DE102017111820A1 - Hochfrequenz-Erzeugungseinheit - Google Patents

Hochfrequenz-Erzeugungseinheit Download PDF

Info

Publication number
DE102017111820A1
DE102017111820A1 DE102017111820.9A DE102017111820A DE102017111820A1 DE 102017111820 A1 DE102017111820 A1 DE 102017111820A1 DE 102017111820 A DE102017111820 A DE 102017111820A DE 102017111820 A1 DE102017111820 A1 DE 102017111820A1
Authority
DE
Germany
Prior art keywords
frequency
signal
clock
digital
generating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102017111820.9A
Other languages
English (en)
Inventor
Winfried Mayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Priority to DE102017111820.9A priority Critical patent/DE102017111820A1/de
Priority to EP18717034.5A priority patent/EP3631492A1/de
Priority to PCT/EP2018/059128 priority patent/WO2018219534A1/de
Publication of DE102017111820A1 publication Critical patent/DE102017111820A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Die Erfindung betrifft eine eine Hochfrequenz-Erzeugungseinheit (11) für ein FMCW-Radar basiertes Füllstandsmessgerät (1), das erfindungsgemäß folgende Komponenten umfasst: Eine Takteinheit (111) zur Erzeugung eines Taktsignals (s), ein durch das Taktsignal (s) getaktetes digitales Schaltwerk (114) zur Erzeugung eines digitalen Ausgangssignals (s), und einen Digital-/Analog-Wandler (115), der das digitale Ausgangssignal (s) des digitalen Schaltwerkes (114) in ein analoges Hochfrequenzsignal (s) wandelt. Durch diesen erfindungsgemäßen Aufbau kann eine Hochfrequenz-Erzeugungseinheit (11) für FMCW-basierte Füllstandsmessung realisiert werden, die insbesondere ohne einen nach dem Stand der Technik erforderlichen spannungsgesteuerten Oszillator und eine damit verbundene, empfindliche Regelschleife auskommt. Dies führt zu einem wesentlich reduzierten Schaltungsaufwand, so dass die Hochfrequenz-Erzeugungseinheit (11) sehr kompakt, gegebenenfalls in einer einzigen monolithisch intergierten Schaltung, realisiert werden kann. Hinsichtlich der Füllstandsmessung ermöglicht die erfindungsgemäße Hochfrequenz-Erzeugungseinheit (11) aufgrund ihrer störungsärmeren Signalerzeugung eine genauere und zuverlässigere Bestimmung des Füllstandes (L).

Description

  • Die Erfindung betrifft eine Hochfrequenz-Erzeugungseinheit für ein FMCW-Radar basiertes Füllstandsmessgerät.
  • In der Automatisierungstechnik, insbesondere in der Prozessautomatisierungstechnik, werden vielfach Feldgeräte eingesetzt, die zur Erfassung und/oder zur Beeinflussung von Prozessvariablen dienen. Zur Erfassung von Prozessvariablen werden Sensoren eingesetzt, die beispielsweise in Füllstandsmessgeräten, Durchflussmessgeräten, Druck- und Temperaturmessgeräten, pH-Redoxpotential-Messgeräten oder Leitfähigkeitsmessgeräten zum Einsatz kommen. Sie erfassen die entsprechenden Prozessvariablen, wie Füllstand, Durchfluss, Druck, Temperatur, pH-Wert, Redoxpotential oder Leitfähigkeit in der jeweiligen Prozessanlage. Zur Beeinflussung von Prozessvariablen dienen Aktoren, wie unter Anderem Ventile oder Pumpen, über die der Durchfluss einer Flüssigkeit in einem Rohrleitungsabschnitt bzw. der Füllstand in einem Behälter geändert werden kann. Eine Vielzahl dieser Feldgeräte wird von der Firma Endress + Hauser hergestellt und vertrieben.
  • Zur Füllstandsmessung von Füllgütern in Behältern haben sich berührungslose Messverfahren etabliert, da sie verschleiß- und wartungsarm sind. Ein weiterer Vorteil besteht in der Fähigkeit, den Füllstand quasi kontinuierlich, also mit einer hohen Auflösung messen zu können. Daher werden Im Bereich der kontinuierlichen Füllstandsmessung vorwiegend Radar-basierte Distanz-Messverfahren eingesetzt. Hierzu wird vorzugsweise das so genannte FMCW Verfahren („Frequency Modulated Continuos Wave“, auch bekannt als Dauerstrichradar) angewandt, welches innerhalb von vordefinierten Radar-Frequenzbändern arbeitet (im Rahmen dieser Erfindung beziehen sich die Begriffe „Hochfrequenz“ und „Radar“ auf Signale bzw. elektromagnetische Wellen mit Frequenzen zwischen 0.3 GHz und 300 GHz).
  • Bei FMCW-basierter Distanz- bzw. Geschwindigkeitsmessung gibt es für Frequenzen bis ungefähr 79 GHz bereits schaltungstechnisch ausgereifte Lösungen zur Erzeugung eines elektrischen Hochfrequenzsignals mittels entsprechender Hochfrequenz-Erzeugungseinheiten. Die Hochfrequenz-Erzeugungseinheit speist hierbei eine Sende-/Empfangs-Antenne, wodurch das resultierende, mikrowellenbasierte Sendesignal erzeugt und abgestrahlt wird. Dementsprechend wird die Frequenz des Sendesignals durch die Hochfrequenz-Erzeugungseinheit festgelegt.
  • Geeignete Hochfrequenz-Erzeugungseinheiten zur Erzeugung von Hochfrequenzsignalen für FMCW-Radar sind bereits bekannt. In diesem Zusammenhang sei exemplarisch die Veröffentlichungsschrift DE 10 2013 105 A1 genannt. Dort ist eine typischerweise eingesetzte Hochfrequenz-Erzeugungseinheit nach dem Stand der Technik gezeigt:
  • Kern der dortigen Hochfrequenz-Erzeugungseinheit ist ein spannungsgesteuerter Hochfrequenz-Oszillator (in der Regel wird hierfür ein VCO, also ein „Voltage Controlled Oscillator“ eingesetzt), der ein entsprechendes Hochfrequenz-Signal erzeugt, dessen Frequenz durch die Steuerspannung veränderbar ist. Die für FMCW typische sägezahnförmige Frequenzänderung des elektrischen Hochfrequenzsignals wird dadurch eingeprägt, dass der Oszillator über eine Rückkopplungsschaltung, auch unter dem Namen „Phasenregelkreis“ oder PLL („Phase Locked Loop“) bekannt, geregelt wird.
  • Dabei wird die Rückkopplung realisiert, indem aus dem Hochfrequenzsignal des Oszillators gegebenenfalls über einen Frequenzteiler ein Regelsignal abgezweigt wird. Dieses wird einem Phasenkomparator zugeführt, welcher die momentane Phasenlage mit der eines frequenzkonstanten Taktsignals vergleicht. Die Frequenz des Taktsignals liegt dabei in Bereichen von vorzugsweise 10 MHz bis 100 MHz und kann mittels eines entsprechenden Quarzoszillators erzeugt werden. Der Phasenkomparator steuert den VCO über ein analoges DC-Signal, wobei sich der Spannungswert des DC-Signals nach der momentanen Phasenlage an den Eingängen des Phasenkomparators richtet. Wie der Name bereits sagt, ist die Frequenz des VCO's wiederum abhängig vom Spannungswert an dessen Eingang.
  • Wie aus dieser Beschreibung hervorgeht, erfordert eine solche Hochfrequenz-Erzeugungseinheit nach dem Stand der Technik einen vergleichsweise aufwändigen Schaltungsaufbau. Neben dem komplexen Schaltungsaufbau besteht ein weiterer Nachteil darin, dass der spannungsgesteuerte Oszillator sowie der Frequenzteiler einen hohen Leistungsverbrauch und ein starkes Rauschen aufweisen. Der nachteilige Effekt von Rauschen auf die Distanz- bzw. Füllstands-Messung ist jedoch, dass die Empfindlichkeit, mit der kleine oder schlecht reflektierende Messobjekte insbesondere bei weiten Entfernungen detektiert werden können, drastisch abnimmt. Durch hohen Leistungsverbrauch wird es erschwert, das Füllstandsmessgerät so auszulegen, dass es gängige Explosionsschutzvorschriften einhält.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine einfache und robuste Hochfrequenz-Erzeugungseinheit für ein FMCW-basiertes Füllstandsmessgerät bereitzustellen.
  • Die Erfindung löst diese Aufgabe durch eine Hochfrequenz-Erzeugungseinheit für ein FMCW-Radar basiertes Füllstandsmessgerät, das zumindest folgende Komponenten umfasst:
    • - Eine Takteinheit, die ausgestaltet ist, um ein Taktsignal mit einer vorbestimmten Taktfrequenz zu erzeugen,
    • - ein durch das Taktsignal getaktetes, digitales Schaltwerk (beispielsweise als Arbiträrgenerator oder ein nach der direkten digitalen Synthese arbeitender Schaltkreis), welches ausgestaltet ist, um ein digitales, also zeit- und/oder wertdiskretes Ausgangssignal zu erzeugen,
    • - einen Digital-/Analog-Wandler, der das digitale Ausgangssignal des digitalen Schaltwerkes in ein analoges Hochfrequenzsignal wandelt.
  • Durch diesen erfindungsgemäßen Aufbau kann eine Hochfrequenz-Erzeugungseinheit für FMCW-basierte Füllstandsmessung realisiert werden, die insbesondere ohne einen spannungsgesteuerten Oszillator und eine damit verbundene, anfällige Regelschleife auskommt. Dies führt zu einem wesentlich reduzierten Schaltungsaufwand, so dass die Hochfrequenz-Erzeugungseinheit sehr kompakt, gegebenenfalls in einer einzigen monolithisch intergierten Schaltung, realisiert werden kann.
  • Zur Anwendung bei FMCW-Radar basierter Füllstandsmessung ist das digitale Schaltwerk so auszugestalten, dass das digitale Ausgangssignal mit einer veränderlichen Frequenz, insbesondere einer sich innerhalb eines vorbestimmten Frequenzbandes linear ändernden Frequenz, erzeugt wird. Darüber hinaus ist das digitale Schaltwerk vorzugsweise so auszulegen, dass die Frequenz des Ausgangssignals maximal halb so hoch wie die Taktfrequenz des Taktsignals ist, um dem Abtasttheorem zu genügen.
  • Zum Einsatz bei FMCW-Radar basierter Füllstandsmessung ist das digitale Schaltwerk außerdem vorzugsweise so auszulegen, dass es das digitale Ausgangssignal mit einer Frequenz (bzw. in einem Frequenzband) bei mindestens einem 1 GHz, insbesondere 6 GHz, erzeugt. Auch Anwendungen bei 26 GHz oder sogar 79 GHz, welches weitere typische Bereiche für Radar-basierte Füllstandsmessung darstellen, wären denkbar.
  • Entsprechend dem digitalen Schaltwerk ist der Digital-/Analog-Wandler an das digitale Ausgangssignal des digitalen Schaltwerkes (insbesondere dessen Pegel und Pulsweite bzw. Frequenzbereich) anzupassen. Ausgangsseitig ist der Digital-/Analog-Wandler in Abhängigkeit der weiteren Verarbeitung des Hochfrequenzsignals im Füllstandsmessgerät auszulegen: Abhängig von den nachgeschalteten Komponenten, wie etwaiger Sende-Empfangsweichen oder Sende-/Empfangs-Antennen, ist der Digital-/Analog-Wandler so zu konzipieren, dass das analoge Hochfrequenzsignal entweder als ein strombasiertes Signal oder als ein spannungsbasiertes Signal erzeugt wird.
  • 111 Hinsichtlich der Filterung etwaiger Stör- oder Rausch-Signale, die das elektrische Hochfrequenzsignal überlagern, ist es vorteilhaft, wenn die Hochfrequenz-Erzeugungseinheit zusätzlich einen Filter umfasst, der ausgestaltet ist, um das Hochfrequenzsignal vor Einkopplung in die Sende-/Empfangs-Antenne des Füllstandsmessgerätes entsprechend zu filtern.
  • Hierbei ist der Filter (der vorzugsweise als Tiefpass oder Bandpass ausgelegt ist) zumindest für die Frequenz des Ausgangssignals durchlässig.
  • Insbesondere, wenn die Frequenz des Ausgangssignals maximal halb so hoch wie die Taktfrequenz des Taktsignals ist, ist die Verwendung eines Tiefpasses notwendig, um das zeitdiskrete Ausgangssignal des Digital-/Analog-Wandlers zu glätten.
  • Eine sehr kompakte Bauform der erfindungsgemäßen Hochfrequenz-Erzeugungseinheit kann erreicht werden, wenn zumindest die Takteinheit, das digitale Schaltwerk und der Digital-/Analog-Wandler in Form einer intergierten monolithischen Schaltung aufgebaut sind. Nicht zuletzt für den Fall, dass die integrierte Schaltung außerdem die Takteinheit umfasst, besteht eine besonders günstige Ausgestaltungsvariante darin, dass die Takteinheit als akustischer Oberflächenresonator realisiert ist.
  • Zudem bietet es sich an, wenn die Takteinheit mittels einer Phasenregelschleife mit einer Referenzquelle synchronisierbar ausgeführt wird. Hierdurch ist es möglich, dass die Erzeugung des Hochfrequenzsignals und die Abtastung des empfangenen Messsignals den gleichen Taktbezug haben und damit besonders störunempfindlich sind. Außerdem kann so eine Takteinheit eingespart werden. Hierbei ist es vorzuziehen, dass die Referenzquelle eine Referenzfrequenz aufweist, die gleich hoch ist oder einem ganzzahligen Teiler der Taktfrequenz entspricht.
  • Bei einer Implementierung der erfindungsgemäßen Hochfrequenz-Erzeugungs-Einheit in einem FMCW-Radar basierten Füllstandsmessgerät, welches zur Messung eines Füllstandes eines in einem Behälter befindlichen Füllgutes, dient, weist das Füllstandsmessgerät entsprechend folgende Komponenten auf:
    • - Eine Hochfrequenz-Erzeugungseinheit nach einer der zuvor beschriebenen Ausführungsvarianten,
    • - eine Sende-/Empfangs-Antenne, die das analoge Hochfrequenzsignal als ein elektromagnetisches Sendesignal in Richtung des Füllgutes aussendet und/oder das reflektierte Signal nach Reflektion an der Oberfläche des Füllgutes empfängt (eine separate Sende- und Empfangs-Antenne wären ebenso einsetzbar),
    • - eine Steuer-/Auswerte-Einheit, die gemäß dem FMCW Verfahren mittels der gemessenen Frequenzdifferenz zwischen dem elektromagnetisches Sendesignal und dem reflektierten Signal den Füllstand bestimmt.
  • Anhand der nachfolgenden Figuren wird die Erfindung näher erläutert. Es zeigt:
    • 1: Eine allgemeine Darstellung eines FMCW-Radar basierten Füllstandsmessgerätes an einem Behälter,
    • 2: ein bei FMCW-Radar charakteristischer Frequenzverlauf des elektrischen Hochfrequenzsignals,
    • 3: eine Hochfrequenz-Erzeugungseinheit für FMCW-Radar nach dem Stand der Technik, und
    • 4: eine erfindungsgemäße Hochfrequenz-Erzeugungseinheit.
  • Zu einem grundsätzlichen Verständnis der Erfindung ist in 1 eine typische Anordnung eines nach dem FMCW-Radar Prinzip arbeitenden Füllstandsmessgerätes 1 an einem Behälter 2 gezeigt. In dem Behälter 2 befindet sich ein Füllgut 3, dessen Füllstand L durch das Füllstandsmessgerät 1 zu bestimmen ist. In der Regel ist das Füllstandsmessgerät 1 über eine interne Steuer-Auswerte-Einheit 15 und ein entsprechendes Bussystem, etwa „PROFIBUS“, „HART“ oder „Wireless HART“ mit einer übergeordneten Einheit 4, beispielsweise einem Prozessleitsystem, verbunden. Hierüber können zum einen Informationen über den Betriebszustand des Füllstandsmessgerätes 1 kommuniziert werden. Es können auch Informationen über den Füllstand L übermittelt werden, um gegebenenfalls am Behälter 2 vorhandene Zuflüsse und/oder Abflüsse zu steuern.
  • Zur Bestimmung des Füllstandes L ist das Füllstandsmessgerät 1 in einer vorbekannten Einbauhöhe h oberhalb des Füllgutes 3 am Behälter 2 angebracht. Hierbei kann der Behälter 2 je nach Anwendung bis zu mehr als 30 m hoch sein. Das Füllstandsmessgerät 1 ist so am Behälter 2 angeordnet, dass es ein elektromagnetisches Sendesignal SHF in Richtung der Oberfläche des Füllgutes 3 aussendet. Nach Reflektion an der Füllgut-Oberfläche empfängt das Füllstandsmessgerät 1 das reflektierte Signal EHF in Abhängigkeit der Entfernung d = h - L zur Füllgut-Oberfläche. Hierbei wird gemäß dem FMCW-Prinzip der Effekt genutzt, dass sich Differenzfrequenz (also die Differenz zwischen der momentanen Frequenz fHF des Sendesignals SHF und der Frequenz des momentan vom Füllstandsmessgerät 1 empfangenen, reflektierten Signals EHF ) linear mit der Entfernung d zur Füllgut-Oberfläche ändert.
  • Zur Nutzung dieses Effektes ist es entsprechend dem FMCW-Prinzip notwendig, das Sendesignal SHF nicht mit einer konstanten Frequenz fHF , sondern mit einer Frequenz fHF , die sich innerhalb eines festgelegten Frequenzbandes Δf zeitlich ändert, auszusenden. Gängige Frequenzbänder liegen im Bereich der Füllstandsmesstechnik bei 6 GHz, 26 GHz oder auch bereits bei 79 GHz. Die Breite des jeweiligen Frequenzbandes Δf beträgt hierbei in etwa zwischen 5 % und 20 % der absoluten Frequenz.
  • Wie in 2 dargestellt ist, wird typischerweise eine sägezahnförmige Frequenzänderung, also eine zeitlich linear ansteigende Frequenz implementiert (eine linear abfallende Frequenzänderung wäre gleichermaßen einsetzbar), wobei sich die Frequenzänderung innerhalb des Frequenzbandes Δf zyklisch mit einer voreingestellten Wiederholrate r wiederholt. Um das elektromagnetische Sendesignal SHF mit dieser Charakteristik über eine entsprechende Sende-Empfangs-Antenne 13 (beispielsweise eine Hornantenne, wie in 1 dargestellt) auszusenden, muss eine geeignete Hochfrequenz-Erzeugungseinheit 11, 11‘ des Füllstandsmessgerätes 1 ein entsprechendes elektrisches Hochfrequenzsignal sHF erzeugen, welches ebenfalls eine sägezahnförmige Frequenzcharakteristik aufzuweisen hat.
  • Eine gängige Hochfrequenz-Erzeugungseinheit 11‘ nach dem Stand der Technik ist in 3 dargestellt: Sie basiert auf einem spannungsgesteuerten Oszillator 113 zur Erzeugung des elektrischen Hochfrequenzsignals sHF-Hierbei ist dessen Oszillations-Frequenz durch einen anlegbaren Gleichspannungswert sdc einstallbar.
  • Im Fall der in 3 dargestellten Hochfrequenz-Erzeugungseinheit 11‘ erfolgt die Einstellung des geforderten Gleichspannungswertes sdc durch einen Rampengenerator 112, der standardmäßig als phasengesteuerter Regelkreis (auch bekannt als „Phase Locked Loop“) mit dem spannungsgesteuerten Oszillator 113 rückgekoppelt ist. Dabei wird aus dem Hochfrequenzsignal sHF des Oszillators 113 (gegebenenfalls über einen zusätzlichen Frequenzteiler, in 3 nicht dargestellt) ein Regelsignal abgezweigt. Dieses wird einem Phasenkomparator innerhalb des Rampengenerators 112 zugeführt, wobei der Phasenkomparator die momentane Phasenlage mit der eines frequenzkonstanten Taktsignals sclock vergleicht. Die Erzeugung des Taktsignals sclock erfolgt mittels einer Takteinheit 111, die beispielsweise als Schwingquarz realisiert ist, die den Rampengenerator 113 hierbei in einer Frequenz von 10 MHz bis 100 MHz taktet. Über den Rampengenerator 112 wird außerdem die Frequenz fHF bzw. die sägezahnförmige Frequenzänderung des im Mikrowellenbereich liegenden Sendesignals SHF mittels eines entsprechenden Steuersignals sf eingestellt. Dieses Steuersignal sf kann beispielsweise dadurch die Frequenzänderung bewirken, dass es die Teilerwerte der Frequenzteiler im Rampengenerator 112 verändert.
  • Wie aus dem Stand der Technik bekannt, wird das elektrische Hochfrequenzsignal sHF über eine Sende-/Empfangsweiche 12 der Sende-/Empfangs-Antenne 13 des Füllstandsmessgerätes 1 zugeführt, um zwecks Füllstandsmessung das elektrische Hochfrequenzsignal sHF als elektromagnetisches Sendesignal SHF auszusenden. Außerdem wird über die Sende-/Empfangs-Antenne 13 das elektromagnetische Signal EHF , das von der Oberfläche des Füllgutes 3 reflektiert wird, empfangen. Anschließend wird das empfangene elektromagnetische Signal EHF über die Sende-/Empfangsweiche 12 einem Mischer 14 zugeführt und durch den Mischer 14 mit dem elektrischen Hochfrequenzsignal sHF gemischt. Wie in 3 angedeutet ist, kann das elektrische Hochfrequenzsignal sHF hierzu zwischen dem spannungsgesteuerten Oszillator 113 und der Sende-/Empfangsweiche 12, beispielsweise mittels eines entsprechenden Signalteilers, abgezweigt werden.
  • Durch das Mischen mit dem elektrischen Hochfrequenzsignal sHF wird, wie bei FMCW bekannt, ein Zwischenfrequenzsignal eZF gebildet. Aufgrund der sägezahnförmigen Frequenzänderung des elektrischen Hochfrequenzsignals sHF ändert sich die so genannte Differenzfrequenz des Zwischenfrequenzsignals eZF in etwa linear zum Abstand d zwischen dem Füllstandsmessgerät 1 und der Oberfläche des Füllgutes 3. Dementsprechend kann mittels Messung dieser Differenzfrequenz des Zwischenfrequenzsignals eZF der Füllstand L bestimmt werden. Erfolgen kann dies beispielsweise mittels der entsprechende ausgelegten Steuer-/Auswerte-Einheit 15 des Füllstandsmessgerätes 1, insbesondere durch Verarbeitung des Zwischenfrequenzsignals eZF mittels einer „Fast Fourier Transformation“.
  • Die anhand von 3 beschriebene Hochfrequenz-Erzeugungseinheit 11‘ nach dem Stand der Technik weist mehrere Charakteristika auf, die sich insbesondere bei der Füllstandsmessung nachteilig auswirken: Neben dem komplexen und somit störanfälligen Schaltungsaufbau besteht ein zentraler Nachteil darin, dass der Oszillator 113 einen vergleichsweise hohen Leistungsverbrauch und ein starkes Rauschen sowie eine starke Temperaturabhängigkeit aufweist. Ein hoher Leistungsverbrauch des Füllstandsmessgerätes 1 erschwert das Einhalten von Explosionsschutzvorschriften. Der nachteilige Effekt von Rauschen auf die Distanz- bzw. Füllstands-Messung ist, dass die Empfindlichkeit, mit der schlecht reflektierende Füllgüter 3 insbesondere bei weiten Entfernungen bzw. tiefem Füllstand L detektiert werden können, drastisch abnimmt. Dementsprechend wird hierdurch nicht nur das Auflösungsvermögen bzw. die Genauigkeit der Füllstandsmessung begrenzt, sondern es erhöht sich auch das Risiko, dass ein etwaiges Störecho vom Füllstandsmessgerät 1 fälschlicherweise als Füllstands-Echo interpretiert wird. Dies gefährdet nicht nur die Sicherheit im Umfeld des Behälters 2, sondern gegebenenfalls auch die Betriebs-Sicherheit in der gesamten Prozessanlage.
  • Daher wird eine erfindungsgemäße Hochfrequenz-Erzeugungseinheit 11 für ein FMCW-basiertes Füllstandsmessgerät 1 vorgeschlagen, die einen Aufbau aufweist, wie es in 4 gezeigt ist: Anstelle des rückgekoppelten Oszillators 113 basiert die erfindungsgemäße Hochfrequenz-Erzeugungseinheit 11 bei diesem Aufbau auf einem digitalen Schaltwerk 114. Das digitale Schaltwerk 114 dient in diesem Fall zur Erzeugung eines digitalen, periodischen Ausgangssignals sd und kann dementsprechend beispielsweise als ein Arbiträrgenerator (auch bekannt unter dem englischen Begriff „Arbitrary Waveform Generator“) oder ein nach der direkten digitalen Synthese arbeitender Schaltkreis realisiert sein. Im Sinne der Erfindung ist natürlich auch jeglicher vergleichbare Baustein mit adäquater Funktion einsetzbar. Über das digitale Schaltwerk 114 wird zudem die Frequenz fHF bzw. die sägezahnförmige Frequenzänderung des Hochfrequenzsignals sHF (und somit auch die im Mikrowellen-Bereich befindliche Frequenz des Sendesignals SHF ) mittels eines entsprechenden Steuersignals sf eingestellt. Die Taktung des digitalen Schaltwerks 114 erfolgt wiederum durch eine separate Takteinheit 111. Die Takteinheit 111 ist hierbei vorzugsweise so ausgelegt, um das Taktsignal sclock mit einer Taktfrequenz fclock zu erzeugen, die mindestens doppelt so hoch wie die Frequenz fHF des Ausgangssignals ist.
  • Zudem umfasst die erfindungsgemäße Hochfrequenz-Erzeugungseinheit 11 einen Digital-/Analog-Wandler 115, der das digitale Ausgangssignal sd des digitalen Schaltwerkes 114 in das gewünschte, analoge Hochfrequenzsignal sHF mit optimaler Weise rein sinusförmigem Verlauf wandelt. Dabei kann der Digital-/Analog-Wandler 115 ausgelegt sein, um das Hochfrequenzsignal sHF entweder als spannungsbasiertes- oder als strombasiertes Signal auszugeben.
  • Somit kann durch die erfindungsgemäße Hochfrequenz-Erzeugungseinheit 11 das elektrische Hochfrequenzsignal sHF im Vergleich zum Stand der Technik ohne einen spannungsgesteuerten Oszillator und mit wesentlich reduziertem Schaltungsaufwand realisiert werden. Darüber hinaus entfällt eine etwaige Zusatzschaltung zur Kompensation von Temperatureffekten. Durch das Entfallen eines Regelkreises ist mithilfe der erfindungsgemäßen Hochfrequenz-Erzeugungseinheit 11 zudem die Einstellung eines breiten Frequenzbandes Δf und einer hohen Wiederholrate r möglich, welches wiederum eine höhere Genauigkeit bei der Messung des Füllstandes L bewirkt. Ein weiterer Vorteil der erfindungsgemäßen Hochfrequenz-Erzeugungseinheit 11 besteht darin, dass die gesamte Schaltung oder zumindest die Takteinheit 111, das digitale Schaltwerk 114 und der Digital-/Analog-Wandler 115 potentiell sehr kompakt in einer einzigen intergierten Schaltung realisiert werden können. Hierzu könnte außerdem die Takteinheit 111 als akustischer Oberflächenresonator innerhalb der monolithischen Schaltung integriert werden.
  • Wie in 4 dargestellt ist, ist es optional möglich, das Hochfrequenzsignal sHF mittels eines entsprechenden Filters 116 zu filtern, um so jegliche Störfrequenzen aus dem Hochfrequenzsignal sHF auszufiltern. Hierfür muss der Filter 116 jedoch zumindest für die Frequenz fHF des Ausgangssignals sHF durchlässig sein. Dazu kann der Filter 116 beispielsweise als Tiefpass oder Bandpass ausgelegt werden.
  • Bezugszeichenliste
  • 1
    Füllstandsmessgerät
    2
    Behälter
    3
    Füllgut
    4
    Übergeordnete Einheit
    11, 11'
    Hochfrequenz-Erzeugungseinheit
    12
    Sende-/Empfangsweiche
    13
    Sende-/Empfangs-Antenne
    14
    Mischer
    15
    Steuer-/Auswerte-Einheit
    112
    Takteinheit
    113
    Rampengenerator
    114
    Spannungsgesteuerter Oszillator
    115
    Digitales Schaltwerk
    116
    Digital-/Analog-Wandler
    117
    Tiefpass
    EHF
    Reflektiertes elektromagnetisches Signal
    eZF
    Zwischenfrequenzsignal
    fHF
    Frequenz des Hochfrequenzsignals
    fclock
    Taktfrequenz des Taktsignals
    r
    Wiederholrate
    sf
    Steuersignal zur Steuerung der Frequenz
    SHF
    Elektromagnetisches Sendesignal
    sdc
    Gleichspannungswert
    SHF
    Hochfrequenzsignal
    Sclock
    Taktsignal
    Δf
    Frequenzband
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102013105 A1 [0005]

Claims (12)

  1. Hochfrequenz-Erzeugungseinheit für ein FMCW-Radar basiertes Füllstandsmessgerät (1), folgende Komponenten umfassend: - Eine Takteinheit (111), die ausgestaltet ist, um ein Taktsignal (sclock) mit einer vorbestimmten Taktfrequenz (fclock) zu erzeugen, - ein durch das Taktsignal (sclock) getaktetes, digitales Schaltwerk (114), welches ausgestaltet ist, um ein digitales, periodisches Ausgangssignal (Sd) zu erzeugen, - einen Digital-/Analog-Wandler (115), der das digitale Ausgangssignal (sd) des digitalen Schaltwerkes (114) in ein analoges Hochfrequenzsignal (sHF) wandelt.
  2. Hochfrequenz-Erzeugungseinheit nach Anspruch 1, wobei das digitale Schaltwerk (114) ausgestaltet ist, um das digitale Ausgangssignal (sd) mit einer veränderlichen Frequenz (fHF), insbesondere einer sich innerhalb eines vorbestimmten Frequenzbandes (Δf) linear ändernden Taktfrequenz (fHF), zu erzeugen.
  3. Hochfrequenz-Erzeugungseinheit nach Anspruch 1 oder 2, wobei das digitale Schaltwerk (114) so ausgelegt ist, dass die Frequenz (fHF) des Ausgangssignals (sd) maximal halb so hoch wie die Taktfrequenz (fclock) des Taktsignals (sclock) ist.
  4. Hochfrequenz-Erzeugungseinheit nach Anspruch 1, 2 oder 3, wobei das digitale Schaltwerk (114) ausgelegt ist, um das digitale Ausgangssignal (sd) mit einer Frequenz (fHF) von zumindest einem 1 GHz zu erzeugen.
  5. Hochfrequenz-Erzeugungseinheit nach einem der Ansprüche 1 bis 4, wobei das digitale Schaltwerk (114) als ein Arbiträrgenerator oder ein nach der direkten digitalen Synthese arbeitender Schaltkreis realisiert ist.
  6. Hochfrequenz-Erzeugungseinheit nach einem der Ansprüche 1 bis 5, wobei der Digital-/Analog-Wandler (115) ausgelegt ist, um das analoge Hochfrequenzsignal (sHF) als ein strombasiertes Signal oder als ein spannungsbasiertes Signal zu erzeugen.
  7. Hochfrequenz-Erzeugungseinheit nach einem der Ansprüche 1 bis 6, umfassend: - Einen Filter (116) der ausgestaltet ist, um das Hochfrequenzsignal (sSHF) zu filtern, wobei der Filter (116) zumindest für die Frequenz (fHF) des Ausgangssignals (sSHF) durchlässig ist.
  8. Hochfrequenz-Erzeugungseinheit nach Anspruch 7, wobei der Filter (116) als Tiefpass oder Bandpass ausgelegt ist.
  9. Hochfrequenz-Erzeugungseinheit nach einem der vorhergehenden Ansprüche, wobei zumindest die Takteinheit (111), das digitale Schaltwerk (114) und der Digital-/Analog-Wandler (115) als eine intergierte Schaltung aufgebaut sind.
  10. Hochfrequenz-Erzeugungseinheit nach Anspruch 9, wobei für den Fall, dass die integrierte Schaltung die Takteinheit (111) umfasst, die Takteinheit (111) als akustischer Oberflächenresonator realisiert ist.
  11. Hochfrequenz-Erzeugungseinheit nach einem der vorhergehenden Ansprüche, wobei die Takteinheit (111) mittels einer Phasenregelschleife mit einer Referenzquelle synchronisiert ist, wobei die Referenzquelle eine Referenzfrequenz aufweist, die gleich hoch ist oder einem ganzzahligen Teiler der Taktfrequenz (fclock) entspricht.
  12. FMCW-Radar basiertes Füllstandsmessgerät zur Messung eines Füllstandes (L) eines in einem Behälter (2) befindlichen Füllgutes (3), mit: - Einer Hochfrequenz-Erzeugungseinheit (11) nach einem der vorhergehenden Ansprüche, - einer Sende-/Empfangs-Antenne (13), die das analoge Hochfrequenzsignal (sSHF) als ein elektromagnetisches Sendesignal (sSHF) in Richtung des Füllgutes (3) aussendet und/oder das reflektierte Signal (EHF) nach Reflektion an der Oberfläche des Füllgutes (3) empfängt, - einer Steuer-/Auswerte-Einheit (15), die mittels einer Frequenzdifferenz zwischen dem elektromagnetisches Sendesignal (sSHF) und dem reflektierten Signal (EHF) den Füllstand (L) bestimmt.
DE102017111820.9A 2017-05-30 2017-05-30 Hochfrequenz-Erzeugungseinheit Withdrawn DE102017111820A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102017111820.9A DE102017111820A1 (de) 2017-05-30 2017-05-30 Hochfrequenz-Erzeugungseinheit
EP18717034.5A EP3631492A1 (de) 2017-05-30 2018-04-10 Hochfrequenz-erzeugungseinheit
PCT/EP2018/059128 WO2018219534A1 (de) 2017-05-30 2018-04-10 Hochfrequenz-erzeugungseinheit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017111820.9A DE102017111820A1 (de) 2017-05-30 2017-05-30 Hochfrequenz-Erzeugungseinheit

Publications (1)

Publication Number Publication Date
DE102017111820A1 true DE102017111820A1 (de) 2018-12-06

Family

ID=61952719

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017111820.9A Withdrawn DE102017111820A1 (de) 2017-05-30 2017-05-30 Hochfrequenz-Erzeugungseinheit

Country Status (3)

Country Link
EP (1) EP3631492A1 (de)
DE (1) DE102017111820A1 (de)
WO (1) WO2018219534A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2350004A (en) * 1999-02-17 2000-11-15 Motherwell Control Systems Ltd Frequency swept radar gauge
DE10201310A1 (de) 2002-01-15 2003-07-24 Siemens Ag Verfahren und System zur Datenumsetzung
CN200979438Y (zh) * 2006-11-28 2007-11-21 戴奉周 一种数字收发的多频连续波雷达液位仪
DE102009032811A1 (de) * 2009-07-10 2011-02-17 KROHNE Meßtechnik GmbH & Co. KG Frequenzsynthesizer für ein Füllstandsmessgerät und Füllstandsmessgerät
KR101238778B1 (ko) * 2011-10-25 2013-03-04 주식회사 파나시아 직접 디지털 합성기를 이용하여 직선성과 정밀성을 향상시킨 레이더 레벨 측정 시스템
JP2013253936A (ja) * 2012-06-08 2013-12-19 Musashino Kiki Kk 液位測定装置およびそのvcoキャリブレイション方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050329A1 (de) * 2008-10-10 2010-04-15 Endress + Hauser Gmbh + Co. Kg Mit Mikrowellen arbeitendes Füllstandsmessgerät
US8629799B2 (en) * 2011-03-30 2014-01-14 Sandia Research Corporation Surface penetrating radar system and target zone investigation methodology
DE102013105019A1 (de) 2013-05-16 2015-02-19 Endress + Hauser Gmbh + Co. Kg Füllstandsmessung mit verbesserter Entfernungsbestimmmung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2350004A (en) * 1999-02-17 2000-11-15 Motherwell Control Systems Ltd Frequency swept radar gauge
DE10201310A1 (de) 2002-01-15 2003-07-24 Siemens Ag Verfahren und System zur Datenumsetzung
CN200979438Y (zh) * 2006-11-28 2007-11-21 戴奉周 一种数字收发的多频连续波雷达液位仪
DE102009032811A1 (de) * 2009-07-10 2011-02-17 KROHNE Meßtechnik GmbH & Co. KG Frequenzsynthesizer für ein Füllstandsmessgerät und Füllstandsmessgerät
KR101238778B1 (ko) * 2011-10-25 2013-03-04 주식회사 파나시아 직접 디지털 합성기를 이용하여 직선성과 정밀성을 향상시킨 레이더 레벨 측정 시스템
JP2013253936A (ja) * 2012-06-08 2013-12-19 Musashino Kiki Kk 液位測定装置およびそのvcoキャリブレイション方法

Also Published As

Publication number Publication date
EP3631492A1 (de) 2020-04-08
WO2018219534A1 (de) 2018-12-06

Similar Documents

Publication Publication Date Title
EP1877738B1 (de) Laufzeitmessverfahren zur ermittlung einer distanz
EP3084464B1 (de) Prf-frequenzgenerator für ein füllstandsmessgerät
EP2483706B1 (de) Radarsensor mit zwei oszillatoren, zwei i/q-sendemischern und zwei i/q-empfangsmischern
EP3418700A1 (de) Füllstandradargerät mit automatisierter frequenzanpassung
EP3308110B1 (de) Verfahren und vorrichtung zur überprüfung der funktionsfähigkeit eines radar-basierten füllstandsmessgeräts
DE102005044724A1 (de) Laufzeitmessverfahren zur Ermittlung der Distanz
DE102015106204A1 (de) Frequenzgenerator mit zwei spannungsgesteuerten Oszillatoren
EP2440949B1 (de) Verfahren und vorrichtung zur messung einer entfernungsänderung
DE102013108489B4 (de) Frequenzmodulierter Dauerstrich-Radarfüllstandsanzeiger
WO2018127356A1 (de) Verfahren zur detektion eines fehlerzustandes an einem fmcw-basierten füllstandsmessgerät
DE102015120362A1 (de) Verfahren zur Radar-basierten Messung des Füllstands
EP3418699B1 (de) Füllstandradargerät mit gesteuerter sendeleistung
WO2006000512A1 (de) Verringerung der einschwingzeit und kompensation von phasenfehlern von auf phasenregelkreisen basierenden frequenzsynthesizern
DE102017117900A1 (de) Hochfrequenz-Signalerzeugungseinheit
DE102018132739B4 (de) Verfahren zur FMCW-basierten Abstandsmessung
DE102017111820A1 (de) Hochfrequenz-Erzeugungseinheit
DE202016008416U1 (de) Hochfrequenz-Signalerzeugungseinheit zur Erzeugung von rauscharmen Hochfrequenz-Signalen
DE102018106724A1 (de) Verfahren zur FMCW-basierten Abstandsmessung in Hohlleitern
DE102019133245B4 (de) Füllstandsmessgerät und Verfahren zur Radar-basierten Messung eines Füllstands
DE102018119976A1 (de) Füllstandsmessgerät
EP3746753A1 (de) Verfahren zur detektion von potentiellen fehlerzuständen an einem fmcw-basierten füllstandsmessgerät
DE102010011128B4 (de) Frequenzsynthesizer
WO2022100915A1 (de) Füllstandsmessgerät
DE102018123429A1 (de) Füllstandsmessgerät
DE102006031351A1 (de) Vorrichtung und Verfahren zum Messen einer Phasenabweichung

Legal Events

Date Code Title Description
R163 Identified publications notified
R082 Change of representative

Representative=s name: HAHN, CHRISTIAN, DIPL.-PHYS. DR.RER.NAT., DE

Representative=s name: ANDRES, ANGELIKA, DIPL.-PHYS., DE

R082 Change of representative

Representative=s name: ANDRES, ANGELIKA, DIPL.-PHYS., DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee