DE102019002037A1 - Device for generating electrical energy - Google Patents

Device for generating electrical energy Download PDF

Info

Publication number
DE102019002037A1
DE102019002037A1 DE102019002037.5A DE102019002037A DE102019002037A1 DE 102019002037 A1 DE102019002037 A1 DE 102019002037A1 DE 102019002037 A DE102019002037 A DE 102019002037A DE 102019002037 A1 DE102019002037 A1 DE 102019002037A1
Authority
DE
Germany
Prior art keywords
power plant
energy
electrical energy
modules
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102019002037.5A
Other languages
German (de)
Other versions
DE102019002037B4 (en
Inventor
Anmelder Gleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bunderla Robert Fr
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102019002037.5A priority Critical patent/DE102019002037B4/en
Publication of DE102019002037A1 publication Critical patent/DE102019002037A1/en
Application granted granted Critical
Publication of DE102019002037B4 publication Critical patent/DE102019002037B4/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Klein- Kraftwerk zur Erzeugung elektrischer Energie ohne Energiezufuhr von aussen.Verfahren und Vorrichtung (Kraftwerkseinheit/Modul)Bisher musste elektrische Energie mit Hilfe anderer Energiequellen unter großen Substanzverlusten und z. T. enormen Umweltbelastungen erzeugt werden. Für das neue Verfahren wird keine der bisherigen Energiemedien mehr benötigt.Das neue Kraftwerk besteht aus Modulen frei wählbarer Größe und kann in beliebiger Anzahl in Reihe geschaltet werden. Für die Baugröße eines Moduls ist der gewünschte Energiebedarf (Ampere) entscheidend. Für die Anzahl der in Reihe geschalteten Module (jede beliebige Anzahl möglich) ist die gewünschte Spannungsleistung (Volt) entscheidend.Das Kraftwerk kann in Abmessung, Leistung und Gewicht für die jeweilige Anwendung angepasst werden. Ein Einsatz ist in allen Bereichen nach erwähnter Abstimmung der Module möglich.Beispiele: Erstellung einer vom Elektrizitätsnetz unabhängigen Stromversorgung:Geeignet für Krankenhäuser, Industrie, Sicherheitssysteme, Militäranlagen, Forschungsstationen, unterirdische Anlagen, Raumfahrt, Unterwasserstationen und natürlich Privathäuser etc.Auch für mobile Zwecke ist das Kraftwerk aufgrund seines geringen Gewichtes sehr gut geeignet; was es für den Einsatz in umweltfreundlichen Elektroautos als besonders gut geeignet klassifiziert.• Der Nutzen für die Wirtschaft und die Umwelt ist in Zahlen (Geldwährungen) langfristig nicht ermessbar oder vorstellbarSmall power plant for generating electrical energy without external energy supply.Verfahren and device (power plant unit / module) Until now, electrical energy had to be generated with the help of other energy sources with large losses of substance and z. T. enormous environmental pollution are generated. The new process no longer requires any of the previous energy media. The new power plant consists of modules of freely selectable sizes and any number of them can be connected in series. The desired energy requirement (ampere) is decisive for the size of a module. For the number of modules connected in series (any number possible) the desired voltage output (volts) is decisive. The power plant can be adapted in terms of dimensions, output and weight for the respective application. Use is possible in all areas after the aforementioned coordination of the modules. Examples: Creation of a power supply that is independent of the electricity network: Suitable for hospitals, industry, security systems, military systems, research stations, underground systems, space travel, underwater stations and of course private houses, etc. Also for mobile purposes the power plant is very suitable due to its low weight; which it classifies as particularly well suited for use in environmentally friendly electric cars • The benefits for the economy and the environment cannot be measured or imagined in numbers (monetary currencies) in the long term

Description

Die elektrische Energie spielt in unserem Alltag eine besondere Rolle, denn sie ist in ihrer Anwendung nahezu universell und lässt sich z.B. leicht in Licht-, Wärme- oder mechanische Energie umwandel.
Ein Nachteil der elektrischen Energie ist, dass sie kaum gespeichert werden kann. Die direkt speicherbaren Mengen sind für den allgemeinen Energiebedarf vernachlässigbar klein, im übrigen ist zur Speicherung die Umwandlung in andere Energieformen zu Hilfe zu nehmen.
Electric energy plays a special role in our everyday life, because it is almost universal in its application and can easily be converted into light, heat or mechanical energy, for example.
A disadvantage of electrical energy is that it can hardly be stored. The quantities that can be directly stored are negligibly small for the general energy requirement; otherwise, conversion into other forms of energy must be used for storage.

