-
Die vorliegende Erfindung betrifft ein Verfahren zum Analysieren und/oder Konfigurieren einer industriellen Anlage sowie ein System und Computerprogrammprodukt zur Durchführung des Verfahrens.
-
Industrielle Anlagen weisen mehrere Anlagenkomponenten, beispielsweise Sensoren, Aktoren, Fördermittel, Roboter(zellen) und dergleichen auf, mit denen Objekte erfasst, transportiert und/oder bearbeitet werden (sollen).
-
Aufgabe der vorliegenden Erfindung ist es, solche industriellen Anlagen bzw. deren Konzeption zu verbessern.
-
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Ansprüche 8, 9 stellen ein System bzw. Computerprogrammprodukt zur Durchführung eines hier beschriebenen Verfahrens unter Schutz. Die Unteransprüche betreffen vorteilhafte Weiterbildungen.
-
Nach einer Ausführung der vorliegenden Erfindung wird zum Analysieren und/oder Konfigurieren einer industriellen Anlage, die wenigstens eine erste Anlagenkomponente aufweist, mittels der wenigstens ein erstes Objekt, insbesondere sensorisch, in einer Ausführung optisch, erfasst und/oder, insbesondere mechanisch, gehandhabt, in einer Ausführung aufgenommen, insbesondere gegriffen, transportiert und/oder abgegeben, insbesondere abgelegt bzw. -setzt, und/oder, insbesondere spanend, bearbeitet, in einer Ausführung ur- und/oder umgeformt, wird bzw. werden soll bzw. die hierzu vorgesehen, insbesondere eingerichtet ist bzw. verwendet wird, auf Basis wenigstens eines ersten Objektmodells des ersten Objekts mithilfe wenigstens eines ersten maschinell gelernten Komponentenmodells der ersten Anlagenkomponente ein Prozesserfolg der ersten Anlagenkomponente (bei der Erfassung, Handhabung bzw. Bearbeitung des ersten Objekts) prognostiziert und/oder ein Wert für einen ein- oder mehrdimensionalen Konfigurationsparameter der ersten Anlagenkomponente, insbesondere für die Erfassung, Handhabung bzw. Bearbeitung des ersten Objekts, ermittelt.
-
Die Bezeichnung „erste(r)“ erfolgt vorliegend ohne Beschränkung der Allgemeinheit.
-
Unter einem Objektmodell eines Objekts wird vorliegend eine, insbesondere digitale, Charakterisierung des Objekts verstanden. Es weist in einer Ausführung digitale, abgespeicherte, vorgegebene, theoretische, erfasste und/oder aktuelle, Daten des Objekts, in einer Ausführung Bilddaten, Abmessungen und/oder mechanische, insbesondere kinetische und/oder kinematische, thermische, elektrische und/oder optische Parameter, insbesondere ein Gewicht, eine Massenverteilung, Werkstoffeigenschaften, Temperaturen, Oberflächenbeschaffenheit, Ströme, Kräfte oder dergleichen, auf, in einer Ausführung besteht es hieraus.
-
Ein Beispiel für ein Objektmodell eines Objekts sind somit insbesondere ein oder mehrere Bilder des Objekts.
-
Ein maschinell gelerntes Komponentenmodell einer Anlagenkomponente bildet, insbesondere klassifiziert, in einer Ausführung ein Objektmodell eines Objekts, insbesondere numerisch und/oder digital, auf bzw. in einen ein- oder mehrdimensionalen Ausgangsvektor (ab), der von einem Prozesserfolg, insbesondere einer Durchführbarkeit, einer Erfassung, Handhabung bzw. Bearbeitung des Objekts mittels der Anlagenkomponente und/oder von einem ein- oder mehrdimensionalen Konfigurationsparameter der Anlagenkomponente abhängt, diesen in einer Ausführung angibt, bzw. ist hierzu eingerichtet bzw. wird hierzu verwendet. In einer Ausführung weist es ein, in einer Ausführung tiefes, neuronales Netz auf, es kann insbesondere hieraus bestehen. Zusätzlich oder alternativ parametriert bzw. konfiguriert das maschinell gelernte Komponentenmodell einer Anlagenkomponente diese auf Basis des bzw. mit dem Wert(es) für den Konfigurationsparameter bzw. ist hierzu eingerichtet bzw. wird hierzu verwendet.
-
Durch die Verwendung eines maschinell gelerntes Modells wenigstens einer Anlagenkomponente einer industriellen Anlage kann diese in einer Ausführung vorteilhaft, insbesondere schnell, einfach, präzise und/oder zuverlässig, konzipiert, insbesondere vorab eine Durchführbarkeitsanalyse von Prozessschritten durchgeführt und/oder Konfigurationsparameter von Anlagenkomponenten ermittelt und die Anlagenkomponenten entsprechend auf Basis dieser ermittelten Konfigurationsparameter parametriert bzw. konfiguriert werden.
-
In einer Ausführung wird auf Basis des ersten Objektmodells des ersten Objekts und/oder wenigstens eines Objektmodells wenigstens eines weiteren Objekts mithilfe wenigstens eines maschinell gelernten Komponentenmodells wenigstens einer weiteren Anlagenkomponente ein Prozesserfolg dieser Anlagenkomponente (bei der Erfassung, Handhabung bzw. Bearbeitung dieses Objekts) prognostiziert und/oder ein Wert für einen Konfigurationsparameter dieser Anlagenkomponente, insbesondere für die Erfassung, Handhabung bzw. Bearbeitung dieses Objekts, ermittelt, in einer Ausführung die Anlagenkomponenten auf Basis dieses ermittelten Konfigurationsparameter parametriert bzw. konfiguriert.
-
Somit werden in einer Ausführung für verschiedene Anlagenkomponenten jeweils maschinell gelernte Komponentenmodelle verwendet, um deren Prozesserfolg zu prognostizieren bzw. diese zu parametrieren bzw. konfigurieren.
-
Durch diese Modularität können die einzelnen Komponentenmodelle in einer Ausführung vorteilhaft getrennt trainiert und/oder verwendet und dadurch insbesondere eine Modifikation der industriellen Anlage vorteilhaft, insbesondere schnell und/oder einfach, berücksichtigt bzw. eine modifizierte industrielle Anlage vorteilhaft, insbesondere schnell, einfach, präzise und/oder zuverlässig, (um)konzipiert werden. Zusätzlich oder alternativ können hierdurch Komponentenmodelle optimiert und/oder zur Konzeption verschiedener industrieller Anlagen genutzt werden.
-
Zusätzlich oder alternativ wird in einer Ausführung auf Basis wenigstens eines Objektmodells wenigstens eines weiteren Objekts mithilfe des ersten Komponentenmodells der ersten Anlagenkomponente ein Prozesserfolg der ersten Anlagenkomponente (bei der Erfassung, Handhabung bzw. Bearbeitung dieses weiteren Objekts) prognostiziert und/oder ein Wert für einen Konfigurationsparameter der ersten Anlagenkomponente, insbesondere für die Erfassung, Handhabung bzw. Bearbeitung dieses weiteren Objekts, ermittelt, in einer Ausführung die erste Anlagenkomponenten auf Basis dieses ermittelten Konfigurationsparameter parametriert bzw. konfiguriert.
-
Hierdurch kann in einer Ausführung die Durchführbarkeit komplexerer Prozesse verbessert oder auch erst ermöglicht werden.
-
In einer Ausführung wird wenigstens ein Komponentenmodell (wenigstens) einer Anlagenkomponente, insbesondere also das erste Komponentenmodell der ersten Anlagenkomponente und/oder das maschinell gelernte Komponentenmodell der wenigstens einen weiteren Anlagenkomponente (jeweils), auf Basis eines oder mehrerer verschiedener, insbesondere typgleicher Objektmodelle des ersten Objekts trainiert.
-
Hierdurch kann in einer Ausführung die Aussagefähigkeit dieses Komponentenmodells für das erste Objekt verbessert werden.
-
Zusätzlich oder alternativ wird in einer Ausführung wenigstens ein Komponentenmodell (wenigstens) einer Anlagenkomponente, insbesondere also das erste Komponentenmodell der ersten Anlagenkomponente und/oder das maschinell gelernte Komponentenmodell der wenigstens einen weiteren Anlagenkomponente (jeweils), auf Basis eines oder mehrerer verschiedener, insbesondere typgleicher Objektmodelle eines oder mehrerer weiterer Objekte trainiert, die typgleich mit dem ersten Objekt sind.
-
Zusätzlich oder alternativ wird in einer Ausführung wenigstens ein Komponentenmodell (wenigstens) einer Anlagenkomponente, insbesondere also das erste Komponentenmodell der ersten Anlagenkomponente und/oder das maschinell gelernte Komponentenmodell der wenigstens einen weiteren Anlagenkomponente (jeweils), auf Basis eines oder mehrerer verschiedener, insbesondere typgleicher Objektmodelle eines oder mehrerer weiterer Objekte trainiert, die nicht typgleich mit dem ersten Objekt sind.
-
Hierdurch kann in einer Ausführung die Robustheit dieses Komponentenmodells verbessert werden.
-
Somit wird in einer Ausführung wenigstens ein Komponentenmodell (wenigstens) einer Anlagenkomponente, insbesondere also das erste Komponentenmodell der ersten Anlagenkomponente und/oder das maschinell gelernte Komponentenmodell der wenigstens einen weiteren Anlagenkomponente (jeweils), auf Basis mehrerer verschiedener, typgleicher Objektmodelle eines oder mehrerer Objekte trainiert, wobei diese Objekte ihrerseits in einer Ausführung typgleiche und/oder nicht typgleiche bzw. typungleiche Objekte, insbesondere Negativ-Beispiele zu dem ersten Objekt, aufweisen können.
-
So kann beispielsweise ein Komponentenmodell auf Basis von verschiedenen Bildern (typgleiche Objektmodelle) mehrerer Schrauben (typgleiche Objekte) und Muttern (nicht typgleiche bzw. typungleiche Objekte) trainiert werden.
-
Zusätzlich oder alternativ ist bzw. wird in einer Ausführung wenigstens ein Komponentenmodell (wenigstens) einer Anlagenkomponente, insbesondere also das erste Komponentenmodell der ersten Anlagenkomponente und/oder das maschinell gelernte Komponentenmodell der wenigstens einen weiteren Anlagenkomponente (jeweils), teilweise oder vollständig vor Installation dieser Anlagenkomponente trainiert.
-
Insbesondere kann somit ein Hersteller bzw. Lieferant der Anlagenkomponente ein Komponentenmodell für diese vorab wenigstens vortrainieren oder auch fertig trainieren und dieses vor- bzw. fertig trainierte Komponentenmodell dann, insbesondere zur Konzeption der industriellen Anlage, insbesondere zur Konzeption verschiedener industrieller Anlagen, bereitstellen, insbesondere in Form einer sogenannten Verwaltungsschale im Sinne einer „Industrie 4.0 Komponente“. Hierdurch kann in einer Ausführung ein Aufwand bei der Konzeption reduziert werden.
-
Zusätzlich oder alternativ kann in einer Ausführung auch ein Hersteller bzw. Lieferant des ersten und/oder wenigstens einen weiteren Objekts das Objektmodell dieses Objekts bereitstellen, insbesondere in Form einer sogenannten Verwaltungsschale im Sinne einer „Industrie 4.0 Komponente“.
-
Ein Trainieren eines maschinell gelernten Komponentenmodells auf Basis eines Objektmodells umfasst in einer Ausführung ein, insbesondere überwachtes, tiefes und/oder ver- bzw. bestärkendes, maschinelles Lernen („(supervised/deep) machine learning; Reinforcement Learning“), insbesondere ein Eingeben des Objektmodells, ein Bewerten einer Ausgabe bzw. des Ausgangsvektors des Komponentenmodells, und ein Adaptieren bzw. Modifizieren des Komponentenmodells auf Basis dieser Bewertung.
-
In einer Ausführung werden das erste Komponentenmodell der ersten Anlagenkomponente und das erste Objektmodell des ersten Objekts einem Host(rechner) zur Verfügung gestellt, der (auf deren Basis) den Prozesserfolg prognostiziert bzw. den Wert für den Konfigurationsparameter ermittelt.
-
In einer Weiterbildung prognostiziert der Host auf Basis des ersten Objektmodells und/oder (des) wenigstens eines bzw. einen Objektmodells wenigstens eines weiteren Objekts mithilfe (des) wenigstens eines bzw. einen maschinell gelernten Komponentenmodells wenigstens einer weiteren Anlagenkomponente einen Prozesserfolg dieser Anlagenkomponente und/oder ermittelt auf Basis des ersten Objektmodells und/oder (des) wenigstens eines bzw. einen Objektmodells wenigstens eines weiteren Objekts mithilfe wenigstens (des) eines bzw. einen maschinell gelernten Komponentenmodells wenigstens einer weiteren Anlagenkomponente einen Wert für einen Konfigurationsparameter dieser Anlagenkomponente. Zusätzlich oder alternativ prognostiziert der Host in einer Ausführung auf Basis (des) wenigstens eines bzw. einen Objektmodells wenigstens eines weiteren Objekts mithilfe des ersten Komponentenmodells der ersten Anlagenkomponente einen Prozesserfolg dieser Anlagenkomponente und/oder ermittelt auf Basis (des) wenigstens eines Objektmodells wenigstens eines bzw. einen weiteren Objekts mithilfe des ersten Komponentenmodells der ersten Anlagenkomponente einen Wert für einen Konfigurationsparameter dieser Anlagenkomponente. Insbesondere kann somit der Host das (jeweilige) Komponentenmodell laden und zur Verarbeitung des bzw. der Objektmodelle als Eingangsvektoren verwenden.
-
Der Host kann in einer Ausführung von der (jeweiligen) Anlagenkomponente separat bzw. getrennt sein und/oder eine oder mehrere CPUs, GPUs und/oder Neural Computing Chips und/oder ein Framework aufweisen, beispielsweise TensorFlow, Torch, Caffe oder dergleichen. Das bzw. die Komponentenmodelle können vorzugsweise im ONNX-Format („Open Neural Network Exchange“) oder ähnlichen, vorzugsweise standardisierten Formaten zur Verfügung bzw. bereitgestellt werden.
-
Hierdurch kann in einer Ausführung die Auswertung des jeweiligen Komponentenmodells verbessert, insbesondere beschleunigt werden.
-
In einer Ausführung wird wenigstens ein Objektmodell (wenigstens) eines Objekts, insbesondere also das erste Objektmodell des ersten Objekts und/oder das wenigstens eine weitere Objektmodell des wenigstens einen weiteren Objekts (jeweils), dem (entsprechenden) Komponentenmodell mithilfe der ersten und/oder wenigstens einer weiteren Anlagenkomponente zur Verfügung gestellt.
-
Wenn beispielsweise ein Objektmodell ein Bild eines Objekts aufweist, kann somit in einer Ausführung die Anlagenkomponente, deren Komponentenmodell dieses Objektmodell verwendet, oder auch eine andere Anlagenkomponente dieses Bild aufnehmen und dem Komponentenmodell zur Verfügung stellen.
-
Hierdurch können in einer Ausführung besonders aussagefähige Objektmodelle genutzt und dadurch die Prognose des Prozesserfolgs bzw. die Konfiguration bzw. Parametrierung der Anlagenkomponente verbessert werden.
-
Gleichermaßen kann in einer Ausführung wenigstens ein Objektmodell (wenigstens) eines Objekts, insbesondere also das erste Objektmodell des ersten Objekts und/oder das wenigstens eine weitere Objektmodell des wenigstens einen weiteren Objekts (jeweils) dem (entsprechenden) Komponentenmodell ohne die bzw. Nutzung der erste(n) und/oder wenigstens eine(n) weitere(n) Anlagenkomponente bereitgestellt werden, insbesondere, wie vorstehend erläutert, durch den Zulieferer des Objekts.
-
Wenn wiederum beispielsweise ein Objektmodell ein Bild eines Objekts aufweist, kann somit in einer Ausführung dieses Bild vorab, beispielsweise vom Hersteller des Objekts, aufgenommen und dem Komponentenmodell zur Verfügung gestellt werden.
-
Hierdurch kann in einer Ausführung ein Aufwand bei der Konzeption reduziert werden.
-
In einer Ausführung weist wenigstens eine Anlagenkomponente, insbesondere also die erste Anlagenkomponente und/oder die wenigstens eine weitere Anlagenkomponente (jeweils), wenigstens einen, insbesondere optischen, Sensor, in einer Ausführung eine Kamera, und/oder wenigstens einen, insbesondere elektromotorischen, Aktor, in einer Ausführung wenigstens einen, insbesondere mehr-, vorzugsweise wenigstens sechs-, insbesondere wenigstens siebenachsigen, Roboter, wenigstens eine Werkzeugmaschine und/oder wenigstens ein Fördermittel auf.
-
Aufgrund ihrer Flexibilität und/oder Komplexität kann die vorliegende Erfindung mit besonderem Vorteil bei industriellen Anlagen mit solchen Anlagenkomponenten bzw. zu deren Konzeption, insbesondere zu Durchführbarkeitsanalysen von Prozessen solcher Anlagenkomponenten und/oder zur Konfigurierung bzw. Parametrierung solcher Anlagenkomponenten verwendet werden.
-
Nach einer Ausführung der vorliegenden Erfindung ist ein System, insbesondere hard- und/oder software-, insbesondere programmtechnisch, zur Durchführung eines hier beschriebenen Verfahrens eingerichtet und/oder weist Mittel zum Prognostizieren eines Prozesserfolgs der ersten Anlagenkomponente und/oder Ermitteln eines Wertes für einen Konfigurationsparameter der ersten Anlagenkomponente auf Basis wenigstens eines ersten Objektmodells des ersten Objekts mithilfe wenigstens eines ersten maschinell gelernten Komponentenmodells der ersten Anlagenkomponente auf.
-
In einer Ausführung weist das System bzw. sein(e) Mittel auf:
- Mittel zum Prognostizieren eines Prozesserfolgs wenigstens einer weiteren Anlagenkomponente und/oder Ermitteln eines Wertes für einen Konfigurationsparameter wenigstens einer weiteren Anlagenkomponente auf Basis des ersten Objektmodells und/oder wenigstens eines Objektmodells wenigstens eines weiteren Objekts mithilfe wenigstens eines maschinell gelernten Komponentenmodells dieser Anlagenkomponente; und/oder
- Mittel zum Prognostizieren eines Prozesserfolgs der ersten Anlagenkomponente und/oder Ermitteln eines Wertes für einen Konfigurationsparameter der ersten Anlagenkomponente auf Basis wenigstens eines Objektmodells wenigstens eines weiteren Objekts mithilfe des ersten Komponentenmodells der ersten Anlagenkomponente; und/oder
- Mittel zum Trainieren wenigstens eines Komponentenmodells einer Anlagenkomponente auf Basis eines oder mehrerer verschiedener, insbesondere typgleicher Objektmodelle des ersten Objekts, wenigstens eines weiteren typgleichen Objekts und/oder wenigstens eines zu dem ersten Objekt typungleichen Objekts; und/oder
- Mittel zum Trainieren wenigstens eines Komponentenmodells einer Anlagenkomponente wenigstens teilweise vor Installation dieser Anlagenkomponente; und/oder
- einen Host zum Prognostizieren eines Prozesserfolgs der ersten Anlagenkomponente und/oder Ermitteln eines Wertes für einen Konfigurationsparameter der ersten Anlagenkomponente auf Basis wenigstens eines dem Host zur Verfügung gestellten ersten Objektmodells des ersten Objekts mithilfe wenigstens eines dem Host zur Verfügung gestellten ersten maschinell gelernten Komponentenmodells der ersten Anlagenkomponente, insbesondere
- zum Prognostizieren eines Prozesserfolgs wenigstens einer weiteren Anlagenkomponente und/oder Ermitteln eines Wertes für einen Konfigurationsparameter wenigstens einer weiteren Anlagenkomponente auf Basis des dem Host zur Verfügung gestellten ersten Objektmodells und/oder wenigstens eines dem Host zur Verfügung gestellten Objektmodells wenigstens eines weiteren Objekts mithilfe wenigstens eines dem Host zur Verfügung gestellten maschinell gelernten Komponentenmodells dieser Anlagenkomponente; und/oder
- Mittel zum Prognostizieren eines Prozesserfolgs der ersten Anlagenkomponente und/oder Ermitteln eines Wertes für einen Konfigurationsparameter der ersten Anlagenkomponente auf Basis wenigstens eines dem Host zur Verfügung gestellten Objektmodells wenigstens eines weiteren Objekts mithilfe des dem Host zur Verfügung gestellten ersten Komponentenmodells der ersten Anlagenkomponente; und/oder
- Mittel, das dazu eingerichtet ist, wenigstens ein Objektmodell eines Objekts dem Komponentenmodell mithilfe der ersten und/oder wenigstens einer weiteren Anlagenkomponente zur Verfügung zu stellen oder ohne diese bereitzustellen.
-
Ein Mittel im Sinne der vorliegenden Erfindung kann hard- und/oder softwaretechnisch ausgebildet sein, insbesondere eine, vorzugsweise mit einem Speicher- und/oder Bussystem daten- bzw. signalverbundene, insbesondere digitale, Verarbeitungs-, insbesondere Mikroprozessoreinheit (CPU), Graphikkarte (GPU) oder dergleichen und/oder ein oder mehrere Programme oder Programmmodule aufweisen. Die Verarbeitungseinheit kann dazu ausgebildet sein, Befehle, die als ein in einem Speichersystem abgelegtes Programm implementiert sind, abzuarbeiten, Eingangssignale von einem Datenbus zu erfassen und/oder Ausgangssignale an einen Datenbus abzugeben. Ein Speichersystem kann ein oder mehrere, insbesondere verschiedene, Speichermedien, insbesondere optische, magnetische, Festkörper- und/oder andere nicht-flüchtige Medien aufweisen. Das Programm kann derart beschaffen sein, dass es die hier beschriebenen Verfahren verkörpert bzw. auszuführen imstande ist, sodass die Verarbeitungseinheit die Schritte solcher Verfahren ausführen kann. Ein Computerprogrammprodukt kann in einer Ausführung ein, insbesondere nicht-flüchtiges, Speichermedium zum Speichern eines Programms bzw. mit einem darauf gespeicherten Programm aufweisen, insbesondere sein, wobei ein Ausführen dieses Programms ein System bzw. eine Steuerung, insbesondere einen Computer, dazu veranlasst, ein hier beschriebenes Verfahren bzw. einen oder mehrere seiner Schritte auszuführen.
-
In einer Ausführung werden ein oder mehrere, insbesondere alle, Schritte des Verfahrens vollständig oder teilweise automatisiert durchgeführt, insbesondere durch das System bzw. sein(e) Mittel. In einer Ausführung weist das System die erste und/oder wenigstens eine weitere Anlagenkomponente, insbesondere die industrielle Anlage, auf.
-
Unter „typgleich“ wird vorliegend insbesondere verstanden, dass zwei Elemente denselben Typ aufweisen bzw. einer gemeinsamen Klasse angehören bzw. einer gemeinsamen Klasse zugeordnet werden (können). So können beispielsweise ein erstes Bild und ein zweites Bild typgleiche Objektmodelle sein, ein Bild und CAD-Daten hingegen typungleiche Objektmodelle. Gleichermaßen können zum Beispiel zwei verschiedene Schrauben typgleiche Objekte sein, eine Schraube und eine Mutter hingegen typungleiche Objekte. Wie vorstehend bereits erwähnt, werden in einer Ausführung zum Trainieren eines Komponentenmodells vorteilhaft Objektmodelle typungleicher Objekte verwendet, wobei einige dieser Objekte Positiv-Beispiele, für die insbesondere ein positiver Prozesserfolgt prognostiziert bzw. ein bestimmter Wert des Konfigurationsparameters für das erste Objekt ermittelt wird bzw. werden soll, und anderer Objekte Negativ-Beispiele sind, für die insbesondere ein negativer Prozesserfolgt prognostiziert bzw. ein anderer Wert des Konfigurationsparameters ermittelt wird bzw. werden soll.
-
Bei der Prognose eines Prozesserfolgs bzw. Ermittlung eines Wertes für einen Konfigurationsparameter auf Basis eines Objektmodells mithilfe eines maschinell gelernten Komponentenmodells können in einer Ausführung noch weitere (Prozess)Daten berücksichtigt werden.
-
Weitere Vorteile und Merkmale ergeben sich aus den Unteransprüchen und den Ausführungsbeispielen. Hierzu zeigt, teilweise schematisiert, die einzige:
- 1: ein Verfahren und System zum Analysieren und/oder Konfigurieren einer industriellen Anlage nach einer Ausführung der vorliegenden Erfindung.
-
1 zeigt ein Verfahren und System zum Analysieren und/oder Konfigurieren einer industriellen Anlage nach einer Ausführung der vorliegenden Erfindung.
-
Exemplarisch weist die Anlage eine erste Anlagenkomponente in Form eines Roboters 10, der ein erstes Objekt 20 und hierzu typgleiche Objekte sowie ein weiteres, typungleiches Objekt 30 und hierzu typgleiche Objekte bearbeiten soll, eine weitere Anlagenkomponente in Form einer Kamera 40 sowie eine andere weitere Anlagenkomponente in Form eines weiteren Roboters 50 auf.
-
Vom Roboterhersteller ist ein erstes maschinell gelerntes Komponentenmodell des Roboters 10 in Form eines tiefen neuronalen Netzes 11 sowie ein maschinell gelerntes Komponentenmodell des weiteren Roboters 50 in Form eines weiteren tiefen neuronalen Netzes 51 bereitgestellt und auf einen Host 100 geladen, die beim Hersteller vor- oder fertigtrainiert wurden.
-
Vom Zulieferer des weiteren Objekts 30 ist ein Objektmodell 31 dieses Objekts bereitgestellt und auf den Host 100 geladen.
-
Mit der Kamera 40 wird ein Bild 21 des ersten Objekts 20 erstellt und als Objektmodell 21 dieses Objekts dem Host 100 zugeführt.
-
Auf Basis dieser Objektmodelle 21, 31 analysiert der Host 100 mithilfe des Komponentenmodells 11, ob eine geplante Bearbeitung der Objekte 20, 30 mittels des Roboters 10 (voraussichtlich) durchführbar ist, und parametriert hierzu gegebenenfalls den Roboter 10 oder gibt entsprechende Konfigurationsparameterwerte aus.
-
In analoger Weise analysiert der Host 100 auf Basis der Objektmodelle 21, 31 mithilfe des Komponentenmodells 51, ob eine geplante Bearbeitung der Objekte 20, 30 mittels des Roboters 50 (voraussichtlich) durchführbar ist, und parametriert hierzu gegebenenfalls den Roboter 50 oder gibt entsprechende Konfigurationsparameterwerte aus.
-
Der Roboterhersteller hat die neuronalen Netze 11, 51 auf Basis von Kamerabildern, wie sie von Kameras des Typs der Kamera 40 geliefert werden, und CAD-Daten 31, wie sie für das weitere Objekt 30 bereitgestellt werden, trainiert, beispielsweise, um zu klassifizieren, ob der Roboter 10 bzw. 50 das entsprechende Objekt greifen kann, oder geeignete Greifposen zu ermitteln. Hierzu werden neben Objektmodellen, im Ausführungsbeispiel Kamerabildern bzw. CAD-Daten, von Objekten, die typgleich zu den von Roboter 10 bzw. 50 handzuhabenden Objekten 20, 30 sind, auch Objektmodellen von Objekten verwendet, die typungleich zu solchen Objekten sind, insbesondere von Objekten, die von Roboter 10 bzw. 50 nicht bzw. mit anderen Konfigurationsparameterwerten handzuhaben sind, um den neuronalen Netzen 11, 51 auch Negativ-Beispiele zur Verfügung zu stellen.
-
In einer Ausführung kann das (vortrainierte) neuronale Netz 11 bzw. 51 auf Basis von Kamerabildern der Kamera 40 fertigtrainiert werden.
-
Obwohl in der vorhergehenden Beschreibung exemplarische Ausführungen erläutert wurden, sei darauf hingewiesen, dass eine Vielzahl von Abwandlungen möglich ist.
-
So werden im obigen Ausführungsbeispiel in den Komponentenmodellen 11, 51 typungleiche Objektmodelle verarbeitet, nämlich zum einen Bilder 21 und zum anderen CAD-Daten 31.
-
In einer Abwandlung werden stattdessen in einem oder beiden Komponentenmodellen 11, 51 jeweils nur typgleiche Objektmodelle verarbeitet, im Ausführungsbeispiel also im Komponentenmodellen 11 und/oder 51 jeweils nur Bilder 21 oder nur CAD-Daten 31.
-
Hierdurch können die neuronalen Netze 11, 51 vorteilhaft, insbesondere spezifischer, arbeiten und so in einer Ausführung ihre Geschwindigkeit, Robustheit und/oder Präzision verbessert werden.
-
Zusätzlich oder alternativ können das neuronale Netz 11 und/oder 51 (jeweils) auch erst anhand der von der Kamera 40 erfassten Bilder trainiert werden.
-
Mithin kann beispielsweise der Roboterhersteller das neuronale Netz 11 auf Basis von Kamerabildern, wie sie von Kameras des Typs der Kamera 40 geliefert werden, von Objekten des Typs des Objekts 20 als Positiv-Beispielen und von Objekten des Typs des Objekts 30 als Negativ-Beispielen (vor)trainieren.
-
Wenn dann im Betrieb die Kamera 40 ein erstes Objekt des Typs des Objekts 20 erfasst, kann das neuronale Netz 11 hierfür einen positiven Prozesserfolg prognostizieren bzw. hierfür entsprechende Konfigurationsparameterwerte einstellen bzw. vor-bzw. ausgeben, beispielsweise Greifpositionen oder dergleichen.
-
Wenn hingegen im Betrieb die Kamera 40 ein erstes Objekt des Typs des Objekts 30 erfasst wird, kann das neuronale Netz 11 hierfür einen negativen Prozesserfolg prognostizieren bzw. hierfür entsprechende andere Konfigurationsparameterwerte einstellen bzw. vor-bzw. ausgeben, beispielsweise andere Greifpositionen oder dergleichen.
-
Außerdem sei darauf hingewiesen, dass es sich bei den exemplarischen Ausführungen lediglich um Beispiele handelt, die den Schutzbereich, die Anwendungen und den Aufbau in keiner Weise einschränken sollen. Vielmehr wird dem Fachmann durch die vorausgehende Beschreibung ein Leitfaden für die Umsetzung von mindestens einer exemplarischen Ausführung gegeben, wobei diverse Änderungen, insbesondere in Hinblick auf die Funktion und Anordnung der beschriebenen Bestandteile, vorgenommen werden können, ohne den Schutzbereich zu verlassen, wie er sich aus den Ansprüchen und diesen äquivalenten Merkmalskombinationen ergibt.
-
Bezugszeichenliste
-
- 10
- Roboter (erste Anlagenkomponente)
- 11
- tiefes neuronales Netz (erstes maschinell gelerntes Komponentenmodell)
- 20
- erstes Objekt
- 21
- Bild (erstes Objektmodell) des ersten Objekts
- 30
- weiteres Objekt
- 31
- CAD-Daten (Objektmodell) des weiteren Objekts
- 40
- Kamera (weitere Anlagenkomponente)
- 50
- Roboter (weitere Anlagenkomponente)
- 51
- tiefes neuronales Netz (maschinell gelerntes Komponentenmodell)
- 100
- Host