer vorgegebenen Anzahl (also weniger als alle Sensoren) von Sensoren an die CPU weiterleitet (Filterung).
  • Diese Master-Verarbeitungseinheit kann vorzugsweise als einzige Einheit mit der CPU kommunizieren.
  • Weiter alternativ oder zusätzlich ist vorstellbar, dass eine oder alle Verarbeitungseinheiten und/oder ein Sensor (Slave oder Master) direkt mit der CPU kommunizieren.
  • Gemäß zumindest einer Ausführungsform ist das Verarbeitungsnetzwerk mittels zumindest eines VLAN-Switches in zumindest zwei, nur logisch voneinander getrennte, Netzwerksegmente (VLANs) unterteilbar, wobei jedes der Erfassungselemente in Abhängigkeit von der Ansteuerung durch einen VLAN-Switch und/oder der Steuerungseinrichtung und somit durch jedes der Netzwerksegmente ansteuerbar ist.
  • Wird zum Beispiel eine sehr große Fläche (zum Beispiel ein Textil) mit einer Vielzahl von hier beanspruchten Sensoren und Verarbeitungseinheiten bestückt können in besonders einfacher Art und Weise dann einzelne Verarbeitungseinheiten und/oder Sensoren kategorisiert werden (nach verschiedenen Prioritäten etc.). Es wird somit in einer Ausführungsform statt einer physikalischen Netzwerkunterteilung eine „virtuelle“, das heißt VLAN-Unterteilung gewählt. Dies gewährleistet nämlich, dass auf Veränderungen in der Kategorisierung der Verarbeitungseinheiten und/oder Sensoren besonders schnell und ohne aufwendige Umbauarbeiten reagiert werden kann.
  • Gemäß zumindest einer Ausführungsform umfasst das Messvorrichtung zumindest ein Verarbeitungsnetzwerk, wobei mittels zumindest eines VLAN-Switches des Verarbeitungsnetzwerks, dieses in zumindest zwei, nur logisch voneinander getrennte, Netzwerksegmente (VLAN) unterteilbar ist, und wobei jeder Verarbeitungseinheiten und/oder jeder der Sensoren in Abhängigkeit von der Ansteuerung durch den VLAN-Switch durch jedes der Netzwerksegmente ansteuerbar sind.
  • Dazu kann der VLAN-Switch in zumindest einem der Verarbeitungseinheiten und/oder Sensoren oder in einem separaten Bauteil verbaut sein.
  • Gemäß zumindest einer Ausführungsform wird mittels des VLAN-Switches eine Priorisierung der einzelnen Netzwerksegmente insbesondere im Hinblick auf deren Datenaustausch durchgeführt.
  • Gemäß zumindest einer Ausführungsform ist jeder Verarbeitungseinheit und/oder jedem Netzwerksegment zumindest eine VLAN-ID zugeordnet, wobei über jede der VLAN-IDs zumindest ein Sensor oder eine andere Verarbeitungseinheit ansteuerbar ist. Einzelne Sensoren und/oder einzelne Verarbeitungseinheiten können ein eigenes Sub-Netzwerk bilden.
  • Um über Netzwerkgrenzen zu kommunizieren, werden im Stand der Technik statische projektdynamische Routen eingesetzt. Dieses Modell der Trennung ist klar und übersichtlich und wurde über Jahre angewandt. Dies hat jedoch die Nachteile, dass Broadcastanforderungen im Subnetz für alle Teilnehmer sichtbar sind und von den Endpunkten betrachtet werden müssten. Mit anderen Worten, konnten bisher verschiedene Endgeräte nur über entsprechende, jedem Subnetz zugeordnete, separate und physikalisch voneinander getrennte Switches angesteuert werden. Ein derartiger Aufbau ist jedoch besonders kostspielig und umfangreich im Design.
  • Wie obig bereits erwähnt, ist somit insbesondere auf die Ausgestaltung eines jeden Subnetzwerks mit einem separaten Switch und separaten physikalischen Datenleitungen verzichtet, sodass für das gesamte Netzwerk eine einzige physikalische Struktur angewandt werden kann, wobei diese physikalische Struktur, d. h. Netzwerkarchitektur, nur aufgrund einer logischen, insbesondere auch mathematischen Unterscheidung(d. h. gedacht), aufgetrennt wird.
  • Dabei bezeichnet die Abkürzung „VLAN-Switch“ einen solchen Netzwerkswitch, welcher dazu eingerichtet und dafür vorgesehen ist, ein Netzwerk in Form eines Virtual Local Area Network (VLAN) mit zu betreiben.
  • Insofern wird somit durch die nunmehr beanspruchten Netzwerksegmente, welche jeweils in Form eines VLAN-Netzwerks ausgebildet sein können, ermöglicht, dass die Trennung des Netzwerks in mehrere logische Segmente, also die Netzwerksegmente, unterteilt wird.
  • Anders als bei der physikalischen Trennung durch die Zuordnung zu einem Switch Port werden bei der Trennung durch VLANs die Geräte durch eine VLAN-ID logisch getrennt. Dabei wird der Datenstrom jeder Station mit einer Kennung (dem VLAN-„Tag“) versehen. Diese Kennung bestimmt die Zugehörigkeit eines Datenpakets zu einem bestimmten VLAN. Alle Geräte mit der gleichen VLAN-Kennung befinden sich nunmehr in einem logischen Netzwerk.
  • Insbesondere kann nämlich durch die logische Trennung der einzelnen Netzwerke ein Broadcast eingegrenzt werden. Broadcasts werden nämlich nur an Mitglieder des gleichen VLANS und nicht an alle am Switch hängenden Steuerelemente verteilt.
  • Dies trägt insofern auch nicht nur zu einer höheren Leistung, sondern auch zu mehr Sicherheit bei, denn der Datenverkehr wird auf weniger Adressaten eingeschränkt. Hinzu kommt, dass Benutzer oder die Steuerelemente in der Regel in einem VLAN keine Möglichkeit haben aus dem zugewiesenen VLAN auszubrechen. Ein Zugriff (oder Angriff) auf einen anderen Rechner, der nicht zum eigenen VLAN gehört kann daher bereits durch den Netzwerkswitch verhindert werden. Wenn eine VLAN übergreifende Kommunikation notwendig ist, können hierfür explizit Routen eingerichtet werden.
  • Insbesondere wird darauf hingewiesen, dass die hier beschriebene VLAN-Technologie eine solche sein kann, welche an den Industriestandard IEEE 802.1Q angepasst ist und/oder mit diesem kompatibel ist.
  • Der Standard IEEE 802.1Q ist eine durch das IEEE genormte Priorisierungs- und VLAN-Technologie, die im Unterschied zu den älteren, nur Port-basierten VLANs, paketbasierte tagged-VLANS implementiert. Der Ausdruck „tagged“ leitet sich vom englischen Ausdruck „material tags“ ab.
  • Es handelt sich daher bei tagged-VLANS um Netze, die Netzwerkpakete verwenden, welche eine spezielle VLAN-Markierung tragen.
  • Insbesondere sind nämlich in den 802.1Q-Standard Datenfelder für das V-LAN-tagging definiert, die in dem Datenbereich eines Ethernetpakets eingeführt werden können.
  • Insofern kann das vorliegende Netzwerk in Form eines Ethernet-Kommunikationssystems ausgebildet sein.
  • Das hat den Vorteil, dass in der Regel auch bereits vorhandene, ältere Switches solche Pakete weiterleiten können. Das eingefügte Tag besteht in der Regel aus mehreren Feldern, beispielsweise vier Feldern mit einer Gesamtlänge von 32 Bit.
  • Für die Protokoll-ID werden 2 Byte, für das Prioritätenfeld 3 Bit, für Indikator des Canonicalformats 1 Bit und für VLAN-ID 12 Bit genutzt.
  • Zur eindeutigen Identifizierung eines VLANS wird jedem VLAN daher zunächst eine eindeutige Nummer zugeordnet. Man nennt diese Nummer VLAN-ID. Ein Erkennungsmodul, das mit der VLAN-ID = 1 ausgestattet ist, kann mit jedem anderen Gerät im gleichen VLAN kommunizieren, nicht jedoch mit einem Gerät in einem anderen VLAN, wie z. B. ID = 2, 3,....
  • Um zwischen den VLANS zu unterscheiden, wird nach dem Standard IEEE 802.1Q ein Ethernetframe um 4 Byte erweitert. Davon sind 12 Bit zur Aufnahme der VLAN-ID vorgesehen, sodass (ohne Ausnutzung des Canonical Formats) theoretisch 4096-2 = 4094 VLANS möglich sind.
  • Denkbar ist, dass die einzelnen logischen Netzwerkverbindungen entsprechend eines OPC-Standards, d. h. beispielsweise in Form von OPC UA-Verbindungen, ausgebildet sind. Insbesondere ist nämlich denkbar, dass pro Netzwerksegment über die Steuerungseinrichtung mehrere OPC UA-Endpunkte mit unterschiedlicher IP-Adresse, VLAN-ID und Priorisierung entsprechend des oben genannten Standards IEEE 802.1Q zur Verfügung stehen.
  • Weist nun ein Netzwerksegment, welches eindeutig, vorzugsweise eineindeutig, eine bestimmte VLAN-ID zugewiesen bekommen hat, eine höhere Priorität auf als ein, nur in logischer Hinsicht, davon unterschiedliches Netzwerksegment einer entsprechend unterschiedlichen VLAN-ID, so können die Steuerungseinrichtung und/oder der VLAN-Switch dazu vorgesehen sein, zunächst den Datenaustausch des höher priorisierten Netzwerksegments zu bevorzugen, um erst nach Abbau der diesem höher priorisierten Netzwerksegment zugeordneten Aufgaben eine Abarbeitung des tiefer priorisierten Netzwerksegments zu erlauben.
  • Mit anderen Worten gilt generell: Zuordnung und Konfiguration der OPC UA Endpunkte zu einem bestimmten Netzwerksegment entsprechend der VLAN-ID und Zuordnung einer Priorität, entsprechend der Priorität des entsprechenden VLANs.
  • Gemäß zumindest einer Ausführungsform sind jedem Sensor und/oder jeder Verarbeitungseinheit zumindest eine VLAN-ID zugeordnet und jedem Netzwerksegment ist wiederum zumindest eine, beispielsweise genau eine, eindeutig, vorzugsweise eineindeutig, VLAN-ID zugeordnet, wobei über jede der VLAN-IDs zumindest ein Steuerelement ansteuerbar ist. Gemäß zumindest einer Ausführungsform umfasst zumindest eine Vorrichtung zumindest einen Temperatursensor, wobei der Temperatursensor eine Umgebungstemperatur und/oder eine Temperatur eines Sensors misst und an die Verarbeitungseinheit einer Vorrichtung und/oder an die zentrale CPU weiterleitet.
  • Gemäß zumindest einer Ausführungsform ermittelt die zentrale CPU einen Auslastungsgrad (CPU-Last und/oder Speicherverbrauch) von zumindest einer Verarbeitungseinheit, wobei bei Überschreiten einer Grenztemperatur der Verarbeitungseinheit und/oder zumindest der dieser Verarbeitungseinheit zugeordneten Sensor diese(r) in seiner Leistung zumindest teilweise gedrosselt oder ganz abgeschaltet wird
  • Gemäß zumindest einer Ausführungsform ist der Sensor zusätzlich ein kapazitiver Drucksensor, wobei die Verarbeitungseinheit zusätzlich dazu eingerichtet und dafür vorgesehen ist, eine durch äußeren Druck verursachte Kapazitätsänderung des Kondensators zu messen und/oder zu speichern.
  • Grundsätzlich handelt es sich bei einem kapazitiven Sensor also um einen Sensor, welcher auf Basis der Veränderung der elektrischen Kapazität eines einzelnen Kondensators oder eines Kondensatorsystems arbeitet. Die Beeinflussung der Kapazität durch die zu erfassende Größe kann dabei auf verschiedene Arten, erfolgen die primär durch den Verwendungszweck bestimmt ist.
  • Ein kapazitiver Sensor basiert unter anderem darauf, dass zwei Elektroden, einer davon kann die zumessende Oberfläche sein, die „Platten“ eines elektrischen Kondensators bilden, dessen Kapazität oder Kapazitätsänderung gemessen wird, die folgendermaßen beeinflusst werden kann:
    • - Eine Platte wird durch den zumessenden Effekt verschoben und/oder verformt, wodurch sich der Plattenabstand und damit die elektrische messbare Kapazität ändern.
    • - Die Platten sind starr und die Kapazität an Sich ändert sich dadurch, dass ein elektrisch leitendes Material oder ein Dielektrikum in unmittelbare Nähe gebracht wird.
    • - Die wirksame Plattenfläche ändert sich, indem die Platten wie bei einem Drehkondensator gegeneinander verschoben werden.
  • Um auch kleine Veränderungen besser detektieren zu können kann die eigentliche Messelektrode häufig mit einer Schirmelektrode umgeben sein, die den inhomogenen Randbereich des elektrischen Feldes von der Messelektrode abschirmt, dadurch ergibt sich zwischen Messelektroden üblicherweise geerdeter Gegenelektrode eine annähernd paralleles elektrisches Feld mit der bekannten Charakteristik eines idealen Plattenkondensators.
  • Ein kapazitiver Drucksensor ist insbesondere ein solcher bei dem die Kapazitätsänderung infolge des Durchbiegens einer Membran und der resultierenden Änderung des Plattenabstands als Sensoreffekt ausgewertet wird. Zum Beispiel handelt es sich bei der Membran um das oben genannte Dielektrikum oder aber um die einzelnen Kondensatorelektroden welche insbesondere in Form einer Platte ausgeführt sein können. Mit anderen Worten ist in einer derartigen Ausführungsform in neuartiger Art und Weise ein kapazitiver Feuchtesensor mit einem kapazitiven Drucksensor kombiniert, jedoch ohne dass diese Bauteile voneinander getrennte Elemente oder zwei separate Sensoren bildeten, sondern es handelt sich bei vorliegender Ausführungsform um ein „Two in One“-Konzept, in welchem der gleiche Sensor sowohl als Feuchtesensor, als auch als Drucksensor fungiert.