Das Elektrodenpotential.
Das einfachste Schema einer biologischen Elektrozelle ist: Zwei Elektroden wobei eine biologischer Herkunft sein soll, tauchen in den Elektrolyten, welcher nur Wasser sein soll, ein. An ihren Ableitern wird eine Spannungsdifferenz gemessen, die sich aus 2 Spannungsdifferenzen zusammensetzt, nähmlich den Einzelspannungen der Elektroden gegenüber dem Elektrolyt.
The electrode potential.
The simplest scheme of a biological electric cell is: Two electrodes, one of which should be of biological origin, immerse in the electrolyte, which should only be water. A voltage difference is measured at their arresters, which is composed of 2 voltage differences, namely the individual voltages of the electrodes in relation to the electrolyte.

Die Zellenreaktion.
Charakteristisch für jede biologische Elektrozelle ist, dass in den Elektroden und ihren Ableitern sowie üblicherweis auch im Verbraucher, der Strom durch Elektronen transportiert wird, während im Elektrolyt, Ionen, also geladene Moleküle den Stromtransport übernehmen.
Den Uebergang zwischen dem Ionenstrom und dem Elektronenstrom an der Phasengrenze Elektrolyt/Elektrode, ermöglicht die biologische Elektroreaktion, d.h., eine Reaktion, die mit der Aufnahme oder Abgabe von Elektronen verbunden ist. Dabei wird entweder eine reduzierte Substanz oxidiert, wobei Elektronen frei werden, oder eine oxidierte Substanz reduziert unter Verbrauch von Elektronen. Die Summe der an den beiden Elektronen ablaufenden biologischen Elektroreaktion ist die Zellenreaktion.
Die Zellenreaktion als zentrales Element jedes biologischen Elektrostromspeichers, bedingt zugleich dessen Begrenzung. Mit dem elektrischen Umsatz ist entsprechend dem Faradayschen Gesetz ein Umsatz an Substanzmenge verbunden.
The cell response.
It is characteristic of every biological electric cell that in the electrodes and their arresters and usually also in the consumer, the current is transported by electrons, while in the electrolyte, ions, i.e. charged molecules, take over the current transport.
The transition between the ion current and the electron current at the electrolyte / electrode phase boundary is made possible by the biological electroreaction, that is, a reaction that is associated with the uptake or release of electrons. Either a reduced substance is oxidized, with electrons being released, or an oxidized substance is reduced while consuming electrons. The sum of the biological electrical reactions taking place on the two electrons is the cell reaction.
The cell reaction as the central element of every biological electrical energy storage system also causes its limitation. According to Faraday's law, the electrical conversion is associated with a conversion of the amount of substance.

Der Elektrolyt
Die Auswahl optimaler Systeme geht von den direkten biologischen Reaktionen aus. Die Berechnung zur Nutzbarmachung der Reaktionsenergie in Form elektrischer Energie ist, dass die Teilreaktionen der Elektronenaufnahme und Abgabe voneinander separiert sein müssen.
The electrolyte
The selection of optimal systems is based on the direct biological reactions. The calculation for utilizing the reaction energy in the form of electrical energy is that the partial reactions of electron uptake and release must be separated from one another.

Leitfähigkeit des Elektrolyten.
Alle biologischen Elektroden sind in wasserhaltigem Elektrolyt zu verwenden, weil es zu spontanen Reaktionen kommt. Eine wichtige Kenngrösse von Elektrolyten ist die spezifische Leitfähigkeit.
Conductivity of the electrolyte.
All biological electrodes are to be used in an aqueous electrolyte because spontaneous reactions occur. An important parameter of electrolytes is the specific conductivity.

Primärelemente.
Die biologische Primärzelle stellt ein elektro System dar, das die in ihm gespeicherte biologische Energie in elektrische Energie bei Stromentnahme umwandelt, wobei der biologische Energiespeicher, der zugleich Energiewandlerfunktion besitzt, sowie das beim Entladen entstehende Reaktionsprodukt sich im gleichen Raum befindet.
Primary elements.
The biological primary cell is an electrical system that converts the biological energy stored in it into electrical energy when electricity is drawn, whereby the biological energy storage, which also has an energy converter function, and the reaction product that occurs during discharging are located in the same space.

Die Stromliefernde Reaktion.
Das Schema des stromliefernden Vorganges ist für alle biologischelektrischen Systeme gleich.
Stets wird bei Stromentnahme ein Anodenmaterial (Reduktionsmittel) das den negativen Pol der Zelle bildet, oxidiert und eine Metallverbindung (Oxidationsmittel), die die positive Kathode bildet reuziert. Für die Vermittlung des biologischen Reaktions Ablaufs besitzt der Elektrolyt als lonenleiter eine Schlüsselrolle.

Figure DE102019002037A1_0001
The Electricity Delivering Response.
The scheme of the electricity-supplying process is the same for all bio-electrical systems.
When power is drawn, an anode material (reducing agent), which forms the negative pole of the cell, is oxidized and a metal compound (oxidizing agent), which forms the positive cathode, is reduced. As an ion conductor, the electrolyte plays a key role in mediating the biological reaction process.
Figure DE102019002037A1_0001

Beiblatt zur SkizzeSupplement to the sketch

  • 1.
    Komponente 4:
    Elektrolyt
    Komponente 5:
    Kathode
    Komponente 6:
    Anode
    Komponente 7:
    Kontakt
    Komponente 8:
    Kontakt
    Komponente 9:
    Zulauf Elektrolyt
    Komponente 10:
    axiale Lagerung
    Komponente 11:
    Ablauf Elektrolyt
    1 .
    Component 4:
    electrolyte
    Component 5:
    cathode
    Component 6:
    anode
    Component 7:
    Contact
    Component 8:
    Contact
    Component 9:
    Electrolyte inlet
    Component 10:
    axial bearing
    Component 11:
    Electrolyte drain
  • 2.
    Komponente 4:
    Elektrolyt
    Komponente 5:
    Kathode
    Komponente 6.
    Anode
    2 .
    Component 4:
    electrolyte
    Component 5:
    cathode
    Component 6.
    anode
  • 3. 3 .
  • Komponente 4:Component 4:
    Elektrolytelectrolyte
    Komponente 5:Component 5:
    Kathodecathode
    Komponente 6:Component 6:
    Anodeanode

Claims (1)

Die Vorrichtung erzeugt Elektrizität durch die Anordnung bestimmter fester Stoffe (Anode und Kathode) in einer flüssigen Lösung (Elektrolyt). Die Höhe der Spannung kann durch Größe oder Anzahl der Vorrichtung/en gesteigert werden. Zusammensetzung und besondere Merkmale der Vorrichtung: 1.) Das Gehäuse der Vorrichtung ist zylindrisch, mit einem Zulauf und einen Ablauf. Vorrichtungen, die in Reihe geschaltet werden, hätten einen zweiten Zulauf und Ablauf (s. Skizze). 2.) In der Vorrichtung befinden sich halbrunde Scheiben der Anode und Kathode, welche in abwechselnder Folge mit einem geringen Abstand zu einander angeordnet sind. 3.) Das Gehäuse ist axial gelagert, so das es um 180 ° drehbar ist. 4.) Zur Entnahme der erzeugten elektrischen Energie dienen Kontakte.The device generates electricity by arranging certain solid substances (anode and cathode) in a liquid solution (electrolyte). The level of tension can be increased by the size or number of the device (s). Composition and special features of the device: 1.) The housing of the device is cylindrical, with an inlet and an outlet. Devices that are connected in series would have a second inlet and outlet (see sketch). 2.) In the device there are semicircular disks of the anode and cathode, which are arranged in an alternating sequence with a small distance from one another. 3.) The housing is axially supported so that it can be rotated by 180 °. 4.) Contacts are used to extract the generated electrical energy.
DE102019002037.5A 2019-03-22 2019-03-22 Method and device for generating electrical energy Expired - Fee Related DE102019002037B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102019002037.5A DE102019002037B4 (en) 2019-03-22 2019-03-22 Method and device for generating electrical energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019002037.5A DE102019002037B4 (en) 2019-03-22 2019-03-22 Method and device for generating electrical energy

Publications (2)

Publication Number Publication Date
DE102019002037A1 true DE102019002037A1 (en) 2020-10-08
DE102019002037B4 DE102019002037B4 (en) 2021-12-09

Family

ID=72518004

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019002037.5A Expired - Fee Related DE102019002037B4 (en) 2019-03-22 2019-03-22 Method and device for generating electrical energy

Country Status (1)

Country Link
DE (1) DE102019002037B4 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US268174A (en) * 1882-11-28 Vibgil w
DE1926770A1 (en) * 1969-05-24 1971-01-21 Croy Dr F A Electrical accumulator
WO2011011829A1 (en) * 2009-07-29 2011-02-03 Murdoch University A bioelectrochemical cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US268174A (en) * 1882-11-28 Vibgil w
DE1926770A1 (en) * 1969-05-24 1971-01-21 Croy Dr F A Electrical accumulator
WO2011011829A1 (en) * 2009-07-29 2011-02-03 Murdoch University A bioelectrochemical cell system

Also Published As

Publication number Publication date
DE102019002037B4 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
Manohar et al. A high efficiency iron-chloride redox flow battery for large-scale energy storage
Tucker et al. All‐iron redox flow battery tailored for off‐grid portable applications
An et al. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment
Liu et al. Electricity generation using continuously recirculated flow electrodes in reverse electrodialysis
CN103270636A (en) Electrodialysis systems and methods for energy generation and waste treatment
DE2927868A1 (en) METHOD FOR STORING AND RELEASING ELECTRICAL ENERGY AND A BATTERY SUITABLE FOR THIS
Zhu et al. Concentration flow cells for efficient salinity gradient energy recovery with nanostructured open framework hexacyanoferrate electrodes
DE102019002037A1 (en) Device for generating electrical energy
EP2917959B1 (en) Method for providing electric energy for a load
EP0617848B1 (en) Appropriate electrochemical conversion process for rechargeable batteries
DE2531449C3 (en) Process for electrochemical power generation and electrochemical generator for carrying out this process
DE19654057A1 (en) Materials and processes to improve power density primarily for lithium secondary batteries
EP2920120B1 (en) Method and device for desalting aqueous solutions by means of electrodialysis
EP4274919A1 (en) Electrolysis device
Sathyanarayana Mechanism of adsorption effects on electrode kinetics: Part I: Selection rules in the case of low coverage by molecular surfactants
Pyun Some future works of research in electrochemistry
DE60308059T2 (en) FUEL CELL WITH MAGNETIC CATHODE FOR STATIC PUMPING
DE102010004942A1 (en) Electrochemical energy storage i.e. redox-flow-cell, for storing electrical power in chemical components in liquid form, has container comprising guard, which comprises hydrophobic liquid with low density than that of electrolytes
Raeva et al. Electrochemical Method of Discharged Waters Cleaning with of Alternating Current
DE2238431C3 (en) Process for generating electrical current by electrochemical oxidation of an active metal and electrochemical generator for carrying out the process
WO2015158485A1 (en) Method and apparatus for desalinating aqueous solutions using electrodialysis
DE102016001690A1 (en) Extension of the energy availability through the application of redox catalysis
EP2017372A1 (en) Method for temporary storage of electrical energy
DE102021110588A1 (en) storage of electrical energy
Siddiquee et al. Conjugated dynamic modeling on vanadium redox flow battery with non-constant variance for renewable power plant applications

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R086 Non-binding declaration of licensing interest
R082 Change of representative

Representative=s name: PIETRUK, CLAUS PETER, DIPL.-PHYS., DE

R016 Response to examination communication
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01M0014000000

Ipc: H01M0006320000

R018 Grant decision by examination section/examining division
R081 Change of applicant/patentee

Owner name: BUNDERLA, ROBERT, FR

Free format text: FORMER OWNER: BUNDERLA, ROBERT, 79379 MUELLHEIM, DE

R082 Change of representative
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee