DE102017002966A1 - Calcium organic compound and process for its preparation - Google Patents

Calcium organic compound and process for its preparation Download PDF

Info

Publication number
DE102017002966A1
DE102017002966A1 DE102017002966.0A DE102017002966A DE102017002966A1 DE 102017002966 A1 DE102017002966 A1 DE 102017002966A1 DE 102017002966 A DE102017002966 A DE 102017002966A DE 102017002966 A1 DE102017002966 A1 DE 102017002966A1
Authority
DE
Germany
Prior art keywords
calcium
bis
trimethylsilylmethanide
donor
trimethylsilylmethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102017002966.0A
Other languages
German (de)
Inventor
Matthias Westerhausen
Sven Krieck
Alexander Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friedrich Schiller Universtaet Jena FSU
Original Assignee
Friedrich Schiller Universtaet Jena FSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Schiller Universtaet Jena FSU filed Critical Friedrich Schiller Universtaet Jena FSU
Priority to DE102017002966.0A priority Critical patent/DE102017002966A1/en
Publication of DE102017002966A1 publication Critical patent/DE102017002966A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/04Calcium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1608Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes the ligands containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/12Saturated oxiranes characterised by the catalysts used containing organo-metallic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/14Other (co) polymerisation, e.g. of lactides, epoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/324Cyclisations via conversion of C-C multiple to single or less multiple bonds, e.g. cycloadditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/23Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/122Metal aryl or alkyl compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

Die Erfindung betrifft eine calciumorganische Verbindung mit gebundenen Trimethylsilylmethyl-Gruppen und deren Synthese.
Aufgabe war es, eine in organischen Lösungsmitteln gut lösliche calciumorganische Verbindung zu schaffen, die sich durch hohe Metallierungsstärke auszeichnet und mit möglichst geringem Aufwand in großen Mengen und mit guten Ausbeuten herstellbar ist.
Erfindungsgemäß werden Moleküle gemäß der allgemeinen Formel I vorgeschlagen:

Figure DE102017002966A1_0001
mit:
R = Alkyl, Aryl,
D = Donor (jegliche zur Koordination fähige Verbindung, sogenannte aprotische Lewis-Basen wie beispielsweise Ether und/oder Amine),
m = Zahl der Donor-Moleküle (üblicherweise 0 bis 4),
n = jegliches Vielfaches des gezeigten Komplexes (Aggregationsgrad), üblicherweise 1 bis 6 oder ein Aggregationspolymer (n = ∞).The invention relates to a calcium-organic compound having bound trimethylsilylmethyl groups and their synthesis.
Task was to create a readily soluble in organic solvents calcium-organic compound, which is characterized by high metallation and can be produced with the least possible effort in large quantities and with good yields.
According to the invention, molecules according to the general formula I are proposed:
Figure DE102017002966A1_0001
With:
R = alkyl, aryl,
D = donor (any compound capable of coordination, so-called aprotic Lewis bases such as ethers and / or amines),
m = number of donor molecules (usually 0 to 4),
n = any multiple of the complex shown (degree of aggregation), usually 1 to 6 or an aggregation polymer (n = ∞).

Description

Die Erfindung betrifft eine calciumorganische Verbindung mit gebundenen Trimethylsilylmethyl-Gruppen und deren Synthese.The invention relates to a calcium-organic compound having bound trimethylsilylmethyl groups and their synthesis.

Aus dem Stand der Technik sind einige calciumorganische Verbindungen und Synthesewege bekannt.Some calcium-organic compounds and synthetic routes are known from the prior art.

Die Reaktion von Calcium-bis[bis(trimethylsilyl)amid] mit Tris(trimethylsilylmethyl)alan führt zur Bildung des dimeren Calcium-bis(trimethylsilyl)amid-tetrakis(trimethylsilylmethyl)aluminates mit verbrückend zwischen Calcium und Aluminium auftretenden Trimethylsilylmethyl-Gruppen; eine reine und Aluminium-freie Organocalcium-Verbindung lässt sich hieraus nicht isolieren ( M. Westerhausen, C. Birg, H. Nöth, J. Knizek, T. Seifert: Formation of Calcium-Carbon Bonds From a Lewis Acid-Base Reaction of Calcium Bis[bis(trimethylsilyl)amide] and Tris(trimethylsilylmethyl)alane, European Journal of Inorganic Chemistry, 1999, 2209-2214 ).The reaction of calcium bis [bis (trimethylsilyl) amide] with tris (trimethylsilylmethyl) alane results in the formation of dimeric calcium bis (trimethylsilyl) amide tetrakis (trimethylsilylmethyl) aluminate with trimethylsilylmethyl groups bridging between calcium and aluminum; a pure and aluminum-free organocalcium compound can not be isolated from this ( M. Westerhausen, C. Birg, H. Nöth, J. Knizek, T. Seifert: Formation of Calcium-Carbon Bonds From a Lewis Acid-Base Reaction of Calcium bis [bis (trimethylsilyl) amide] and tris (trimethylsilylmethyl) alane, European Journal of Inorganic Chemistry, 1999, 2209-2214 ).

Die Transmetallierung von Bis(trimethylsilylmethyl)zink mit Calciummetall in THF führt zu Bildung von Bis(tetrahydrofuran)calcium-bis[tris(trimethylsilylmethyl)zinkat], aus der sich eine reine Organocalcium-Verbindung ebenfalls nicht herstellen lässt ( M. Westerhausen, C. Gückel, H. Piotrowski, M. Vogt: Metallierung von Triisopropylsilylarsan durch Bis(tetrahydrofuran)calcium-bis[tris(trimethylsilylmethyl)zinkat], Zeitschrift für anorganische und allgemeine Chemie, 2002, 628, 735-740 ). Auch in dieser Verbindung treten die Trimethylsilylmethyl-Reste in verbrückender Position auf, eine weitere Transmetallierung zu Bis(trimethylsilylmethyl)calcium gelingt nicht.The transmetalation of bis (trimethylsilylmethyl) zinc with calcium metal in THF leads to the formation of bis (tetrahydrofuran) calcium bis [tris (trimethylsilylmethyl) zincate], from which a pure organocalcium compound can likewise not be prepared ( M. Westerhausen, C. Gückel, H. Piotrowski, M. Vogt: Metallation of triisopropylsilylarsane by bis (tetrahydrofuran) calcium bis [tris (trimethylsilylmethyl) zincate], Journal of Inorganic and General Chemistry, 2002, 628, 735-740 ). Also in this compound, the trimethylsilylmethyl radicals occur in bridging position, a further transmetalation to bis (trimethylsilylmethyl) calcium does not succeed.