  • Gemäß zumindest einer Ausführungsform handelt es sich bei dem Trägermaterial um einen Webstoff, insbesondere in welchem elektrische Leiterbahnen zur elektrischen Kontaktierung des Sensors und der Verarbeitungseinheit eingewoben sind.
  • Bei einem Webstoff handelt es sich im Sinne der Erfindung daher um ein Gewebe, welches manuell oder maschinell auf Basis von einzelnen Fäden gewebt wurde.
  • Die elektrischen Leiterbahnen können in einem Gewebe daher zusätzlich neben den üblichen Fasern und Gewebesträngen integriert sein oder aber einzelne Gewebestränge welche das Gewebenetz ausbilden ersetzen.
  • Je nach Abstand und Eigenschaften der einzelnen Fäden (hochgedreht, bauschig, usw.) können ganz lockere Gewebe, wie Verbandgewebe oder Dichtegewebe wie Brokatstoff entstehen. Längselastisch werden Gewebe durch, als Kettenfäden eingesetzte Gummifäden (mehr Bändern verwendet) oder Kräusel- und Bauschgarne verwendet. Sie werden gespannt, verarbeitet und ziehen sich im Ruhezustand zusammen. Bauschgarne bestehen aus texturiertem, also gekräuseltem synthetischen Fasern. Die Kräuselung verändert die Eigenschaften der synthetischen Fasern. Die darauf gesponnenen Garne sind sehr elastisch und voluminös und haben eine gute Wärmedämmung.
  • Zum Beispiel kann das Trägermaterial Teil eines Bezugstoffes eines Sitzes, insbesondere eines Fahrzeugsitzes oder eines Bürostuhls, sein. Insofern kann der Sensor vorzugsweise jedoch die gesamte Vorrichtung, auf dem Bezugsstoff eines solchen Sitzes aufgebracht oder in einen solchen integriert sein.
  • Zum Beispiel ist die Verarbeitungseinheit dazu eingerichtet und dafür vorgesehen, die einzelnen Feuchte- sowie Druckwerte zu erfassen und aus einer Kombination der einzelnen Feuchte- und Druckwerte zumindest einen jeweiligen Kennwert zu ermitteln, aus welchem ableitbar ist, welches Individuum (mit Gewicht und/oder Größe) gerade den Fahrzeugsitz besetzt.
  • Zum Beispiel kann aus der Druckmessung durch die Verarbeitungseinheit ein Gewicht der jeweiligen Person abgeleitet und festgestellt werden. Auch kann die jeweilige Feuchtigkeit, welche die jeweilige Person an den Sensor abgibt gemessen werden, wobei der jeweilige Kennwert zum Beispiel ein Produkt aus dem relativen Feuchtigkeitswert mal der von der Verarbeitungseinheit ermittelten Belastungsgewicht ist.
  • Überschreitet ein derartiger Kennwert einen entsprechenden Grenzwert kann die Verarbeitungseinheit insbesondere mittels einer Anbindung an die Elektronik des Fahrzeugs, eine Warnung aussprechen. Diese Warnung kann dahingehend lauten, dass der Sitz überbelegt ist oder der Fahrer zu stark schwitzt. Diese Warnung kann jedoch auch ersetzt werden durch eine entsprechende Anzeige dahingehend welcher Belegungstyp den Sitz nutzt. Bei einem Belegungstyp kann es sich um eine Gewichtsklassifikation eines jeweiligen Benutzers handeln, oder aber auch darum Handeln ob es sich bei dem Benutzer um ein Tier, einen Menschen oder auch um eine Sache handelt. Vorzugsweise ist daher die Verarbeitungseinheit in eine Anzeigenelektronik des Fahrzeugs integrierbar, zumindest jedoch mit einer solchen verbind bar.
  • Hierzu ist denkbar, dass die Verarbeitungseinheit sich zum Beispiel mittels Bluetooth oder einer sonstigen Wireless Verbindung mit einer Empfangseinheit des Fahrzeugs verbindet und der jeweilige Kenn- oder Grenzwert und/oder die jeweilige Warnung und/oder die jeweilige Identifikation des Benutzers auf einem Display des Fahrzeugs wiedergegeben werden.
  • Alternativ oder zusätzlich ist vorstellbar, dass diese einzelnen Werte und/oder Identifikationen auch extern abrufbar und/oder extern darstellbar sind. Zum Beispiel kann das Auto auf eine Überbelegung hin von einem externen Controller überwacht werden.
  • Zum Beispiel kann mittels einer Datenverbindung die Verarbeitungseinheit mit einer Auslöseinheit eines Airbags in Verbindung stehen, sodass die Verarbeitungseinheit auch die Auslöseinheit steuern und/oder regeln kann, insbesondere in Bezug auf einen Auslösezeitpunkt des Airbags. Zusätzlich und/oder alternativ ist es möglich, dass die Verarbeitungseinheit eine Controllereinheit des Airbags mit Daten zum Beispiel im Hinblick auf einen Belegungstyp, Position und/oder Gewicht eines Benutzers des Fahrzeugsitzes versorgt.
  • Diese Daten können dazu führen, dass der Auslösezeitpunkt und die Auslösereihenfolge des Airbags auf den Benutzer angepasst sind, sodass ein Personenschaden an dem Benutzer vermieden wird.
  • Gemäß zumindest einer Ausführungsform ist zumindest eine Elektrode und/oder dielektrische Schicht auf dem Trägermaterial oder auf einer auf dem Trägermaterial angeordneten, insbesondere wasserundurchlässigen Schicht aufgedruckt oder mittels eines Dünnschichtverfahrens aufgebracht.
  • Dies heißt, dass zumindest ein Element, vorzugsweise sowohl die Elektrode als auch die dielektrische Schicht, auf dem Trägermaterial oder einer zwischen dem Sensor und dem Trägermaterial aufgebrachten vorzugsweise elektrisch nicht leitfähigen, weiter vorzugsweise wasserundurchlässigen Schicht mittels eines Druckverfahrens aufgedruckt.
  • Bei dem Druckverfahren kann es sich zum Beispiel um ein Inkjetverfahren handeln.
  • Zum Beispiel ist die Verarbeitungseinheit in der gleichen Weise wie der Sensor auf das Trägermaterial aufgebracht. Hierzu ist vorstellbar, dass auch die Verarbeitungseinheit, zumindest jedoch eine, insbesondere leitende, Schicht der Verarbeitungseinheit auf das Trägermaterial zum Beispiel aufgedruckt ist. Die Datenkommunikation zwischen der Verarbeitungseinheit und dem Sensor kann dann über die oben genannten Leiterbahnen entstehen. Diese Leiterbahnen können zumindest teilweise, vorzugsweise jedoch vollständig, in den Webstoff eingewoben sein oder sogar einzelne Fasern des Webstoffs selbst ausbilden.
  • Zum Beispiel ist zumindest eine Elektrode flächig ausgeführt. Das heißt, dass eine Dicke der Elektrode im Vergleich zu deren Flächenausdehnung vernachlässigbar ist. Eine solche Elektrode kann daher insbesondre mittels eines Druckverfahrens hergestellt werden.
  • Alternativ hierzu kann eine Dicke zumindest einer Elektrode höchstens 5 mm betragen. Hierzu kann das Druckverfahren mehrmals angewandt werden, sodass zumindest zwei, vorzugsweise jedoch dann mehr, Einzeldruckschichten übereinander gestapelt werden.
  • Des Weiteren kann die Elektrode auch mittels eines 3D-Druckverfahrens auf dem Trägermaterial angeordnet sein.
  • Das FDM-Verfahren (Fused Deposition Modeling)
  • Alternativbezeichnungen: Fused Filament Fabrication (FFF), Fused Layer Modeling (FLM) Das Verfahren bezeichnet schichtweises Auftragen (Extrusion) eines Materials durch eine heiße Düse. Das Verbrauchsmaterial befindet sich in Form eines langen Drahts (sog. Filament) auf einer Rolle und wird durch die Fördereinheit in einen Druckkopf geschoben, dort eingeschmolzen und auf einem Druckbett ausgebracht. Druckkopf und/oder Druckbett sind dabei in drei Richtungen beweglich. So können Kunststoffschichten schrittweise aufeinander aufgebracht werden.
  • Das SLS Verfahren (Selektives Lasersintern)
  • Im Unterschied zum Sinterverfahren, bei dem Stoffe in Pulverform unter Hitzeeinwirkung miteinander verbunden werden, geschieht dies beim SLS-Verfahren selektiv durch einen Laser (alternativ auch Elektronenstrahl oder Infrarotstrahl). Es wird also nur ein bestimmter Teil des Pulvers miteinander verschmolzen.
  • Dazu wird stets eine dünne Pulverschicht von der Beschichtungseinheit auf dem Druckbett ausgebracht. Der Laser (oder andere Energiequelle) wird nun punktgenau auf einzelne Stellen der Pulverschicht ausgerichtet, um die erste Schicht der Druckdaten auszubilden. Hierbei wird das Pulver an- oder aufgeschmolzen und verfestigt sich anschließend wieder durch geringfügiges Abkühlen. Das nicht aufgeschmolzene Pulver bleibt um die gesinterten Bereiche herum liegen und dient als Stützmaterial. Nachdem eine Schicht verfestigt ist, senkt sich das Druckbett um den Bruchteil eines Millimeters ab. Die Beschichtungseinheit fährt nun über das Druckbett und bringt die nächste Pulverschicht aus. Anschließend wird die zweite Schicht der Druckdaten durch den Laser (oder eine andere Energiequelle) gesintert. So entsteht schichtweise ein dreidimensionales Objekt.
  • Three-Dimensional Printing (3DP)
  • Das 3DP-Verfahren funktioniert sehr ähnlich wie das selektive Lasersintern, doch anstelle einer gerichteten Energiequelle verfährt ein Druckkopf über das Pulver. Dieser gibt winzige Tröpfchen von Bindemittel auf die zugrunde liegenden Pulverschichten ab, die so miteinander verbunden werden. Ansonsten ist dieses Verfahren dem SLS-Verfahren gleich.
  • Stereolithographie (SLA)
  • Anstelle eines Kunststoffdrahts oder Druckmaterials in Pulverform kommen beim Stereolithographie-Verfahren flüssige Harze, sog. Photopolymere, zum Einsatz. Sie werden schichtweise durch UV-Strahlung verhärtet und erzeugen so dreidimensionale Objekte. Dafür wird die Bauplattform im Harzbecken schrittweise abgesenkt. Es gibt auch Varianten (sog. Polyjet-Verfahren) ohne ein ganzes Becken mit flüssigem Harz. Dafür wird ein Epoxidharz tröpfchenweise aus einer Düse aufgebracht und durch einen UV-Laser sofort ausgehärtet.
  • Laminated Object Manufacturing (LOM)
  • Alternativbezeichnung: Layer Laminated Manufacturing (LLM)
  • Das Verfahren basiert weder auf chemischen Reaktionen, noch auf einem thermischen Prozess. Es wird dabei mit einem trennenden Werkzeug (z.B. einem Messer oder Kohlendioxidlaser), einer Folie oder einer Platte (z.B. Papier) an der Kontur geschnitten und schichtweise aufeinander geklebt. So entsteht durch Absenken der Bauplattform ein Schichtobjekt aus geklebten, übereinanderliegenden Folien.
  • Eine oder mehrere wasserundurchlässige Schichten und/oder auch die Feuchteschicht können in derselben Art und/oder Dicke wie die Elektrode aufgebracht werden.
  • Gemäß zumindest einer Ausführungsform bedeckt die Feuchteschicht den Kondensator vollständig.
  • Dies kann heißen, dass die Feuchteschicht, nach außen, das heißt in der Querrichtung den Sensor nach außen abgrenzt und abschließt, sodass der Sensor zwischen der Feuchteschicht und dem Trägermaterial angeordnet ist.
  • Gemäß zumindest einer Ausführungsform weist der Sensor zumindest einen weiteren Kondensator auf, welcher in der Querrichtung unter oder über dem Kondensator angeordnet und durch eine weitere wasserundurchlässige Schicht beabstandet von dem Kondensator auf oder unter dieser weiteren wasserundurchlässigen Schicht angeordnet ist, sodass ein Kondensatorenstack entsteht.
  • Der weitere Kondensator kann in der gleichen Weise wie der Kondensator aufgebaut sein und ebenso in einer gleichen Weise wie der Kondensator auf die weitere wasserundurchlässige Schicht angeordnet sein.
  • Mittels eines derartigen Kondensatorenstacks kann die Sensorik ganz besonders einfach verfeinert werden nämlich insofern, als dass denkbar ist das bei zwei den Kondensatorstack ausbildenden Sensoren beide Sensoren die gleichen Aufgaben verrichten, jedoch durch die einzelnen Sensoren jeweilige Messwerte ermittelt werden, die zusammen genommen auf einen Mittelwert schließen lassen. Zum Beispiel wird von jedem der beiden Sensoren jeweils die (relative) Feuchtigkeit der Umgebung gemessen wobei aus diesen beiden Messwerten dann der Feuchtigkeitsmittelwert ermittelt wird. Gleiches kann entsprechend mit der Druckmessung geschehen, sodass die Genauigkeit der gesamten Messung insbesondere einer Kombination der Messungen von (relativer) Feuchtigkeit und dem jeweiligen Druck besonders genau ausgestaltet werden kann.
  • Gemäß zumindest einer Ausführungsform bildet die wasserundurchlässige Schicht und/oder die weitere wasserundurchlässige Schicht die dielektrische Sicht zumindest teilweise selbst aus.
  • Dies kann heißen, dass ein anstatt der separaten Positionierung einer dielektrischen Schicht neben der wasserundurchlässigen Schicht und/oder neben der weiteren wasserundurchlässigen Schicht, diese dielektrische Schicht selbst durch die wasserundurchlässige Schicht und/oder die weitere wasserundurchlässige Schicht gebildet ist.
  • Eine derartige Erzeugung der dielektrischen Schicht durch die wasserundurchlässigen Schicht(en) bildet daher ein besonders einfaches und kostengünstiges Herstellungsverfahren zu einer kostengünstigen Vorrichtung.
  • Davon abgesehen kann grundsätzlich vorgesehen sein die Elektroden, die dielektrische Schicht und die wasserundurchlässige Schicht(en) derart zueinander anzuordnen, dass ein elektrischer Kurzschluss in jedem Fall verhindert ist.
    Gemäß zumindest einer Ausführungsform beträgt eine maximale Dicke der Feuchteschicht wenigstens 30% und höchstens 80% der maximalen Dicke der wasserundurchlässigen Schicht und/oder der maximalen Dicke der weiteren wasserundurchlässigen Schicht.
  • Dies stellt nicht nur einen besonders flach gebauten Sensor sicher, sondern gewährleistet auch eine besonders schnelle Reaktionszeit auf Feuchtigkeitsveränderungen. Die von außen auf die Feuchteschicht einwirkende Feuchtigkeit muss daher keine großen Strecken zu dem Dielektrikum durchwandern.
  • Des Weiteren betrifft die vorliegende Erfindung ein Verfahren zur Messung von Druck und/oder Feuchtigkeit wobei insbesondere angemerkt sei, dass alle für die obig beschriebene Vorrichtung offenbarten Merkmale auch für das hier beschriebene Verfahren offenbart sind und umgekehrt.
  • Gemäß zumindest einer Ausführungsform umfasst das Verfahren zu Messung von Druck und/oder Feuchtigkeit zunächst einen ersten Schritt mittels welchem zumindest eine Messvorrichtung, insbesondere nach zumindest einem der vorhergehenden Ansprüche, bereitgestellt wird, wobei durch die Messvorrichtung zumindest ein Sensor zu Messung von Druck und/oder Feuchtigkeit bereitgestellt wird, wobei der Sensor zumindest einen Kondensator mit zumindest zwei Elektroden, welche, insbesondere in einer horizontalen Richtung entlang eines und auf einem, insbesondere flexiblem, Trägermaterial zueinander angeordnet sind aufweist, wobei zwischen den Elektroden zumindest eine dielektrische Schicht angeordnet ist.
  • Erfindungsgemäß ist auf einer dem Trägermaterialabgewandten Seite zumindest einer Elektrode und/oder der dielektrischen Schicht zumindest stellenweise, zumindest eine, zumindest teilweise flüssigkeitsdurchlässige und/oder flüssigkeitsabsorbierende Feuchteschicht angeordnet, wobei somit die zumindest eine Elektrode und/oder die dielektrische Schicht in einer Querrichtung zwischen dem Trägermaterial und der Feuchteschicht angeordnet sind, sodass sich eine Kapazität durch die auf die dielektrische Schicht zumindest teilweise treffende Flüssigkeit zumindest teilweise verändert, wobei eine Verarbeitungseinheit diese Änderung misst und/oder speichert, sodass ein kapazitiver Feuchtesensor entsteht.
  • Dabei weist das oben beschrieben Verfahren die gleichen Vorteile und vorteilhaften Ausgestaltungen wie die obig beschriebene Vorrichtung auf.
    Im Folgenden wird die hier beschriebene Erfindung anhand zweier Ausführungsbeispiele und den dazugehörigen Figuren näher beschrieben.
  • Gleiche oder gleichwirkende Bestandteile sind mit den gleichen Bezugszeichen versehen.
  • Die 1A bis 1C zeigen ein Ausführungsbeispiel eine hier beschriebene und erfindungsgemäße Messvorrichtung.
  • In der 2 ist in einem ersten Ausführungsbeispiel eine erfindungsgemäße Vorrichtung zur Messung von Druck und/oder Feuchtigkeit gezeigt.
  • In der 3 ist einer schematisch perspektivischen Ansicht eine in Bezug auf die Schichtenordnung dargestellte Explosionszeichnung dargestellt.
  • In der 4 ist ein weiteres Ausführungsbeispiel einer hier beschriebenen Vorrichtung gezeigt.
  • Der 1A ist in einem Ausschnitt ein schematischer Aufbau einer hier beschriebenen erfindungsgemäßen Messvorrichtung 1000 gezeigt. Erkennbar ist eine Verarbeitungseinheit 5, welche in Datenkommunikation mit einer Mehrzahl von Sensoren 1 ist. Die Verarbeitungseinheit 5 bildet zusammen mit den Sensoren 1 eine Vorrichtung 100. Die von den einzelnen Sensoren 1 gemessen Feuchtigkeits- und/oder Druckwerte werden eine zentrale CPU 40 gesendet um dort gespeichert und/oder weiterverarbeitet zu werden. Zudem ist ein Temperatursensor 60, welcher eine Umgebungstemperatur und/oder eine Temperatur des Sensors 1 misst und an die Verarbeitungseinheit 5 der Vorrichtung 100 und/oder an die zentrale CPU 40 weiterleitet.
  • Die 1B zeigt schematisch die gesamte Messvorrichtung 1000, mit einer Mehrzahl an Sensorgruppen, welche durch die einzelnen Vorrichtungen 100 zur Messung von Druck und/oder Feuchtigkeit gebildet sind und welche jeweils eine Verarbeitungseinheit 5 zeigen. Jeder Verarbeitungseinheit 4 ist daher eine Mehrzahl an Sensoren 1 zugeordnet.
  • Die 1C zeigt schematisch eine Verbauung und Integration der Messvorrichtungs 1000 in einen Stuhl, insbesondere in einen Bürostuhl.
    Wie nun der 2 entnommen werden kann, ist dort eine Vorrichtung 100 zur Messung von Druck und/oder Feuchtigkeit gezeigt.
  • Beispielhaft ist dort ein Sensor 1 dargestellt, wobei der Sensor 1 einen Kondensatorstack zeigt mit einem Kondensator 20, sowie einem Kondensator 30, wobei die einzelnen Elektroden 10, 11 der Kondensatoren 20, 30 in der horizontalen Richtung H1 übereinander angeordnet sind, wobei alternativ hierzu jedoch selbstverständlich eine Anordnung der einzelnen Elektroden 10, 11 eines einzelnen Kondensators 20, 30 in der Querrichtung Q1 welche senkrecht zur horizontalen Richtung H1 verläuft und damit auch senkrecht zur Haupterstreckungsrichtung des dort gezeigten Sensors 1 verlaufen oder angeordnet sein können.
  • Die einzelnen Elektroden 10, 11 sind auf einem Trägermaterial 13 angeordnet. Bei dem Trägermaterial 13 kann es sich insbesondere um einen Webstoff, insbesondere um einen flexiblen Webstoff handeln.
  • Auf dem Trägermaterial 13 ist eine wasserundurchlässige Schicht 4 angeordnet, wobei auf dieser wasserundurchlässigen Schicht 4 die beiden Elektroden 10, 11 des Kondensators 20 in der horizontalen Richtung H1 aufgedruckt sind.
  • Die Elektroden 10, 11 des Kondensators 20 sind vollständig von einer weiteren wasserundurchlässigen Schicht 14 umgeben. Auf dieser wasserundurchlässigen Schicht 14 ist in der gleichen Art und Weise der weitere Kondensator 30 mit entsprechenden Elektroden 10, 11 aufgedruckt. Zudem sind in dem vorliegenden Ausführungsbeispiel freiliegende Außenflächen der einzelnen Elektroden 10, 11 des weiteren Kondensators 30 vorzugsweise vollständig von einer wasserdurchlässigen und/oder wasserabsorbierenden Feuchteschicht 3 umgeben.
  • Über diese Feuchteschicht 3 kann Wasser auf eine dielektrische Schicht 4 treffen, welche vorliegend in der horizontalen Richtung H1 zwischen den jeweiligen Elektroden 10, 11 eines Kondensators 20, 30 angeordnet ist.
  • Im vorliegenden Ausführungsbeispiel der 2 und 3 bildet die wasserundurchlässige Schicht 4 selbst eine dielektrische Schicht 4 des Kondensators 20 auf. Selbiges gilt für die weitere wasserundurchlässige Schicht 14 in Bezug auf den weiteren Kondensator 30. Durch Auftreffen und Durchdringen der Feuchtigkeit über die Feuchteschicht 3 werden die dielektrischen Eigenschaften insbesondere der dielektrischen Schicht 2 des weiteren Kondensators 30 verändert.
  • Darüber hinaus ist eine Verarbeitungseinheit 5 erkennbar, welche in datentechnischer Verdingung mit den beiden Kondensatoren 20, 30 steht, wobei diese Verarbeitungseinheit 5 dazu eingerichtet und dafür vorgesehen ist, eine Änderung der relativen Feuchtigkeit der Umgebung und/oder der Feuchteschicht 3 zu messen.
  • Durch die in der 3 dargestellte „stackwise“-Anordnung und dadurch, dass die weitere wasserundurchlässige Schicht 14 verhindert, dass der Kondensator 20 mit Feuchtigkeit in Kontakt kommt, kann daher vorgesehen sein, dass lediglich der weitere Kondensator 30 und dessen dielektrische Schicht 4 der Feuchtigkeit ausgesetzt ist. Hierzu kann die Verarbeitungseinheit 5 dann eine Veränderung der Kapazität des weiteren Kondensators 30 vergleichen mit der stabilen Kondensatorkapazität des Kondensators 20, sodass hierzu ein besonders einfacher Vergleich in der Veränderung der relativen Feuchtigkeit und/auch des jeweiligen Belastungsdruckes hergestellt sein kann.
  • Durch den in der 2 dargestellten Pfeil ist auch eine Druckrichtung unter welcher der Sensor 1 mit Druck beaufschlagt wird gezeigt. Beides kann vorzugsweise durch den Sensor 1 und insbesondere durch die Vorrichtung 100 gemessen, ausgewertet und gespeichert werden. Hierzu dient insbesondere die in der Erfindung als wesentlich dargestellte Verarbeitungseinheit 5, welche zusätzlich auch entsprechende Druckwerte und insofern damit verbundene Änderungen in der Kapazität der einzelnen Sensoren 1 messen und auswerten kann, sodass die Verarbeitungseinheit 5 zusätzlich dazu eingerichtet und dafür vorgesehen ist eine durch äußeren Druck verursachte Kapazitätsänderung des Kondensators 20 und insbesondere auch des weiteren Kondensators 30 zu messen und/oder zu speichern.
  • Die Feuchteschicht 3 kann flexibel oder nicht flexibel ausgebildet sein. Zudem ist es möglich, dass die Feuchteschicht 3 als Webstoff ausgebildet ist. Insbesondere kann es sich um einen Webstoff handeln, welcher im einleitenden Teil der vorliegenden Anmeldung beispielhaft genannt wurde. Zudem ist es jedoch auch möglich, dass es sich bei der Feuchteschicht 3 um ein Substrat handelt welches, zum Beispiel in Form eines Epitaxie- oder eines Klebeprozesses auf den weiteren Kondensator 30 aufgebracht, zum Beispiel aufgeklebt wurde.
    Die wasserundurchlässige Schicht 14 und/oder die wasserundurchlässige Schicht 15 können ebenso flexibel und nicht flexibel, insbesondere auch ebenso in Form eines Webstoffes oder eines Substrats in der gleichen Weise wie die Feuchteschicht 3 ausgebildet sein.
  • Zudem ist vorteilhaft denkbar, dass die Elektroden 10, 11 der beiden Kondensatoren 20, 30 auf die wasserundurchlässige Schicht 14 und die weitere wasserundurchlässige Schicht 15 in Form eines Druckprozesses zum Beispiel eines Tintenstrahldruckprozesses aufgedruckt wurden.
  • In der 3 ist eine Explosionszeichnung gezeigt, wobei insbesondere aus der 3 die jeweilige Anordnung der Elektroden 10, 11 der Kondensatoren 20, 30 hervorgeht. Erkennbar ist wiederum die durch die Pfeilrichtung dargestellte Krafteinwirkung auf den Sensor 1, sowie durch die einzelnen schematisch dargestellten Tropfen einwirkende Feuchtigkeit. Insbesondere ist wiederum erkennbar, dass die Feuchtigkeit insbesondere zwischen den Elektroden 10, 11 eindringt und auf die jeweilige wasserdurchlässige Schicht 14 einen zum Beispiel erheblichen Effekt auf die elektrische Eigenschaft hat, sodass sich die Kapazität zumindest des weiteren Kondensators 30 wie in der 1 erläutert jeweils ändert.
  • In der 4 ist in einer weiteren Ausführungsform der hier beschriebenen Erfindung gezeigt, dass der Sensor 1 aus zwei Elektroden 10, sowie einer Elektrode 11 bestehen kann. Die Elektroden 10 haben eine Polarität (vorzugsweise die gleiche Polarität), während die Elektrode 11 eine davon unterschiedliche Polarität aufweist, wobei jedoch im unteren Teilbild der 3 die Explosionszeichnung des linken Teils der 3 gezeigt ist und erkennbar ist, dass drei wasserundurchlässige Schichten 4, 14, 15 verwendet werden. Die Elektroden 10 können auch unterschiedliche Polaritäten und/oder elektrische Potentiale aufweisen. Auch können die Elektroden 10 miteinander elektrisch verbunden sein.
  • Zum Beispiel können die Elektroden 10, 11 auch jeweils eine separate Polarität und/oder ein separates elektrisches Potential aufweisen und/oder generieren. Entsprechendes kann auch für die in den hier folgenden Figuren in Bezug auf die Elektroden gelten.
  • Zum Beispiel ist die unterste wasserundurchlässige Schicht wiederum die wasserundurchlässige Schicht 4, die darauffolgende wasserundurchlässige Schicht 14 und die in der Querrichtung Q1 darauf angeordnete wasserundurchlässige Schicht 15 eine weitere wasserundurchlässige Schicht, wobei jeweils eine Elektrode auf einer separaten wasserundurchlässigen Schicht jeweils aufgebracht insbesondere aufgedruckt ist.
  • In dieser Stackung der einzelnen wasserundurchlässigen Schichten 4, 14 und 15 wird daher durch Zusammenführen dieser Schichten der im linken Teil der 4 gezeigte Kondensator 20 erzeugt, wobei hierbei in der Querrichtung Q1, die Elektroden 10 jeweils, wie im dementsprechenden Teilbild entnommen werden kann auf unterschiedlichen Ebenen angeordnet sin.
  • Alternativ hierzu kann auch die Elektrode 11 zusammen mit zumindest einer der Elektroden 10 in einer gemeinsamen Ebene, das heißt auf oder in einer gemeinsamen wasserundurchlässigen Schicht 4, 14, 15 aufgebracht werden, sodass zum Beispiel nur noch die zweite der Elektroden 10 auf eine separaten wasserundurchlässigen Schicht 4, 14, 15 aufgestackt werden muss.
  • Grundsätzlich können daher die einzelnen Elektroden 10,11 in unterschiedlichen Ebenen in der Q1-Richtung zueinander angeordnet sein. Zum Beispiel gilt eine paarweise Zuordnung zwischen genau einer wasserundurchlässigen Schicht 4, 14, 15 mit genau einer Elektrode 10, 11.
  • In der 5 ist die erfindungsgemäße Messystem 1000 zusammen mit dem erfindungsgemäßen 2D- und/oder 3D-Gestenerkennungssystem 200 gezeigt. Erkennbar ist des Weiteren das Lenkrad 400 innerhalb welchen die Vorrichtung 100 teilweise oder vollständig verbaut sind. Dabei scannt das Gestenerkennungssystem 200 Bewegungen des Nutzers um hieraus Steuerungsgesten zur Steuerung des in der 5 gezeigten Fahrzeugs zu ermöglichen.
  • Die Erfindung ist nicht durch die Beschreibung anhand des Ausführungsbeispiels beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal, sowie jede Kombination von Merkmalen was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder in den Ausführungsbeispielen angegeben ist.
  • Bezugszeichenliste
  • 1
    Sensor
    3
    Feuchteschicht
    4
    dielektrische Schicht/ wasserundurchlässige Schicht
    5
    Verarbeitungseinheit
    10
    Elektrode
    11
    Elektrode
    12
    Elektrode
    13
    Trägermaterial
    14
    wasserundurchlässige Schicht
    15
    wasserundurchlässige Schicht
    20
    Kondensator
    30
    Kondensator
    40
    CPU
    60
    Temperatursensor
    100
    Vorrichtung
    200
    Verfahren
    300
    2D- und/oder 3D-Gestenerkennungssystem (200)
    1000
    Messvorrichtung
    H1
    horizontalen Richtung
    Q1
    Querrichtung

Claims (14)

  1. Messvorrichtung (1000) zur Messung von Druck und/oder Feuchtigkeit, umfassend zumindest eine Vorrichtung (100) zur Messung von Druck und/oder Feuchtigkeit umfassend - zumindest einen Sensor (1) zur Messung von Druck und/oder Feuchtigkeit, wobei der Sensor (1) - zumindest einen Kondensator (20) mit zumindest zwei Elektroden (10, 11), welche, insbesondere in einer horizontalen Richtung (H1) entlang eines und auf einem, insbesondere flexiblem, Trägermaterial (13) zueinander angeordnet sind, wobei zwischen den Elektroden (10, 11) zumindest eine dielektrische Schicht (4) angeordnet ist, wobei auf einer dem Trägermaterial (13) abgewandten Seite zumindest einer Elektrode (10, 11) und/oder der dielektrischen Schicht (2) zumindest stellenweise zumindest eine zumindest teilweise flüssigkeitsdurchlässige und/oder flüssigkeitsabsorbierende Feuchteschicht (3) angeordnet ist, wobei somit die zumindest eine Elektrode (10, 11) und/oder die dielektrische Schicht (4) in einer Querrichtung (Q1) zwischen dem Trägermaterial (13) und der Feuchteschicht (3) angeordnet sind, sodass sich eine Kapazität durch die auf die dielektrische Schicht (4) zumindest teilweise treffende Flüssigkeit zumindest teilweise verändert, wobei eine Verarbeitungseinheit (5) dazu eingerichtet und dafür vorgesehen ist Messwerte des Sensors (1) zu messen und/oder zu speichern, sodass ein kapazitiver Feuchtesensor entsteht, dadurch gekennzeichnet, dass von der Verarbeitungseinheit (5) die von dem Sensor gemessenen Daten an eine zentrale CPU (40) gesendet werden, wobei diese Daten von der Verarbeitungseinheit (5) verarbeitet werden, wobei weiter wobei das Messystem (1000) zumindest ein 2D- und/oder 3D-Gestenerkennungssystem (300) umfasst, welches, zum Beispiel nur gemeinsam mit der Vorrichtung (100) zur Messung von Druck und/oder Feuchtigkeit, einen Nutzer identifizieren und/oder zumindest einen Anwendungsbefehl an ein Nutzungsobjekt ausgibt.
  2. Messvorrichtung (1000) nach Anspruch 1, dadurch gekennzeichnet, dass die Vorrichtung (100) in ein Ansteuerungselement (400), insbesondere in einem Lenkrad, verbaut ist, und anhand eines elektrischen Hautwiderstands des Nutzers, einem Griffdruck und/oder einer Griffposition und/oder einer Hauttemperatur den Nutzer erkennt und/oder anhand dieser Daten das Nutzungsobjekt, insbesondere ein Fahrzeug, steuert.
  3. Messvorrichtung (1000) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels des 2D- und/oder 3D-Gestenerkennungssystem (300) das Nutzungsobjekt steuerbar ist.
  4. Messvorrichtung (1000) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das 2D- und/oder 3D-Gestenerkennungssystem (300) eine Vorabnutzererkennung und/oder eine Vorabsteuerungserkennung durchführt, und erst nachdem die CPU (4) die entsprechende Geste mit in der Datenbank hinterlegen Steuerungsgesten vergleicht und die entsprechende Geste einer Gruppe von Steuerungsgesten zugeordnet der Sensor (1) ein Feinauswahl einer Geste der Gruppe von vorausgewählten Geste vornimmt, sodass die dann durch die Feinauswahl gewonnene Geste im Wesentlichen derjenigen entspricht, welche durch den Nutzer getätigt wurde, sodass über diese dann ausgewählte Geste das Nutzungsobjekt steuerbar ist.
  5. Messvorrichtung (1000) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Fahrtrichtung, eine Fahrgeschwindigkeit des Nutzungsobjektes oder ein sonstiges Bedienelements des Nutzungsobjektes bedienbar ist.
  6. Messvorrichtung (1000) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jede einzelne oder eine Gruppe von Gesten durch das Gestenerkennungssystem erfasst werden aus den so erfassten Bilddaten in eine oder mehrerer Gestenklassen klassifiziert werden, das heißt eingruppiert werden, der Vergleich dieser Daten mit in der Datenbank hinterlegten Gestendaten einen Klassifikationsvergleich von Datenklassen der Gestendaten mit Datenklassen der Datenbankgestendaten umfasst, wobei eine Klassifikation der jeweiligen Geste auf Basis von Bewegungsvektoren eines Körperteils des Nutzers derart durchgeführt wird, dass zunächst aus der zeitlichen Bewegung des Körperteils ein Bewegungsprofil erstellt wird, wobei das Bewegungsprofil des Körperteils Bewegungsvektoren desselbigen umfasst, und weiter wobei die CPU die einzelnen Gesten, welche über einen vorgegebenen Zeitraum gesammelt wurden zu sogenannten Datenblops oder Datenclustern zusammenfasst, die dann in ihrer Form und/oder Ausdehnung klassifiziert werden.
  7. Messvorrichtung (1000) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Messvorrichtung (1000) zumindest zwei Sensoren (1) aufweist, wobei durch die Verarbeitungseinheit (5) die Sensoren (1) in Gruppen aus zumindest einem Sensor (1) auf Basis zumindest einem der folgenden Kriterien unterteilt werden: - Anordnungsort des Sensors (1) oder der Sensoren (1) auf dem Trägermaterial (13), wobei das Trägermaterial (13) in Flächengebiete eingeteilt ist, und innerhalb eines Flächengebiets nur Sensoren (1) einer Gruppe angeordnet sind, - Flächenausdehnung eines Sensors (1).
  8. Messvorrichtung (1000) nach zumindest einem der vorhergehenden Ansprüche, gekennzeichnet, durch zumindest zwei Vorrichtungen (100) zur Messung von Druck und/oder Feuchtigkeit, wobei jede Verarbeitungseinheit (5) Ihre von den Sensoren (1) empfangenen Daten an die zentrale CPU (40) weiterleitet.
  9. Messvorrichtung (1000) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine Vorrichtung (100) zumindest zwei Sensoren (1) umfasst.
  10. Messvorrichtung (1000) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine Vorrichtung (100) zumindest einen Temperatursensor (60) umfasst, wobei der Temperatursensor (60) eine Umgebungstemperatur und/oder eine Temperatur eines Sensors (1) misst und an die Verarbeitungseinheit (5) einer Vorrichtung (100) und/oder an die zentrale CPU (40) weiterleitet.
  11. Messvorrichtung (1000) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Temperatursensor (60) eine Temperatur der ihm zugeordneten Verarbeitungseinheit (5) misst und an die Verarbeitungseinheit (5) einer Vorrichtung (100) und/oder an die zentrale CPU (40) weiterleitet.
  12. Messvorrichtung (1000) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die zentrale CPU (40) eine Auslastungsgrad (CPU-Last und/oder Speicherverbrauch) von zumindest einer Verarbeitungseinheit (5) ermittelt und bei Überschreiten einer Grenztemperatur der Verarbeitungseinheit (5) und/oder von zumindest einem dieser Verarbeitungseinheit (5) zugeordneten Sensor (1) diese(r) in seiner Leistung zumindest teilweise gedrosselt oder ganz abgeschaltet wird.
  13. Messvorrichtung (1000) nach zumindest einem der vorhergehenden Ansprüche, gekennzeichnet, durch zumindest ein Verarbeitungsnetzwerk, wobei mittels zumindest eines VLAN-Switches des Verarbeitungsnetzwerks, dieses in zumindest zwei, nur logisch voneinander getrennte, Netzwerksegmente (VLAN) unterteilbar ist und wobei jeder Verarbeitungseinheiten (5) und/oder jeder der Sensoren (1) in Abhängigkeit von der Ansteuerung durch den VLAN-Switch durch jedes der Netzwerksegmente ansteuerbar sind.
  14. Messvorrichtung (1000) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass mittels des VLAN-Switches eine Priorisierung der einzelnen Netzwerksegmente insbesondere im Hinblick auf deren Datenaustausch durchgeführt wird.
DE102019009147.7A 2019-03-29 2019-03-29 Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit Pending DE102019009147A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102019009147.7A DE102019009147A1 (de) 2019-03-29 2019-03-29 Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019009147.7A DE102019009147A1 (de) 2019-03-29 2019-03-29 Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit

Publications (1)

Publication Number Publication Date
DE102019009147A1 true DE102019009147A1 (de) 2020-10-01

Family

ID=72612502

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019009147.7A Pending DE102019009147A1 (de) 2019-03-29 2019-03-29 Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit

Country Status (1)

Country Link
DE (1) DE102019009147A1 (de)

Similar Documents

Publication Publication Date Title
EP3778331A1 (de) Verfahren zum überwachen eines fahrers eines fahrzeugs mittels eines messsystems
DE102018119385B4 (de) Kontrollsystem zur Abgleichung von gemessenen Druck- und Feuchtigkeitswerten
EP3672829B1 (de) Verfahren zum überwachen eines fahrers eines fahrzeugs mittels eines messsystems
EP3658873A1 (de) Messsystem zur messung von druck und/oder feuchtigkeit
EP3760495A1 (de) Carsharing verwaltungssystem
DE102019009128A1 (de) Carsharing Verwaltungssystem
DE102019108163B3 (de) Verfahren zum Betreiben eines Carsharing Verwaltungssystems
DE102019009148A1 (de) Verfahren auf Basis einer Gestenerkennung
DE102019009142A1 (de) Verfahren zum Betreiben eines Carsharing Verwaltungssystem
WO2021099371A1 (de) Kontrollsystem zur abgleichung von gemessenen druck- und/oder feuchtigkeitswerten auf basis einer umgebungsfeuchtigkeit
DE102019121540A1 (de) Vorrichtung zur Messung von Druck und/oder Feuchtigkeit
DE102018010367A1 (de) Messsystem zur Messung von Druck und/oder Feuchtigkeit
DE102018010368A1 (de) Kontrollsystem zur Abgleichung von gemessenen Druck- und/oder Feuchtigkeitswerten
DE102019124368B4 (de) Messsystem zur Messung von Druck und Feuchtigkeit
DE102019009147A1 (de) Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit
DE102019108196A1 (de) Messvorrichtung zur Messung von Druck und/oder Feuchtigkeit
DE102019108168B3 (de) Carsharing Verwaltungssystem mittels Temperatursensor
DE102019108221A1 (de) Verfahren auf Basis einer Gestensteuerung
DE102019009141A1 (de) Carsharing Verwaltungssystem mittels Temperatursensor
DE102019131316A1 (de) Messsystem zur Messung von Druck und/oder Feuchtigkeit auf Basis einer Umgebungsfeuchtigkeit
DE102019123437A1 (de) Verfahren zum Überwachen eines Fahrers, insbesondere eines Erschöpfungsgrades eines Fahrers, eines Fahrzeugs mittels eines Messsystems

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R129 Divisional application from

Ref document number: 102019108196

Country of ref document: DE