Durch die Reaktion von aktiviertem Calciummetall und Trimethylsilylmethyliodid/bromid in THF, gefolgt von einem Lösungsmittelwechsel zu Tetrahydropyran (THP), konnten erfolgreich Tetrakis(tetrahydropyran)calcium-(trimethylsilylmethanid)-bromid bzw. -iodid dargestellt werden. Im Gegensatz zu den homologen Organomagnesium-halogeniden (Grignard-Reagenzien) ist hieraus durch Lösungsmittelwechsel nicht einfach eine Halogenid-freie Organocalcium-Verbindung zugänglich (1. M. Köhler, A. Koch, H. Görls, M. Westerhausen: Trimethylsilylmethylcalcium Iodide, an Easily Accessible Grignard-Type Reagent of a Heavy Alkaline Earth Metal, Organometallics, 2016, 35, 242-248 ; 2. M. Westerhausen, A. Koch, H. Görls, S. Krieck: Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity, Chemistry - A European Journal, 2017, 23, 1456-1483 ).The reaction of activated calcium metal and trimethylsilylmethyl iodide / bromide in THF, followed by a solvent switch to tetrahydropyran (THP), has successfully demonstrated tetrakis (tetrahydropyran) calcium (trimethylsilylmethanide) bromide or iodide. In contrast to the homologous organomagnesium halides (Grignard reagents), it is not easy to obtain a halide-free organocalcium compound by solvent exchange (1. M. Köhler, A. Koch, H. Görls, M. Westerhausen: Trimethylsilylmethylcalcium Iodides, to Easily Accessible Grignard Type Reagents of a Heavy Alkaline Earth Metal, Organometallics, 2016, 35, 242-248 ; Second M. Westerhausen, A. Koch, H. Görls, S. Krieck: Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity, Chemistry - A European Journal, 2017, 23, 1456-1483 ).

Es sind bereits calciumorganische Verbindungen mit den sterisch deutlich anspruchsvolleren Bis(trimethylsilyl)methyl- und Tris(trimethylsilyl)methyl-Gruppen bekannt, die wegen sterischen Abschirmung der Ca-C-Bindung und wegen elektronischer Rückbindung vom Carbanion zur Trimethylsilylgruppe eine nur geringe chemische Reaktivität aufweisen. Außerdem ist für deren Herstellung ein umständliches und unkomfortables Verfahren erforderlich.There are already known calcium organic compounds with the sterically much more demanding bis (trimethylsilyl) methyl and tris (trimethylsilyl) methyl groups, which have only low chemical reactivity because of steric shielding of the Ca-C bond and because of electronic backbonding of the carbanion to the trimethylsilyl group , In addition, a cumbersome and uncomfortable process is required for their production.

Kokondensation von Calciumdampf und Bis(trimethylsilyl)methylbromid in Tetrahydrofuran (THF) und anschließender Lösungsmittelwechsel zu 1,4-Dioxan erlauben die Isolierung von Bis(dioxan)calcium-bis[bis(trimethylsilyl)methanid].Dieses Verfahren ist zu aufwändig und ungeeignet, um größere Mengen von Calciummethaniden herzustellen (F. G. N. Cloke, P. B. Hitchcock, M.F. Lappert, G. A. Lawless, B. Royo: Lipophilic strontium and calcium alkyls, amides and phenoxides; X-ray structures of the crystalline square-planar [{trans-Sr(NR'2)2(µ-1,4-dioxane)}] and tetrahedral [CaR2(1,4-dioxane)2]; R'= SiMe3, R = CH(SiMe3)2], Journal of the Chemical Society, Chemical Communications, 1991, 724-726).Cocond condensation of calcium vapor and bis (trimethylsilyl) methyl bromide in tetrahydrofuran (THF) followed by a solvent switch to 1,4-dioxane allows isolation of bis (dioxane) calcium bis [bis (trimethylsilyl) methanide]. This process is too cumbersome and unsuitable. to prepare larger quantities of calcium methanides (FGN Cloke, PB Hitchcock, MF Lappert, GA Lawless, B. Royo: Lipophilic strontium and calcium alkyls, amides and phenoxides; X-ray structures of the crystalline square-planar [{trans-Sr (NR ' 2 ) 2 (μ-1,4-dioxanes)} ] and tetrahedral [CaR 2 (1,4-dioxanes) 2 ]; R' = SiMe 3 , R = CH (SiMe 3 ) 2 ], Journal of the Chemical Society, Chemical Communications, 1991, 724-726).

Bis(tetrahydrofuran)calcium-bis[bis(trimethylsilyl)methanid] ist ebenfalls mit Hilfe der Salzmetathese in THF darstellbar, indem Kalium-bis(trimethylsilyl)methanid mit Calciumhalogenid umgesetzt wird ( M. R. Crimmin, A. G. M. Barrett, M. S. Hill, D. J. MacDougall, M. F. Mahon, P. A. Procopiou: Bis(trimethylsilyl)methyl Derivatives of Calcium, Strontium and Barium: Potentially Useful Dialkyls of the Heavy Alkaline Earth Elements, Chemistry-A European Journal, 2008, 14, 11292-11295 ).Bis (tetrahydrofuran) calcium bis [bis (trimethylsilyl) methanide] can also be prepared by means of salt metathesis in THF by reacting potassium bis (trimethylsilyl) methanide with calcium halide ( MR Crimmin, AGM Barrett, MS Hill, DJ MacDougall, MF Mahon, PA Procopiou: Bis (trimethylsilyl) methyl Derivatives of Calcium, Strontium and Barium: Potentially Useful Dialkyls of the Heavy Alkaline Earth Elements, Chemistry-A European Journal, 2008, 14 , 11292-11295 ).

Diese Methode ist jedoch nicht auf die Herstellung von reinem Calcium-bis(trimethylsilylmethanid) übertragbar. Die Durchführung der Synthese in Benzol statt in THF führt zur Bildung des lösungsmittelfreien Kalium-tris[bis(trimethylsilyl)methyl]-calciates ( P. B. Hitchcock, A. V. Khvostov, M. F. Lappert: Synthesis and structures of crystalline bis(trimethylsilyl)methanido complexes of potassium, calcium and ytterbium, Journal of Organometallic Chemistry, 2002, 663, 263-268 ).However, this method is not transferable to the production of pure calcium bis (trimethylsilylmethanide). Carrying out the synthesis in benzene instead of in THF leads to the formation of the solvent-free potassium tris [bis (trimethylsilyl) methyl] -calciate ( PB Hitchcock, AV Khvostov, MF Lappert: Synthesis and structures of crystalline bis (trimethylsilyl) methanido complexes of potassium, calcium and ytterbium, Journal of Organometallic Chemistry, 2002, 663, 263-268 ).

Mehreren Arbeitsgruppen gelang lediglich die Darstellung heteroleptischer und sterisch anspruchsvoller Calcium-bis(trimethylsilyl)methanid-Verbindungen mit Hilfe der oben genannten Synthesestrategien, aber es gibt keine Beispiele für die Herstellung von Calcium-Verbindungen mit dem kleineren Trimethylsilylmethyl-Rest (1. B. Liu, T. Roisnel, J.-F. Carpentier, Y. Sarazin: Heteroleptic Alkyl and Amide Iminoanilide Alkaline Earth and Divalent Rare Earth Complexes for the Catalysis of Hydrophosphination and (Cyclo)Hydroamination Reactions, Chemistry - A European Journal, 2013 , 19, 13445-13462; 2. P. Bellham, M. S. Hill, G. Kociok-Köhn, D. J. Liptrot: Alkaline earth alkyl insertion chemistry of in situ generated aminoboranes, Dalton Transactions, 2013 , 42, 737-745; 3. M. Arrowsmith, M. S. Hill, G. Kociok-Köhn: Dearomatization and C-H Deprotonation with Heavier Group 2 Alkyls: Does Size Matter? Organometallics, 2010, 29(19), 4203-4206 ; 4. M. R. Crimmin, A. G. M. Barrett, M. S. Hill, D. J. MacDougall, M. F. Mahon, P. A. Procopiou: β-Diketiminate C-H activation with heavier group 2 alkyls, Dalton Transactions, 2009, 9715-9717 ; 5. S. C. Sockwell, T. P. Hanusa, J. C. Huffman: Formation and reactions of mono- and bis(peralkylcyclopentadienyl) complexes of calcium and barium. The X-ray crystal structure of [cyclic][(Me4EtC5)Ca(µ-NSiMe2CH2CH2SiMe2)]2, Journal of the American Chemical Society, 1992, 114(9), 3393-3399 ).Several groups have succeeded only in the preparation of heteroleptic and sterically demanding calcium bis (trimethylsilyl) methanide compounds using the above-mentioned synthetic strategies, but there are no examples of the preparation of calcium compounds with the smaller trimethylsilylmethyl radical (1. Liu, T. Roisnel, J.-F. Carpentier, Y. Sarazin: Heteroleptic Alkyl and Amides Iminoanilides Alkaline Earth and Divalent Rare Earth Complexes for the Catalysis of Hydrophosphination and (Cyclo) Hydroamination Reactions, Chemistry - A European Journal, 2013 , 19, 13445-13462; Second P. Bellham, MS Hill, G. Kociok-Köhn, DJ Liptrot: Alkaline earth alkyl insertion chemistry of in situ generated aminoboranes, Dalton Transactions, 2013 , 42, 737-745; Third M. Arrowsmith, MS Hill, G. Kociok-Kohn: Dearomatization and CH Deprotonation with Heavy Group 2 Alkyls: Does Size Matter? Organometallics, 2010, 29 (19), 4203-4206 ; 4th MR Crimmin, AGM Barrett, MS Hill, DJ MacDougall, MF Mahon, PA Procopiou: β-Diketiminate CH activation with heavier group 2 alkyls, Dalton Transactions, 2009, 9715-9717 ; 5th SC Sockwell, TP Hanusa, JC Huffman: Formation and reactions of mono- and bis (peralkylcyclopentadienyl) complexes of calcium and barium. The X-ray crystal structure of [cyclic] [(Me 4 EtC 5 ) Ca (μ-NSiMe 2 CH 2 CH 2 SiMe 2 )] 2 , Journal of the American Chemical Society, 1992, 114 (9), 3393-3399 ).

Weiterhin ist donorfreies Calcium-bis[tris(trimethylsilyl)methanid] bekannt, welches mittels der Salzmetathese aus dem entsprechenden Alkylkalium und Calciumdiiodid hergestellt wird ( C. Eaborn, P. B. Hitchcock: The first structurally characterised solvent-free σ-bonded diorganocalcium, Ca[C(SiMe3)3]2, Chemical Communications, 1997, 1961-1962 ).Furthermore, donor-free calcium bis [tris (trimethylsilyl) methanide] is known, which is prepared by means of salt metathesis from the corresponding alkylpotassium and calcium diiodide ( C. Eaborn, PB Hitchcock: The first structurally characterized solvent-free σ-bonded diorganocalcium, Ca [C (SiMe 3 ) 3 ] 2 , Chemical Communications, 1997, 1961-1962 ).

Neben Bis- und Tris(trimethylsilyl)methyl- Verbindungen des Calciums sind (Trimethylsilyl)(phenyl)methanide bekannt, welche aus den entsprechenden Benzylkaliumverbindungen und Calciumdiiodid dargestellt werden können. Hier nutzt man die Stabilisierung der Verbindung durch Delokalisierung der negativen Ladung in die Phenylgruppe, wodurch die Reaktivität gesenkt und Stabilität erhöht werden (1. S. Harder, F. Feil, A. Weeber: Structure of a Benzylcalcium Diastereomer: An Initiator for the Anionic Polymerization of Styrene, Organometallics, 2001, 20(6), 1044-1046 ; 2. F. Feil, S. Harder: a,a-Bis(trimethylsilyl)-Substituted Benzyl Complexes of Potassium and Calcium, Organometallics, 2000, 19(24), 5010-5015 ).In addition to bis- and tris (trimethylsilyl) methyl compounds of calcium, (trimethylsilyl) (phenyl) methanides are known, which can be prepared from the corresponding benzylpotassium compounds and calcium diiodide. Here one uses the stabilization of the compound by delocalization of the negative charge into the phenyl group, whereby the reactivity is lowered and stability increased (1. S. Harder, F. Feil, A. Weeber: Structure of a Benzyl Calcium Diastereomer: An Initiator for the Anionic Polymerization of Styrene, Organometallics, 2001, 20 (6), 1044-1046 ; Second F. Feil, S. Harder: a, a-bis (trimethylsilyl) -substituted Benzyl Complexes of Potassium and Calcium, Organometallics, 2000, 19 (24), 5010-5015 ).

Komplexe mit einem Trimethylsilylmethylcalcium-Grundkörper sind bisher lediglich in heterobimetallischen Verbindungen (1. M. Westerhausen, C. Gückel, H. Piotrowski, M. Vogt: Metallierung von Triisopropylsilylarsan durch Bis(tetrahydrofuran)calcium-bis[tris(trimethylsilylmethyl)zinkat], Zeitschrift für anorganische und allgemeine Chemie, 2002, 628, 735-740 ; 2. M. Westerhausen, C. Birg, H. Nöth, J. Knizek, T. Seifert: Formation of Calcium-Carbon Bonds From a Lewis Acid-Base Reaction of Calcium Bis[bis(trimethylsilyl)amide] and Tris(trimethylsilylmethyl)alane, European Journal of Inorganic Chemistry, 1999, 2209-2214 ) und heteroleptischen Trimethylsilylmethylcalcium-halogeniden bekannt, allerdings kann man aus diesen Derivaten kein Dialkylcalcium-Derivat freisetzen (1. M. Köhler, A. Koch, H. Görls, M. Westerhausen: Trimethylsilylmethylcalcium Iodide, an Easily Accessible Grignard-Type Reagent of a Heavy Alkaline Earth Metal, Organometallics, 2016, 35, 242-248 ; 2. M. Westerhausen, A. Koch, H. Görls, S. Krieck: Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity, Chemistry - A European Journal, 2017, 23, 1456-1483 ). Auch die Umsetzung von Calcium-bis(alkoholaten) des Typs Ca(OR)2 mit Triethylalan in Toluol bei 56 °C führt zur Bildung einer heterobimetallischen Verbindung des Typs CaEt2·xAl(OR)3 (x = 2/3 oder 0,32), aus der kein Diethylcalcium freigesetzt werden kann ( T. Iwao, S. Oosaka, T. Sakaki, T. Nishida: Preparation of Organocalcium Complexes, Jpn. Kokai Tokkyo Koho, JP 06116277 A 19940426, 1994 ).Complexes with a Trimethylsilylmethylcalcium basic body are so far only in heterobimetallic compounds (1. M. Westerhausen, C. Gückel, H. Piotrowski, M. Vogt: Metallation of triisopropylsilylarsane by bis (tetrahydrofuran) calcium bis [tris (trimethylsilylmethyl) zincate], Journal of Inorganic and General Chemistry, 2002, 628, 735-740 ; Second M. Westerhausen, C. Birg, H. Nöth, J. Knizek, T. Seifert: Formation of Calcium-Carbon Bonds From a Lewis Acid-Base Reaction of Calcium bis [bis (trimethylsilyl) amide] and tris (trimethylsilylmethyl) alane, European Journal of Inorganic Chemistry, 1999, 2209-2214 ) and heteroleptic trimethylsilylmethylcalcium halides, but one can not release any dialkylcalcium derivative from these derivatives (1. M. Köhler, A. Koch, H. Görls, M. Westerhausen: Trimethylsilylmethylcalcium Iodides, to Easily Accessible Grignard Type Reagents of a Heavy Alkaline Earth Metal, Organometallics, 2016, 35, 242-248 ; Second M. Westerhausen, A. Koch, H. Görls, S. Krieck: Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity, Chemistry - A European Journal, 2017, 23, 1456-1483 ). The reaction of calcium bis (alcoholates) of the type Ca (OR) 2 with triethylalan in toluene at 56 ° C. leads to the formation of a heterobimetallic compound of the type CaEt 2 .xAl (OR) 3 (x = 2/3 or 0, 32), from which no diethyl calcium can be released ( T. Iwao, S. Oosaka, T. Sakaki, T. Nishida: Preparation of Organocalcium Complexes, Jpn. Kokai Tokkyo Koho, JP 06116277 A 19940426, 1994 ).

Diarylcalcium-Verbindungen lassen sich nur mit sehr schlechten isolierten Ausbeuten und aufwändig durch Kühlen auf sehr niedrige Temperaturen (ca. -90 °C) durch Lösungsmittelwechsel aus den Arylcalcium-halogeniden darstellen ( R. Fischer, M. Gärtner, H. Görls, L. Yu, M. Reiher, M. Westerhausen: THF Solvates of Extremely Soluble Bis(2,4,6-trimethylphenyl)calcium and Tris(2,6-dimethoxyphenyl)dicalcium Iodide, Angewandte Chemie, 2007, 119, 1642-1647 ; Angewandte Chemie International Edition, 2007, 46, 1618-1623:). Deswegen wird Arylcalcium-halogenid mit Kalium-tert-butanolat umgesetzt. Durch Dismutierung der dann intermediär gebildeten Verbindung Arylcalcium-tert-butanolat bilden sich Diarylcalcium und unlösliches Calcium-bis(tert-butanolat) ( J. Langer, M. Köhler, H. Görls, M. Westerhausen: Halide-Free Diarylcalcium Complexes - Syntheses, Structures and Stability, Chemistry - A European Journal, 2014, 20, 3154-3161 ). Diese bewährten Verfahren zur Synthese von Diarylcalcium lassen sich wegen Nebenreaktionen und/oder sehr schlechten Ausbeuten nicht einfach auf die Synthese von Dialkylcalcium mit kleinen Alkylgruppen wie Trimethylsilylmethyl übertragen.Diaryl calcium compounds can be prepared only with very poor isolated yields and consuming by cooling to very low temperatures (about -90 ° C) by solvent exchange from the Arylcalcium halides ( R. Fischer, M. Gärtner, H. Görls, L. Yu, M. Reiher, M. Westerhausen: THF Solvates of Extremely Soluble Bis (2,4,6-trimethylphenyl) calcium and tris (2,6-dimethoxyphenyl) dicalcium Iodide, Angewandte Chemie, 2007, 119, 1642-1647 ; Angewandte Chemie International Edition, 2007, 46, 1618-1623 :). Therefore, aryl calcium halide is reacted with potassium tert-butoxide. Dismutation of the intermediate compound aryl calcium tert-butoxide yields diaryl calcium and insoluble calcium bis (tert-butoxide) ( J. Langer, M. Köhler, H. Görls, M. Westerhausen: Halide-Free Diarylcalcium Complexes - Syntheses, Structures and Stability, Chemistry - A European Journal, 2014, 20, 3154-3161 ). These best practices for the synthesis of diaryl calcium are not readily transferable to the synthesis of dialkyl calcium with small alkyl groups such as trimethylsilylmethyl because of side reactions and / or very poor yields.

Zusammenfassend lässt sich feststellen, dass die bisher bekannten Calcium-methanide mindestens eines der folgenden Charakteristika aufweisen:

  1. 1) Die Methanid-Gruppen weisen mindestens zwei Substituenten auf, wodurch die Metallierungsstärke reduziert wird, aber eine Löslichkeit in unpolaren Lösungsmitteln erreicht wird.
  2. 2) Es sind nur heterobimetallische Verbindungen mit der kleinen Trimethylsilylmethyl-Gruppe bekannt (Ca/Al; Ca/Zn). Die Anwesenheit des zweiten (elektronegativeren) Metalls führt zu einer deutlichen Reaktivitätsänderung (-erniedrigung) dieser metallorganischen Komplexe.
  3. 3) Aufwändige Prozesse (Salzmetathese, Kokondensation, Transmetallierung) sind bisher notwendig, um Alkylcalcium-Verbindungen darzustellen.
  4. 4) Die einzige rein calciumorganische Verbindung, die eine Trimethylsilylmethyl-Gruppe enthält, ist Trimethylsilylmethylcalcium-iodid/bromid, das aber in unpolaren Lösungsmitteln unlöslich ist.
In summary, it can be stated that the previously known calcium methanides have at least one of the following characteristics:
  1. 1) The methanide groups have at least two substituents, which reduces the metallation strength but achieves solubility in nonpolar solvents.
  2. 2) Only heterobimetallic compounds with the small trimethylsilylmethyl group are known (Ca / Al, Ca / Zn). The presence of the second (more electronegative) metal leads to a significant change in reactivity (decrease) of these organometallic complexes.
  3. 3) Elaborate processes (salt metathesis, coccondensation, transmetalation) have been required to date to produce alkylcalcium compounds.
  4. 4) The only purely organo-calcium compound containing a trimethylsilylmethyl group is trimethylsilylmethylcalcium iodide / bromide, which, however, is insoluble in nonpolar solvents.

Der Erfindung liegt die Aufgabe zu Grunde, eine in organischen Lösungsmitteln gut lösliche calciumorganische Verbindung zu schaffen, die sich durch hohe Metallierungsstärke auszeichnet und mit möglichst geringem Aufwand in großen Mengen und mit guten Ausbeuten herstellbar ist.The invention is based on the object to provide a readily soluble in organic solvents calcium organic compound, which is characterized by high metallation and can be produced with the least possible effort in large quantities and with good yields.

Es werden calciumorganische Verbindungen mit der erfindungsgemäßen allgemeinen Formel I vorgeschlagen:

Figure DE102017002966A1_0002
mit:

  • R = Alkyl und/oder Aryl
  • D = Donor (jegliche zur Koordination fähige Verbindung, sogenannte aprotische Lewis-Basen wie beispielsweise Ether und/oder Amine)
  • m = Zahl der Donor-Moleküle (üblicherweise 0 bis 4)
  • n = jegliches Vielfaches des gezeigten Komplexes (Aggregationsgrad), üblicherweise 1 bis 6 oder ein Aggregationspolymer (n = ∞)
Calcium organic compounds with the general formula I according to the invention are proposed:
Figure DE102017002966A1_0002
With:
  • R = alkyl and / or aryl
  • D = donor (any compound capable of coordination, so-called aprotic Lewis bases such as ethers and / or amines)
  • m = number of donor molecules (usually 0 to 4)
  • n = any multiple of the complex shown (degree of aggregation), usually 1 to 6 or an aggregation polymer (n = ∞)

Mit der vorgenannten Verbindung wird eine in Kohlenwasserstoffen lösliche calciumorganische Verbindung geschaffen, welche bedingt durch die sterisch wenig abschirmenden Trimethylsilylmethyl-Gruppen eine enorme Metallierungsstärke und Reaktivität aufweist. So lassen sich beispielsweise substituierte Aromaten leicht, schnell und quantitativ metallieren. Als Lösungsmittel werden bevorzugt unpolare, aromatische und/oder aliphatische Kohlenwasserstoffe verstanden.With the abovementioned compound, a calcium-organic compound soluble in hydrocarbons is created which, owing to the sterically less shielding trimethylsilylmethyl groups, has a tremendous metallation strength and reactivity. For example, substituted aromatics can be easily, quickly and quantitatively metallated. The solvents are preferably understood to be nonpolar, aromatic and / or aliphatic hydrocarbons.

Die Koordinationssphäre am Calcium kann durch zusätzliche Lewis-Basen (hier als Donor bezeichnet) abgesättigt werden, so dass Verbindungen des Typus [(Donor)Ca(CH2SiMe3)2] (Donor = jegliche zur Koordination fähige Verbindung, sogenannte aprotische Lewis-Base) sowie dessen Herstellung beschrieben werden. Das Trimethylsilylmethyl-Anion ist ein stark basisches Nukleophil mit hoher Metallierungsstärke und zeigt in Kombination mit Calcium-Ionen neuartige Reaktionen und Eigenschaften.The coordination sphere on the calcium can be saturated by additional Lewis bases (referred to here as donor), so that compounds of the type [(donor) Ca (CH 2 SiMe 3 ) 2 ] (donor = any compound capable of coordination, so-called aprotic Lewis Base) and its preparation are described. The trimethylsilylmethyl anion is a strongly basic nucleophile with high metallation strength and shows in combination with calcium ions novel reactions and properties.

Sie ist verfahrenstechnisch einfach und mit wenig Aufwand nach zwei Methoden unter Normalbedingungen darstellbar (X = Halogenid (bevorzugt Bromid und Iodid, M = Alkalimetall, bevorzugt Kalium):

Figure DE102017002966A1_0003
Figure DE102017002966A1_0004
It is technically simple and can be prepared with little effort by two methods under normal conditions (X = halide (preferably bromide and iodide, M = alkali metal, preferably potassium):
Figure DE102017002966A1_0003
Figure DE102017002966A1_0004

Die gemäß Formel II beschriebene Synthese der Derivate geschieht in guter Ausbeute und führt selektiv zum gewünschten Produkt. Leicht zugängliches Trimethylsilylmethylcalcium-halogenid bzw. Trimethylsilylmethylcalcium-pseudohalogenid wird mit Metall-(trimethylsilyl)methanid in einem geeigneten Lösungsmittel, beispielsweise Tetrahydrofuran, Tetrahydropyran, Diethylether, Toluol oder Benzol, zur Reaktion gebracht.The synthesis of the derivatives described in accordance with formula II occurs in good yield and leads selectively to the desired product. Easily accessible trimethylsilylmethylcalcium halide or trimethylsilylmethylcalcium pseudohalide is reacted with metal (trimethylsilyl) methanide in a suitable solvent, for example tetrahydrofuran, tetrahydropyran, diethyl ether, toluene or benzene.

Die gemäß Formel III beschriebene Synthese führt zu einer Ausbeute von 50 % bezogen auf eingesetztes Calcium. Dazu werden Trimethylsilylmethylcalcium-halogenid bzw. Trimethylsilylmethylcalcium-pseudohalogenid mit Metall-tert-butanolat in einem geeigneten Lösungsmittel wie beispielsweise Tetrahydrofuran, Tetrahydropyran, Diethylether, Toluol oder Benzol umgesetzt.

Figure DE102017002966A1_0005
The synthesis described according to formula III leads to a yield of 50% based on the calcium used. For this purpose, trimethylsilylmethylcalcium halide or trimethylsilylmethylcalcium pseudohalide are reacted with metal tert-butoxide in a suitable solvent, for example tetrahydrofuran, tetrahydropyran, diethyl ether, toluene or benzene.
Figure DE102017002966A1_0005

Die in Formel IV dargestellte Struktur der Formel I stellt ein repräsentatives Beispiel für ein Donor-stabilisiertes Bis(trimethylsilylmethyl)calcium dar, nämlich Bis(tmeda)calcium-bis(trimethylsilylmethanid). Diese Abbildung zeigt die mit Röntgenbeugungsexperimenten ermittelte Molekülstruktur dieses Komplexes.The structure of Formula I shown in Formula IV represents a representative example of a donor-stabilized bis (trimethylsilylmethyl) calcium, bis (tmeda) calcium bis (trimethylsilylmethanide). This figure shows the molecular structure of this complex determined by X-ray diffraction experiments.

Alle präparativen Arbeiten wurden in einer Sauerstoff- und Wasser-freien Stickstoffatmosphäre unter Normaldruck durchgeführt.All preparative work was carried out in an oxygen and water-free nitrogen atmosphere under atmospheric pressure.

Zur Synthese der Dialkylcalcium-Verbindung wurden 228 mg (1,80 mmol) Kalium-(trimethylsilyl)methanid in 4 mL Tetrahydropyran (THP) gelöst und auf 0 °C gekühlt. Zu dieser Lösung wurden 9 ml einer 0,194 M Lösung von Trimethylsilylmethylcalcium-iodid (1,75 mmol) in THP langsam und bei gleichbleibender Temperatur zugetropft. Die Suspension wurde eine Stunde bei 0 °C gerührt, ehe das Lösungsmittel unter vermindertem Druck abdestilliert wurde. Der Rückstand wurde mit Pentan extrahiert, wobei sich eine Lösung von Tetrakis(tetrahydropyran)calcium-bis(trimethylsilylmethanid) bildet. Die Ausbeute ist typischerweise größer als 80 %. In Folgereaktionen kann der Donor (hier Tetrahydropyran) durch Lösen in anderen Donor-Lösungsmitteln (wie beispielsweise anderen Ethern oder Aminen) substituiert werden.To synthesize the dialkyl calcium compound, 228 mg (1.80 mmol) of potassium (trimethylsilyl) methanide were dissolved in 4 mL of tetrahydropyran (THP) and cooled to 0 ° C. To this solution was added dropwise 9 ml of a 0.194 M solution of trimethylsilylmethylcalcium iodide (1.75 mmol) in THP slowly and at constant temperature. The suspension was stirred for one hour at 0 ° C before the solvent was distilled off under reduced pressure. The residue was extracted with pentane to form a solution of tetrakis (tetrahydropyran) calcium bis (trimethylsilylmethanide). The yield is typically greater than 80%. In subsequent reactions, the donor (here tetrahydropyran) can be substituted by dissolving in other donor solvents (such as other ethers or amines).

1H-NMR-spektroskopische Daten in perdeuteriertem Benzol und Tetrahydrofuran: 1H-NMR (400.129 MHz, 25 °C, [D6]Benzol): δ = -1,38 (s, 4H); 0,43 (s, 18H); 1,31 (bs, 24H); 3.56 (bs, 16H) ppm. 1H-NMR (300.190 MHz, 25 °C, [D8]THF): δ = -1,88 (s, 4H); -0,15 (s, 18H); 1,52 (m, 16H); 1,62 (m, 8H); 3.56 (m, 16H) ppm. 1 H - NMR spectroscopic data in perdeuterated benzene and tetrahydrofuran: 1 H-NMR (400 129 MHz, 25 ° C, [D 6] benzene): δ = -1.38 (s, 4H); 0.43 (s, 18H); 1.31 (bs, 24H); 3.56 (bs, 16H) ppm. 1 H-NMR (300.190 MHz, 25 ° C, [D 8 ] THF): δ = -1.88 (s, 4H); -0.15 (s, 18H); 1.52 (m, 16H); 1.62 (m, 8H); 3.56 (m, 16H) ppm.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte Nicht-PatentliteraturCited non-patent literature

  • M. Westerhausen, C. Birg, H. Nöth, J. Knizek, T. Seifert: Formation of Calcium-Carbon Bonds From a Lewis Acid-Base Reaction of Calcium Bis[bis(trimethylsilyl)amide] and Tris(trimethylsilylmethyl)alane, European Journal of Inorganic Chemistry, 1999, 2209-2214 [0003, 0013]M. Westerhausen, C. Birg, H. Nöth, J. Knizek, T. Seifert: Formation of Calcium-Carbon Bonds From a Lewis Acid-Base Reaction of Calcium bis [bis (trimethylsilyl) amide] and tris (trimethylsilylmethyl) alane, European Journal of Inorganic Chemistry, 1999, 2209-2214 [0003, 0013]
  • M. Westerhausen, C. Gückel, H. Piotrowski, M. Vogt: Metallierung von Triisopropylsilylarsan durch Bis(tetrahydrofuran)calcium-bis[tris(trimethylsilylmethyl)zinkat], Zeitschrift für anorganische und allgemeine Chemie, 2002, 628, 735-740 [0004, 0013]M. Westerhausen, C. Gückel, H. Piotrowski, M. Vogt: Metalation of Triisopropylsilylarsane by Bis (tetrahydrofuran) calcium bis [tris (trimethylsilylmethyl) zincate], Zeitschrift für anorganische und allgemein Chemie, 2002, 628, 735-740 [ 0004, 0013]
  • M. Köhler, A. Koch, H. Görls, M. Westerhausen: Trimethylsilylmethylcalcium Iodide, an Easily Accessible Grignard-Type Reagent of a Heavy Alkaline Earth Metal, Organometallics, 2016, 35, 242-248 [0005, 0013]M. Köhler, A. Koch, H. Görls, M. Westerhausen: Trimethylsilylmethylcalcium Iodides, to Easily Accessible Grignard Type Reagents of a Heavy Alkaline Earth Metal, Organometallics, 2016, 35, 242-248 [0005, 0013]
  • M. Westerhausen, A. Koch, H. Görls, S. Krieck: Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity, Chemistry - A European Journal, 2017, 23, 1456-1483 [0005, 0013]M. Westerhausen, A. Koch, H. Görls, S. Krieck: Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity, Chemistry - A European Journal, 2017, 23, 1456-1483 [0005, 0013 ]
  • M. R. Crimmin, A. G. M. Barrett, M. S. Hill, D. J. MacDougall, M. F. Mahon, P. A. Procopiou: Bis(trimethylsilyl)methyl Derivatives of Calcium, Strontium and Barium: Potentially Useful Dialkyls of the Heavy Alkaline Earth Elements, Chemistry-A European Journal, 2008, 14, 11292-11295 [0008]MR Crimmin, AGM Barrett, MS Hill, DJ MacDougall, MF Mahon, PA Procopiou: Bis (trimethylsilyl) methyl Derivatives of Calcium, Strontium and Barium: Potentially Useful Dialkyls of the Heavy Alkaline Earth Elements, Chemistry-A European Journal, 2008, 14 , 11292-11295 [0008]
  • P. B. Hitchcock, A. V. Khvostov, M. F. Lappert: Synthesis and structures of crystalline bis(trimethylsilyl)methanido complexes of potassium, calcium and ytterbium, Journal of Organometallic Chemistry, 2002, 663, 263-268 [0009]P. B. Hitchcock, A.V. Khvostov, M.F. Lappert: Synthesis and structures of crystalline bis (trimethylsilyl) methanido complexes of potassium, calcium and ytterbium, Journal of Organometallic Chemistry, 2002, 663, 263-268 [0009]
  • B. Liu, T. Roisnel, J.-F. Carpentier, Y. Sarazin: Heteroleptic Alkyl and Amide Iminoanilide Alkaline Earth and Divalent Rare Earth Complexes for the Catalysis of Hydrophosphination and (Cyclo)Hydroamination Reactions, Chemistry - A European Journal, 2013 [0010]Liu, T. Roisnel, J.-F. Carpentier, Y. Sarazin: Heteroleptic Alkyl and Amides Iminoanilides Alkaline Earth and Divalent Rare Earth Complexes for the Catalysis of Hydrophosphination and (Cyclo) Hydroamination Reactions, Chemistry - A European Journal, 2013 [0010]
  • P. Bellham, M. S. Hill, G. Kociok-Köhn, D. J. Liptrot: Alkaline earth alkyl insertion chemistry of in situ generated aminoboranes, Dalton Transactions, 2013 [0010]Bellham, M.S. Hill, G. Kociok-Köhn, D.J. Liptrot: Alkaline earth alkyl insertion chemistry of in situ generated aminoboranes, Dalton Transactions, 2013. [0010]
  • M. Arrowsmith, M. S. Hill, G. Kociok-Köhn: Dearomatization and C-H Deprotonation with Heavier Group 2 Alkyls: Does Size Matter? Organometallics, 2010, 29(19), 4203-4206 [0010]M. Arrowsmith, M.S. Hill, G. Kociok-Kohn: Dearomatization and C-H Deprotonation with Heavier Group 2 Alkyls: Does Size Matter? Organometallics, 2010, 29 (19), 4203-4206 [0010]
  • M. R. Crimmin, A. G. M. Barrett, M. S. Hill, D. J. MacDougall, M. F. Mahon, P. A. Procopiou: β-Diketiminate C-H activation with heavier group 2 alkyls, Dalton Transactions, 2009, 9715-9717 [0010]M.R. Crimmin, A.G.M. Barrett, M.S. Hill, D.J. MacDougall, M.F. Mahon, P.A. Procopiou: β-Diketiminate C-H activation with heavy group 2 alkyls, Dalton Transactions, 2009, 9715-9717. [0010]
  • S. C. Sockwell, T. P. Hanusa, J. C. Huffman: Formation and reactions of mono- and bis(peralkylcyclopentadienyl) complexes of calcium and barium. The X-ray crystal structure of [cyclic][(Me4EtC5)Ca(µ-NSiMe2CH2CH2SiMe2)]2, Journal of the American Chemical Society, 1992, 114(9), 3393-3399 [0010]SC Sockwell, TP Hanusa, JC Huffman: Formation and reactions of mono- and bis (peralkylcyclopentadienyl) complexes of calcium and barium. The X-ray crystal structure of [cyclic] [(Me 4 EtC 5 ) Ca (μ-NSiMe 2 CH 2 CH 2 SiMe 2 )] 2 , Journal of the American Chemical Society, 1992, 114 (9), 3393-3399 [0010]
  • C. Eaborn, P. B. Hitchcock: The first structurally characterised solvent-free σ-bonded diorganocalcium, Ca[C(SiMe3)3]2, Chemical Communications, 1997, 1961-1962 [0011]C. Eaborn, PB Hitchcock: The first structurally characterized solvent-free σ-bonded diorganocalcium, Ca [C (SiMe 3 ) 3 ] 2 , Chemical Communications, 1997, 1961-1962 [0011]
  • S. Harder, F. Feil, A. Weeber: Structure of a Benzylcalcium Diastereomer: An Initiator for the Anionic Polymerization of Styrene, Organometallics, 2001, 20(6), 1044-1046 [0012]S. Harder, F. Feil, A. Weeber: Structure of a Benzyl Calcium Diastereomer: An Initiator for the Anionic Polymerization of Styrene, Organometallics, 2001, 20 (6), 1044-1046 [0012]
  • F. Feil, S. Harder: a,a-Bis(trimethylsilyl)-Substituted Benzyl Complexes of Potassium and Calcium, Organometallics, 2000, 19(24), 5010-5015 [0012]F. Feil, S. Harder: a, a-bis (trimethylsilyl) -substituted Benzyl Complexes of Potassium and Calcium, Organometallics, 2000, 19 (24), 5010-5015 [0012]
  • T. Iwao, S. Oosaka, T. Sakaki, T. Nishida: Preparation of Organocalcium Complexes, Jpn. Kokai Tokkyo Koho, JP 06116277 A 19940426, 1994 [0013]T. Iwao, S. Oosaka, T. Sakaki, T. Nishida: Preparation of Organocalcium Complexes, Jpn. Kokai Tokkyo Koho, JP 06116277 A 19940426, 1994 [0013]
  • R. Fischer, M. Gärtner, H. Görls, L. Yu, M. Reiher, M. Westerhausen: THF Solvates of Extremely Soluble Bis(2,4,6-trimethylphenyl)calcium and Tris(2,6-dimethoxyphenyl)dicalcium Iodide, Angewandte Chemie, 2007, 119, 1642-1647 [0014]R. Fischer, M. Gärtner, H. Görls, L. Yu, M. Reiher, M. Westerhausen: THF Solvates of Extremely Soluble Bis (2,4,6-trimethylphenyl) calcium and tris (2,6-dimethoxyphenyl) dicalcium Iodide, Angewandte Chemie, 2007, 119, 1642-1647 [0014]
  • J. Langer, M. Köhler, H. Görls, M. Westerhausen: Halide-Free Diarylcalcium Complexes - Syntheses, Structures and Stability, Chemistry - A European Journal, 2014, 20, 3154-3161 [0014]J. Langer, M. Köhler, H. Görls, M. Westerhausen: Halide-Free Diarylcalcium Complexes - Syntheses, Structures and Stability, Chemistry - A European Journal, 2014, 20, 3154-3161 [0014]

Claims (4)

Calcium-bis(trimethylsilylmethanid) gemäß der allgemeinen Formel I
Figure DE102017002966A1_0006
mit: R = Alkyl und/oder Aryl, D = Donor (jegliche zur Koordination fähige Verbindung, nicht jedoch stark protische Basen), m = Zahl der Donor-Moleküle n = jegliches Vielfaches des gezeigten Komplexes (Aggregationsgrad).
Calcium bis (trimethylsilylmethanide) according to the general formula I
Figure DE102017002966A1_0006
with: R = alkyl and / or aryl, D = donor (any compound capable of coordination, but not strongly protic bases), m = number of donor molecules n = any multiple of the complex shown (degree of aggregation).
Verfahren zur Herstellung von Calcium-bis(trimethylsilylmethanid) gemäß Anspruch 1, dadurch gekennzeichnet, dass die Synthese gemäß der allgemeinen Formeln II, III, und/oder V erfolgt, wobei (i) ein Trimethylsilylmethylcalcium-halogenid bzw. -pseudohalogenid mit einen Metall-trimethylsilylmethanid (Formel II) in einem geeigneten Lösungsmittel gerührt, (ii) Trimethylsilylmethylcalcium-halogenid bzw. -pseudohalogenid in einem geeigneten Lösungsmittel mit Metall-tert-butanolat umgesetzt (Formel II) und/oder (iii) ein Calciumhalogenid bzw. -pseudohalogenid mit einem Metall-trimethylsilylmethanid (Formel V) in einem geeigneten Lösungsmittel gerührt wird und anschließend aufgebarbeitet werden kann.
Figure DE102017002966A1_0007
Figure DE102017002966A1_0008
Figure DE102017002966A1_0009
Process for the preparation of calcium bis (trimethylsilylmethanide) according to Claim 1 , characterized in that the synthesis according to the general formulas II, III, and / or V takes place, wherein (i) a trimethylsilylmethylcalcium halide or pseudohalide is stirred with a metal trimethylsilylmethanide (formula II) in a suitable solvent, (ii ) Trimethylsilylmethylcalcium halide or pseudohalide is reacted in a suitable solvent with metal tert-butoxide (Formula II) and / or (iii) a calcium halide or pseudohalide is stirred with a metal trimethylsilylmethanide (Formula V) in a suitable solvent and then worked up.
Figure DE102017002966A1_0007
Figure DE102017002966A1_0008
Figure DE102017002966A1_0009
Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die Aufarbeitung durch Extraktion, Filtration, Kristallisation, Vakuumdestillation, Sublimation und/oder chromatographische Verfahren erfolgt.Method according to Claim 2 , characterized in that the work-up by extraction, filtration, crystallization, vacuum distillation, sublimation and / or chromatographic processes takes place. Verwendung von Calcium-bis(trimethylsilylmethanid) gemäß Anspruch 1 sowohl als Gruppentransfer- und/oder Metallierungsreagenz als auch in Calcium-Halogen-Austauschreaktionen und/oder in der Katalyse für Hydrofunktionalisierungsreaktionen und/oder zum Polymerisieren von beispielsweise zyklischen Estern (beispielsweise Lactid oder ε-Caprolacton), Epoxiden und/oder Styrol.Use of calcium bis (trimethylsilylmethanide) according to Claim 1 both as a group transfer and / or metallating reagent and in calcium-halogen exchange reactions and / or in catalysis for hydrofunctionalization reactions and / or for polymerizing, for example, cyclic esters (for example lactide or ε-caprolactone), epoxides and / or styrene.
DE102017002966.0A 2017-03-28 2017-03-28 Calcium organic compound and process for its preparation Withdrawn DE102017002966A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102017002966.0A DE102017002966A1 (en) 2017-03-28 2017-03-28 Calcium organic compound and process for its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017002966.0A DE102017002966A1 (en) 2017-03-28 2017-03-28 Calcium organic compound and process for its preparation

Publications (1)

Publication Number Publication Date
DE102017002966A1 true DE102017002966A1 (en) 2018-10-04

Family

ID=63525237

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017002966.0A Withdrawn DE102017002966A1 (en) 2017-03-28 2017-03-28 Calcium organic compound and process for its preparation

Country Status (1)

Country Link
DE (1) DE102017002966A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022008838A1 (en) 2020-07-07 2022-01-13 Compagnie Generale Des Etablissements Michelin Catalytic system for the stereospecific polymerization of dienes and use thereof in a process for synthesising diene polymers

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
B. Liu, T. Roisnel, J.-F. Carpentier, Y. Sarazin: Heteroleptic Alkyl and Amide Iminoanilide Alkaline Earth and Divalent Rare Earth Complexes for the Catalysis of Hydrophosphination and (Cyclo)Hydroamination Reactions, Chemistry - A European Journal, 2013
C. Eaborn, P. B. Hitchcock: The first structurally characterised solvent-free σ-bonded diorganocalcium, Ca[C(SiMe3)3]2, Chemical Communications, 1997, 1961-1962
F. Feil, S. Harder: a,a-Bis(trimethylsilyl)-Substituted Benzyl Complexes of Potassium and Calcium, Organometallics, 2000, 19(24), 5010-5015
J. Langer, M. Köhler, H. Görls, M. Westerhausen: Halide-Free Diarylcalcium Complexes - Syntheses, Structures and Stability, Chemistry - A European Journal, 2014, 20, 3154-3161
M. Arrowsmith, M. S. Hill, G. Kociok-Köhn: Dearomatization and C-H Deprotonation with Heavier Group 2 Alkyls: Does Size Matter? Organometallics, 2010, 29(19), 4203-4206
M. Köhler, A. Koch, H. Görls, M. Westerhausen: Trimethylsilylmethylcalcium Iodide, an Easily Accessible Grignard-Type Reagent of a Heavy Alkaline Earth Metal, Organometallics, 2016, 35, 242-248
M. R. Crimmin, A. G. M. Barrett, M. S. Hill, D. J. MacDougall, M. F. Mahon, P. A. Procopiou: Bis(trimethylsilyl)methyl Derivatives of Calcium, Strontium and Barium: Potentially Useful Dialkyls of the Heavy Alkaline Earth Elements, Chemistry-A European Journal, 2008, 14, 11292-11295
M. R. Crimmin, A. G. M. Barrett, M. S. Hill, D. J. MacDougall, M. F. Mahon, P. A. Procopiou: β-Diketiminate C-H activation with heavier group 2 alkyls, Dalton Transactions, 2009, 9715-9717
M. Westerhausen, A. Koch, H. Görls, S. Krieck: Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity, Chemistry - A European Journal, 2017, 23, 1456-1483
M. Westerhausen, C. Birg, H. Nöth, J. Knizek, T. Seifert: Formation of Calcium-Carbon Bonds From a Lewis Acid-Base Reaction of Calcium Bis[bis(trimethylsilyl)amide] and Tris(trimethylsilylmethyl)alane, European Journal of Inorganic Chemistry, 1999, 2209-2214
M. Westerhausen, C. Gückel, H. Piotrowski, M. Vogt: Metallierung von Triisopropylsilylarsan durch Bis(tetrahydrofuran)calcium-bis[tris(trimethylsilylmethyl)zinkat], Zeitschrift für anorganische und allgemeine Chemie, 2002, 628, 735-740
P. B. Hitchcock, A. V. Khvostov, M. F. Lappert: Synthesis and structures of crystalline bis(trimethylsilyl)methanido complexes of potassium, calcium and ytterbium, Journal of Organometallic Chemistry, 2002, 663, 263-268
P. Bellham, M. S. Hill, G. Kociok-Köhn, D. J. Liptrot: Alkaline earth alkyl insertion chemistry of in situ generated aminoboranes, Dalton Transactions, 2013
R. Fischer, M. Gärtner, H. Görls, L. Yu, M. Reiher, M. Westerhausen: THF Solvates of Extremely Soluble Bis(2,4,6-trimethylphenyl)calcium and Tris(2,6-dimethoxyphenyl)dicalcium Iodide, Angewandte Chemie, 2007, 119, 1642-1647
S. C. Sockwell, T. P. Hanusa, J. C. Huffman: Formation and reactions of mono- and bis(peralkylcyclopentadienyl) complexes of calcium and barium. The X-ray crystal structure of [cyclic][(Me4EtC5)Ca(µ-NSiMe2CH2CH2SiMe2)]2, Journal of the American Chemical Society, 1992, 114(9), 3393-3399
S. Harder, F. Feil, A. Weeber: Structure of a Benzylcalcium Diastereomer: An Initiator for the Anionic Polymerization of Styrene, Organometallics, 2001, 20(6), 1044-1046
T. Iwao, S. Oosaka, T. Sakaki, T. Nishida: Preparation of Organocalcium Complexes, Jpn. Kokai Tokkyo Koho, JP 06116277 A 19940426, 1994
WESTERHAUSEN, Matthias [u.a.]: Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity. In: Chemistry - A European Journal. 2016, Bd. 23, H. 7, S. 1456-1483. ISSN 0947-6539 (P), 1521-3765 (E). DOI: 10.1002/chem.201603786. URL: http://onlinelibrary.wiley.com/doi/10.1002/chem.201603786/epdf [abgerufen am 19.06.2017]. Bibliographieinformationen ermittelt über: http://onlinelibrary.wiley.com/doi/10.1002/chem.201603786/abstract [abgerufen am 19.06.2017]. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022008838A1 (en) 2020-07-07 2022-01-13 Compagnie Generale Des Etablissements Michelin Catalytic system for the stereospecific polymerization of dienes and use thereof in a process for synthesising diene polymers
FR3112347A1 (en) 2020-07-07 2022-01-14 Compagnie Generale Des Etablissements Michelin Catalytic system for the stereospecific polymerization of dienes and their use in a process for the synthesis of diene polymers

Similar Documents

Publication Publication Date Title
DE102008010534A1 (en) Novel phosphonium-based ionic liquid and reaction solvent using the same
EP1689756B1 (en) Method for the production of salts of weakly coordinating anions, salts thereof and use thereof
DE102014203951A1 (en) Synthesis of alpha, beta-unsaturated carboxylic acids (meth) acrylates from olefins
EP1537126A1 (en) Method for metal-organic production of organic intermediate products by means of aryl lithium-bases
DE112011104615T5 (en) Organoboron compound and process for producing the same
DE102017002966A1 (en) Calcium organic compound and process for its preparation
DE102013009959A1 (en) Process for the preparation of salts with hydridocyanoborate anions
EP0147581B1 (en) Process for producing finely divided, highly reactive magnesium and the use of the same
DE889898C (en) Process for the production of phosphorus compounds
EP0138093A2 (en) Process for the preparation of TCNQ complexes
DE3028478A1 (en) HYDROGEN SOLUBLE DIORGANOMAGNESIUM COMPOUNDS, HYDROCARBON SOLUTIONS THAT INCLUDE IT AND METHOD FOR THE PRODUCTION THEREOF
DE2226774C3 (en) Process for the preparation of distannanes of the formula R ↓ 3 ↓ Sn-Sn R ↓ 3 ↓
DE4424222C1 (en) Stable solns of methyl lithium
CH618179A5 (en)
DE3013240A1 (en) METHOD FOR PRODUCING EARTH ALKALIAL COXYALANATES
WO2020099233A1 (en) Tris(trichlorsilyl)dichlorogallylgermane, process for the preparation thereof, and use thereof
CH433290A (en) Process for the preparation of diorganohalophosphines
DE19628159A1 (en) Process for the synthesis of Grignard compounds using catalysts
EP3724204A1 (en) Metal complexes having triazenido ligands and uses thereof for depositing metals from the gas phase
DE2748535B2 (en) Process for the preparation of mixed polyimino derivatives of aluminum and magnesium and of magnesium amides
EP0753520B1 (en) Synthesis agent containing dissolved methyllithium
DE899433C (en) Process for the preparation of insecticidal mixtures containing essentially octaalkyltetrapyrophosphoric acid
DE102019108416A1 (en) Process for the fluorination of inorganic compounds
DE1643905C3 (en) Process for the production of organolithium or organomagnesium aminosihciumverbindungen
DE2460288A1 (en) PROCESS FOR PRODUCING TRICYCLOHEXYL TIN DERIVATIVES

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee