DE102016201643A1 - Verbesserte Waschleistung durch eine alpha-Amylase aus Bacillus cereus - Google Patents

Verbesserte Waschleistung durch eine alpha-Amylase aus Bacillus cereus Download PDF

Info

Publication number
DE102016201643A1
DE102016201643A1 DE102016201643.1A DE102016201643A DE102016201643A1 DE 102016201643 A1 DE102016201643 A1 DE 102016201643A1 DE 102016201643 A DE102016201643 A DE 102016201643A DE 102016201643 A1 DE102016201643 A1 DE 102016201643A1
Authority
DE
Germany
Prior art keywords
alpha
amylase
amino acid
acid sequence
amylases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016201643.1A
Other languages
English (en)
Inventor
Daniela Herbst
Nina Mußmann
Timothy O'Connell
Inken Prüser
Anna Krüger
Neele Meyer
Garabed Antranikian
Anke Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE102016201643.1A priority Critical patent/DE102016201643A1/de
Priority to PCT/EP2017/051743 priority patent/WO2017133973A1/de
Publication of DE102016201643A1 publication Critical patent/DE102016201643A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2417Alpha-amylase (3.2.1.1.) from microbiological source

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Detergent Compositions (AREA)

Abstract

Die Erfindung betrifft alpha-Amylasen umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist sowie deren Herstellung und Verwendung. Derartige alpha-Amylasen zeigen eine gute Reinigungsleistung.

Description

  • Die Erfindung liegt auf dem Gebiet der Enzymtechnologie. Die Erfindung betrifft insbesondere alpha-Amylasen sowie deren Herstellung, deren Aminosäuresequenz, die insbesondere im Hinblick auf den Einsatz in Wasch- und Reinigungsmitteln verwendet werden können, alle hinreichend ähnlichen alpha-Amylasen mit einer entsprechend ähnlichen Sequenz gemäß SEQ ID NO:1 und für sie codierende Nukleinsäuren. Die Erfindung betrifft ferner Verfahren und Verwendungen dieser alpha-Amylasen sowie sie enthaltende Mittel, insbesondere Wasch- und Reinigungsmittel.
  • Alpha-Amylasen gehören zu den technisch bedeutenden Enzymen. Ihr Einsatz für Wasch- und Reinigungsmittel ist industriell etabliert und sie können in modernen, leistungsfähigen Wasch- und Reinigungsmitteln enthalten sein. Eine alpha-Amylase ist ein Enzym, das die Hydrolyse der inneren α(1-4)-Glykosidbindungen der Amylose, nicht jedoch die Spaltung von terminalen oder α(1-6)-Glykosidbindungen, katalysiert. Alpha-Amylasen stellen daher eine Gruppe der Esterasen dar (E.C. 3.2.1.1.). Alpha-Amylasen katalysieren die Spaltung von Stärke, Glycogen und von anderen Oligo- und Polysacchariden, die eine α(1-4)-Glykosidbindung besitzen. Insofern wirken alpha-Amylasen gegen Stärkerückstände in der Wäsche und katalysieren deren Hydrolyse (Endohydrolyse). Alpha-Amylasen mit breiten Substratspektren werden insbesondere dort verwendet, wo inhomogene Rohstoffe oder Substratgemische umgesetzt werden müssen, also beispielsweise in Wasch- und Reinigungsmitteln, da Verschmutzungen aus unterschiedlich aufgebauten Stärkemolekülen und Oligosacchariden bestehen können. Die in den aus dem Stand der Technik bekannten Wasch- oder Reinigungsmitteln eingesetzten alpha-Amylasen sind üblicherweise mikrobiellen Ursprungs und stammen in der Regel aus Bakterien oder Pilzen, beispielsweise der Gattungen Bacillus, Pseudomonas, Acinetobacter, Micrococcus, Humicola, Trichoderma oder Trichosporon, insbesondere Bacillus. Alpha-Amylasen werden üblicherweise nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, beispielsweise durch transgene Expressionswirte der Gattungen Bacillus oder durch filamentöse Pilze.
  • Eine besonders ausgiebig charakterisierte alpha-Amylase ist ein aus dem alkalophilen Bacillus sp. Stamm TS-23 gewonnenes Enzym, das mindestens fünf Arten von Stärke hydrolysiert (Lin et al., Biotechnol Appl Biochem, 28: 61–68, 1998). Die alpha-Amylase aus Bacillus sp. Stamm TS-23 besitzt ein pH-Optimum von 9, obwohl sie über einen breiten pH-Bereich stabil ist (dh. pH 4,7 bis 10,8). Ihre optimale Temperatur beträgt 45°C, wobei das Enzym auch Aktivität bei niedrigeren Temperaturen, beispielsweise 15–20°C aufweist.
  • Trotz der schon vielen bekannten alpha-Amylasen besteht weiterhin ein Bedarf für alpha-Amylase-Varianten, die veränderte biochemische Eigenschaften besitzen und dadurch eine verbesserte Leistung in industriellen Anwendungen, insbesondere in Wasch- oder Reinigungsmitteln aufweisen.
  • Überraschenderweise wurde jetzt festgestellt, dass eine alpha-Amylase aus Bacillus cereus oder eine hierzu hinreichend ähnliche alpha-Amylase (bezogen auf die Sequenzidentität), besonders für den Einsatz in Wasch- oder Reinigungsmitteln geeignet, da sie ein breites Spektrum an Stärke-Substraten unter Standard-Waschbedingungen hydrolisiert.
  • Gegenstand der Erfindung ist daher in einem ersten Aspekt eine alpha-Amylase umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer alpha-Amylase umfassend das Bereitstellen einer Ausgangsalpha-Amylase, die mindestens 70 % Sequenzidentität zu der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist.
  • Eine alpha-Amylase im Sinne der vorliegenden Patentanmeldung umfasst daher sowohl die alpha-Amylase als solche als auch eine mit einem erfindungsgemäßen Verfahren hergestellte alpha-Amylase. Alle Ausführungen zur alpha-Amylase beziehen sich daher sowohl auf die alpha-Amylase als Stoff wie auch auf die entsprechenden Verfahren, insbesondere Herstellungsverfahren der alpha-Amyalse.
  • Als weitere Erfindungsgegenstände sind mit den erfindungsgemäßen alpha-Amylasen beziehungsweise den Herstellungsverfahren für erfindungsgemäße alpha-Amylasen für diese alpha-Amylasen codierende Nukleinsäuren, erfindungsgemäße alpha-Amylasen oder Nukleinsäuren enthaltende nicht menschliche Wirtszellen sowie erfindungsgemäße alpha-Amylasen umfassende Mittel, insbesondere Wasch- und Reinigungsmittel, Wasch- und Reinigungsverfahren, und über erfindungsgemäßen alpha-Amylasen definierte Verwendungen verbunden.
  • Die vorliegende Erfindung basiert auf der überraschenden Erkenntnis der Erfinder, dass eine erfindungsgemäße alpha-Amylase aus Bacillus cereus, die eine zu der in SEQ ID NO:1 angegebenen Aminosäuresequenz zu mindestens 70% identische Aminosäuresequenz umfasst, die Hydrolyse eines breiten Spektrums an Stärke-Substraten unter Standard-Waschbedingungen bewirkt. Das ist insbesondere insoweit überraschend, als dass bisher für keine der alpha-Amylasen aus Bacillus cereus die Verwendung in Wasch- oder Reinigungsmitteln beschrieben wurde.
  • Die erfindungsgemäßen alpha-Amylasen verfügen über eine hohe Stabilität in Wasch- oder Reinigungsmitteln, beispielsweise gegenüber Tensiden und/oder Bleichmitteln und/oder gegenüber Temperatureinflüssen, und/oder gegenüber sauren oder alkalischen Bedingungen und/oder gegenüber pH-Wert-Änderungen und/oder gegenüber denaturierenden oder oxidierenden Agentien und/oder gegenüber proteolytischem Abbau und/oder gegenüber einer Veränderung der Redox-Verhältnisse. Mit besonders bevorzugten Ausführungsformen der Erfindung werden folglich leistungsverbesserte alpha-Amylase-Varianten bereitgestellt. Solche vorteilhaften Ausführungsformen erfindungsgemäßer alpha-Amylasen ermöglichen folglich verbesserte Waschergebnisse an Stärke-haltigen Anschmutzungen in einem weiten Temperaturbereich.
  • Eine erfindungsgemäße alpha-Amylase weist eine enzymatische Aktivität auf, das heißt, sie ist zur Hydrolyse von Stärke und Oligosacchariden befähigt, insbesondere in einem Wasch- oder Reinigungsmittel. Eine erfindungsgemäße alpha-Amylase ist daher ein Enzym, welches die Hydrolyse von α(1-4)-Glykosidbindungen in Glykosid-Substraten katalysiert und dadurch in der Lage ist, Stärke oder Oligosaccharide zu spalten. Ferner handelt es sich bei einer erfindungsgemäßen alpha-Amylase vorzugsweise um eine reife (mature) alpha-Amylase, d.h. um das katalytisch aktive Molekül ohne Signal- und/oder Propeptid(e). Soweit nicht anders angegeben beziehen sich auch die angegebenen Sequenzen auf jeweils reife (prozessierte) Enzyme.
  • In verschiedenen Ausführungsformen der Erfindung umfasst die alpha-Amylase eine Aminosäuresequenz, die zu der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge zu mindestens 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90,5%, 91%, 91,5%, 92%, 92,5%, 93%, 93,5%, 94%, 94,5%, 95%, 95,5%, 96%, 96,5%, 97%, 97,5%, 98%, 98,5%, 98,8%, 99,0%, 99,2%, 99,4%, 99,5%, 99,6% oder 99,8% identisch ist.
  • Die Bestimmung der Identität von Nukleinsäure- oder Aminosäuresequenzen erfolgt durch einen Sequenzvergleich. Dieser Sequenzvergleich basiert auf dem im Stand der Technik etablierten und üblicherweise genutzten BLAST-Algorithmus (vgl. beispielsweise Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403–410, und Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J. Lipman (1997): "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs"; Nucleic Acids Res., 25, S.3389–3402) und geschieht prinzipiell dadurch, dass ähnliche Abfolgen von Nukleotiden oder Aminosäuren in den Nukleinsäure- oder Aminosäuresequenzen einander zugeordnet werden. Eine tabellarische Zuordnung der betreffenden Positionen wird als Alignment bezeichnet. Ein weiterer im Stand der Technik verfügbarer Algorithmus ist der FASTA-Algorithmus. Sequenzvergleiche (Alignments), insbesondere multiple Sequenzvergleiche, werden mit Computerprogrammen erstellt. Häufig genutzt werden beispielsweise die Clustal-Serie (vgl. beispielsweise Chenna et al. (2003): Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Research 31, 3497–3500), T-Coffee (vgl. beispielsweise Notredame et al. (2000): T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205–217) oder Programme, die auf diesen Programmen beziehungsweise Algorithmen basieren. Ferner möglich sind Sequenzvergleiche (Alignments) mit dem Computer-Programm Vector NTI® Suite 10.3 (Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, Kalifornien, USA) mit den vorgegebenen Standardparametern, dessen AlignX-Modul für die Sequenzvergleiche auf ClustalW basiert.
  • Solch ein Vergleich erlaubt auch eine Aussage über die Ähnlichkeit der verglichenen Sequenzen zueinander. Sie wird üblicherweise in Prozent Identität, das heißt dem Anteil der identischen Nukleotide oder Aminosäurereste an denselben oder in einem Alignment einander entsprechenden Positionen angegeben. Der weiter gefasste Begriff der Homologie bezieht bei Aminosäuresequenzen konservierte Aminosäure-Austausche in die Betrachtung mit ein, also Aminosäuren mit ähnlicher chemischer Aktivität, da diese innerhalb des Proteins meist ähnliche chemische Aktivitäten ausüben. Daher kann die Ähnlichkeit der verglichenen Sequenzen auch Prozent Homologie oder Prozent Ähnlichkeit angegeben sein. Identitäts- und/oder Homologieangaben können über ganze Polypeptide oder Gene oder nur über einzelne Bereiche getroffen werden. Homologe oder identische Bereiche von verschiedenen Nukleinsäure- oder Aminosäuresequenzen sind daher durch Übereinstimmungen in den Sequenzen definiert. Solche Bereiche weisen oftmals identische Funktionen auf. Sie können klein sein und nur wenige Nukleotide oder Aminosäuren umfassen. Oftmals üben solche kleinen Bereiche für die Gesamtaktivität des Proteins essentielle Funktionen aus. Es kann daher sinnvoll sein, Sequenzübereinstimmungen nur auf einzelne, gegebenenfalls kleine Bereiche zu beziehen. Soweit nicht anders angegeben beziehen sich Identitäts- oder Homologieangaben in der vorliegenden Anmeldung aber auf die Gesamtlänge der jeweils angegebenen Nukleinsäure- oder Aminosäuresäuresequenz.
  • In einer weiteren Ausführungsform der Erfindung ist die alpha-Amylase dadurch gekennzeichnet, dass ihre Reinigungsleistung gegenüber derjenigen einer alpha-Amylase, die eine Aminosäuresequenz umfasst, die der in SEQ ID NO:1 angegebenen Aminosäuresequenzen entspricht, nicht signifikant verringert ist, d.h. mindestens 70%, 75 %, 80 %, 85 %, 90 %, 95 % der Referenzwaschleistung besitzt. Die Reinigungsleistung kann in einem Waschsystem bestimmt werden, das ein Waschmittel in einer Dosierung zwischen 4,5 und 7,0 Gramm pro Liter Waschflotte sowie die alpha-Amylase enthält, wobei die zu vergleichenden alpha-Amylasen konzentrationsgleich (bezogen auf aktives Protein) eingesetzt sind und die Reinigungsleistung gegenüber einer Anschmutzung auf Baumwolle bestimmt wird durch Messung des Reinigungsgrades der gewaschenen Textilien. Beispielsweise kann der Waschvorgang für 60 Minuten bei einer Temperatur von 30°C erfolgen und das Wasser eine Wasserhärte zwischen 15,5 und 16,5° (deutsche Härte) aufweisen. Die Konzentration der alpha-Amylase in dem für dieses Waschsystem bestimmten Waschmittel beträgt von 0,001–1 Gew.-%, vorzugsweise von 0,001–0,1 Gew.-%, und noch bevorzugter von 0,01 bis 0,06 Gew.-%, bezogen auf aktives, gereinigtes Protein.
  • Ein bevorzugtes flüssiges Waschmittel für ein solches Waschsystem ist wie folgt zusammengesetzt (alle Angaben in Gewichts-Prozent): 7% Alkylbenzolsulfonsäure, 9% anionische Tenside, 4% Na-Salze von C12-C18 Fettsäuren, 7% nicht-ionische Tenside, 0,7% Phosphonate, 3,2% Zitronensäure, 3,0% NaOH, 0,04% Entschäumer, 5,7% 1,2-Propandiol, 0,1% Konservierungsstoffe, 2% Ethanol, 0,2% Farbstoff-Transfer-Inhibitor, Rest demineralisiertes Wasser. Bevorzugt beträgt die Dosierung des flüssigen Waschmittels zwischen 4,5 und 6,0 Gramm pro Liter Waschflotte, beispielsweise 4,7, 4,9 oder 5,9 Gramm pro Liter Waschflotte. Bevorzugt wird gewaschen in einem pH-Wertebereich zwischen pH 8 und pH 10,5, bevorzugt zwischen pH 8 und pH 9.
  • Im Rahmen der Erfindung erfolgt die Bestimmung der Reinigungsleistung bei 30°C unter Verwendung eines flüssigen Waschmittels wie vorstehend angegeben, wobei der Waschvorgang vorzugsweise für 60 Minuten erfolgt.
  • Der Weißheitsgrad, d.h. die Aufhellung der Anschmutzungen, als Maß für die Reinigungsleistung wird mit optischen Messverfahren bestimmt, bevorzugt photometrisch. Ein hierfür geeignetes Gerät ist beispielsweise das Spektrometer Minolta CM508d. Üblicherweise werden die für die Messung eingesetzten Geräte zuvor mit einem Weißstandard, bevorzugt einem mitgelieferten Weißstandard, kalibriert.
  • Durch den aktivitätsgleichen Einsatz der jeweiligen alpha-Amylase wird sichergestellt, dass auch bei einem etwaigen Auseinanderklaffen des Verhältnisses von Aktivsubstanz zu Gesamtprotein (die Werte der spezifischen Aktivität) die jeweiligen enzymatischen Eigenschaften, also beispielsweise die Reinigungsleistung an bestimmten Anschmutzungen, verglichen werden. Generell gilt, dass eine niedrige spezifische Aktivität durch Zugabe einer größeren Proteinmenge ausgeglichen werden kann.
  • Die alpha-Amylaseaktivität wird in fachüblicher Weise bestimmt, und zwar vorzugsweise durch ein optisches Messverfahren, bevorzugt ein photometrisches Verfahren. Der hierfür geeignete Test umfasst die alpha-Amylase-abhängige Spaltung des Substrats para-Nitrophenyl-Maltoheptaosid. Dieses wird durch die alpha-Amylase in para-Nitrophenyl-Oligosaccharid gespalten. Das para-Nitrophenyl-Oligosaccharid wird wiederum durch die Enzyme Glucoamylase und alpha-Glucosidase zu Glucose und para-Nitrophenol katalysiert. Die Anwesenheit von para-Nitrophenol kann unter Verwendung eines Photometers, z.B. des Tecan Sunrise Geräts und der XFLUOR Software, bei 405 nm ermittelt werden und ermöglicht somit einen Rückschluss auf die enzymatische Aktivität der alpha-Amylase.
  • Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren (Bicinchoninsäure; 2,2‘-Bichinolyl-4,4‘-dicarbonsäure) oder dem Biuret-Verfahren (A. G. Gornall, C. S. Bardawill und M.M. David, J. Biol. Chem., 177 (1948), S. 751–766) bestimmt werden. Die Bestimmung der Aktivproteinkonzentration kann diesbezüglich über eine Titration der aktiven Zentren unter Verwendung eines geeigneten irreversiblen Inhibitors und Bestimmung der Restaktivität (vgl. M. Bender et al., J. Am. Chem. Soc. 88, 24 (1966), S. 5890–5913) erfolgen.
  • Proteine können über die Reaktion mit einem Antiserum oder einem bestimmten Antikörper zu Gruppen immunologisch verwandter Proteine zusammengefasst werden. Die Angehörigen einer solchen Gruppe zeichnen sich dadurch aus, dass sie dieselbe, von einem Antikörper erkannte antigene Determinante aufweisen. Sie sind daher einander strukturell so ähnlich, dass sie von einem Antiserum oder bestimmten Antikörpern erkannt werden. Einen weiteren Erfindungsgegenstand bilden daher alpha-Amylasen, die dadurch gekennzeichnet sind, dass sie mindestens eine und zunehmend bevorzugt zwei, drei oder vier übereinstimmende antigene Determinanten mit einer erfindungsgemäßen alpha-Amylase aufweisen. Solche alpha-Amylasen sind auf Grund ihrer immunologischen Übereinstimmungen den erfindungsgemäßen alpha-Amylasen strukturell so ähnlich, dass auch von einer gleichartigen Funktion auszugehen ist.
  • Erfindungsgemäße alpha-Amylasen können im Vergleich zu der in SEQ ID NO:1 beschriebenen alpha-Amylase weitere Aminosäureveränderungen, insbesondere Aminosäure-Substitutionen, -Insertionen oder -Deletionen, aufweisen. Solche alpha-Amylasen sind beispielsweise durch gezielte genetische Veränderung, d.h. durch Mutageneseverfahren, weiterentwickelt und für bestimmte Einsatzzwecke oder hinsichtlich spezieller Eigenschaften (beispielsweise hinsichtlich ihrer katalytischen Aktivität, Stabilität, usw.) optimiert. Ferner können erfindungsgemäße Nukleinsäuren in Rekombinationsansätze eingebracht und damit zur Erzeugung völlig neuartiger alpha-Amylasen oder anderer Polypeptide genutzt werden.
  • Das Ziel ist es, in die bekannten Moleküle gezielte Mutationen wie Substitutionen, Insertionen oder Deletionen einzuführen, um beispielsweise die Reinigungsleistung von erfindungsgemäßen Enzymen zu verbessern. Hierzu können insbesondere die Oberflächenladungen und/oder der isoelektrische Punkt der Moleküle und dadurch ihre Wechselwirkungen mit dem Substrat verändert werden. So kann beispielsweise die Nettoladung der Enzyme verändert werden, um darüber die Substratbindung insbesondere für den Einsatz in Wasch- und Reinigungsmitteln zu beeinflussen. Alternativ oder ergänzend kann durch eine oder mehrere entsprechende Mutationen die Stabilität der alpha-Amylase noch weiter erhöht und dadurch ihre Reinigungsleistung verbessert werden. Vorteilhafte Eigenschaften einzelner Mutationen, z.B. einzelner Substitutionen, können sich ergänzen. Eine hinsichtlich bestimmter Eigenschaften bereits optimierte alpha-Amylase, zum Beispiel hinsichtlich ihrer Aktivität und/oder ihrer Toleranz in Bezug auf das Substratspektrum, kann daher im Rahmen der Erfindung zusätzlich weiterentwickelt sein.
  • Ein weiterer Gegenstand der Erfindung ist daher eine alpha-Amylase, die dadurch gekennzeichnet ist, dass sie aus einer alpha-Amylase wie vorstehend beschrieben als Ausgangsmolekül erhältlich ist durch ein- oder mehrfache konservative Aminosäuresubstitution. Der Begriff "konservative Aminosäuresubstitution" bedeutet den Austausch (Substitution) eines Aminosäurerestes gegen einen anderen Aminosäurerest, wobei dieser Austausch nicht zu einer Änderung der Polarität oder Ladung an der Position der ausgetauschten Aminosäure führt, z. B. der Austausch eines unpolaren Aminosäurerestes gegen einen anderen unpolaren Aminosäurerest. Konservative Aminosäuresubstitutionen im Rahmen der Erfindung umfassen beispielsweise: G=A=S, I=V=L=M, D=E, N=Q, K=R, Y=F, S=T, G=A=I=V=L=M=Y=F=W=P=S=T.
  • Alternativ oder ergänzend ist die alpha-Amylase dadurch gekennzeichnet, dass sie aus einer erfindungsgemäßen alpha-Amylase als Ausgangsmolekül erhältlich ist durch Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese und eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 511 oder 512 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt.
  • So ist es beispielsweise möglich, an den Termini oder in den Loops des Enzyms einzelne Aminosäuren zu deletieren, ohne dass dadurch die katalytische Aktivität verloren oder vermindert wird. Ferner kann durch derartige Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese beispielsweise auch die Allergenizität betreffender Enzyme gesenkt und somit insgesamt ihre Einsetzbarkeit verbessert werden. Vorteilhafterweise behalten die Enzyme auch nach der Mutagenese ihre katalytische Aktivität, d.h. ihre katalytische Aktivität entspricht mindestens derjenigen des Ausgangsenzyms, d.h. in einer bevorzugten Ausführungsform beträgt die katalytische Aktivität mindestens 80, vorzugsweise mindestens 90 % der Aktivität des Ausgangsenzyms. Auch weitere Substitutionen können vorteilhafte Wirkungen zeigen. Sowohl einzelne wie auch mehrere zusammenhängende Aminosäuren können gegen andere Aminosäuren ausgetauscht werden.
  • Die weiteren Aminosäurepositionen werden hierbei durch ein Alignment der Aminosäuresequenz einer erfindungsgemäßen alpha-Amylase mit der Aminosäuresequenz der alpha-Amylase aus Bacillus cereus, wie sie in SEQ ID NO:1 angegeben ist, definiert. Weiterhin richtet sich die Zuordnung der Positionen nach dem reifen (maturen) Protein. Diese Zuordnung ist insbesondere auch anzuwenden, wenn die Aminosäuresequenz einer erfindungsgemäßen alpha-Amylase eine höhere Zahl von Aminosäurenresten umfasst als die alpha-Amylase aus Bacillus cereus gemäß SEQ ID NO:1. Ausgehend von den genannten Positionen in der Aminosäuresequenz der alpha-Amylase aus Bacillus cereus sind die Veränderungspositionen in einer erfindungsgemäßen alpha-Amylase diejenigen, die eben diesen Positionen in einem Alignment zugeordnet sind.
  • Eine weitere Bestätigung der korrekten Zuordnung der zu verändernden Aminosäuren, d.h. insbesondere deren funktionelle Entsprechung, können Vergleichsversuche liefern, wonach die beiden auf der Basis eines Alignments einander zugeordneten Positionen in beiden miteinander verglichenen alpha-Amylasen auf die gleiche Weise verändert werden und beobachtet wird, ob bei beiden die enzymatische Aktivität auf gleiche Weise verändert wird. Geht beispielsweise ein Aminosäureaustausch in einer bestimmten Position der alpha-Amylase aus Bacillus cereus gemäß SEQ ID NO:1 mit einer Veränderung eines enzymatischen Parameters einher, beispielsweise mit der Erhöhung des KM-Wertes, und wird eine entsprechende Veränderung des enzymatischen Parameters, beispielsweise also ebenfalls eine Erhöhung des KM-Wertes, in einer erfindungsgemäßen alpha-Amylase-Variante beobachtet, deren Aminosäureaustausch durch dieselbe eingeführte Aminosäure erreicht wurde, so ist hierin eine Bestätigung der korrekten Zuordnung zu sehen.
  • Insbesondere werden erfindungsgemäß auch Fragmente der Amylase mit der Aminosäuresequenz gemäß SEQ ID NO:1, die am N-Terminus derart verkürzt sind, dass das Signalpeptid, d.h. insbesondere die N-terminalen 27 Aminosäuren, nicht länger enthalten sind, erfasst. Auch von diesen verkürzten Fragmenten können in verschiedenen Ausführungsformen der Erfindung Varianten verwendet werden, die zu der ausgehend von der in SEQ ID NO:1 angegebenen Aminosäuresequenz um 27 N-terminale Aminosäuren verkürzten Form, über die Gesamtlänge zu mindestens 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90,5%, 91%, 91,5%, 92%, 92,5%, 93%, 93,5%, 94%, 94,5%, 95%, 95,5%, 96%, 96,5%, 97%, 97,5%, 98%, 98,5%, 98,8%, 99,0%, 99,2%, 99,4%, 99,5%, 99,6% oder 99,8% identisch sind.
  • Alle genannten Sachverhalte sind auch auf die erfindungsgemäßen Verfahren zur Herstellung einer alpha-Amylase anwendbar. Demnach umfasst ein erfindungsgemäßes Verfahren ferner einen oder mehrere der folgenden Verfahrensschritte:
    • a) Einbringen einer ein- oder mehrfachen konservativen Aminosäuresubstitution in eine Ausgangsalpha-Amylase gemäß SEQ ID NO:1;
    • b) Veränderung der Aminosäuresequenz durch Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese derart, dass die alpha-Amylase eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510 oder 513 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt.
  • Sämtliche Ausführungsformen gelten auch für die erfindungsgemäßen Verfahren.
  • In weiteren Ausgestaltungen der Erfindung ist die alpha-Amylase beziehungsweise die mit einem erfindungsgemäßen Verfahren hergestellte alpha-Amylase noch mindestens zu 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90,5%, 91%, 91,5%, 92%, 92,5%, 93%, 93,5%, 94%, 94,5%, 95%, 95,5%, 96%, 96,5%, 97%, 97,5%, 98%, 98,5%, 98,8%, 99%, 99,2%, 99,4%, 99,5%, 99,6% oder 99,8% identisch zu der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge.
  • Ein weiterer Gegenstand der Erfindung ist eine zuvor beschriebene alpha-Amylase, die zusätzlich stabilisiert ist, insbesondere durch eine oder mehrere Mutationen, beispielsweise Substitutionen, oder durch Kopplung an ein Polymer. Denn eine Erhöhung der Stabilität bei der Lagerung und/oder während des Einsatzes, beispielsweise beim Waschprozess, führt dazu, dass die enzymatische Aktivität länger anhält und damit die Reinigungsleistung verbessert wird. Grundsätzlich kommen alle im Stand der Technik beschriebenen und/oder zweckmäßigen Stabilisierungsmöglichkeiten in Betracht. Bevorzugt sind solche Stabilisierungen, die über Muationen des Enzyms selbst erreicht werden, da solche Stabilisierungen im Anschluss an die Gewinnung des Enzyms keine weiteren Arbeitsschritte erfordern. Beispiele für hierfür geeignete Sequenzveränderungen sind vorstehend genannt. Weitere geeignete Sequenzveränderungen sind aus dem Stand der Technik bekannt.
  • Möglichkeiten der Stabilisierung sind beispielsweise:
    • – Schutz gegen den Einfluss von denaturierenden Agentien wie Tensiden durch Mutationen, die eine Veränderung der Aminosäuresequenz auf oder an der Oberfläche des Proteins bewirken;
    • – Austausch von Aminosäuren, die nahe dem N-Terminus liegen, gegen solche, die vermutlich über nicht-kovalente Wechselwirkungen mit dem Rest des Moleküls in Kontakt treten und somit einen Beitrag zur Aufrechterhaltung der globulären Struktur leisten.
  • Bevorzugte Ausführungsformen sind solche, bei denen das Enzym auf mehrere Arten stabilisiert wird, da mehrere stabilisierende Mutationen additiv oder synergistisch wirken.
  • Ein weiterer Gegenstand der Erfindung ist eine alpha-Amylase wie vorstehend beschrieben, die dadurch gekennzeichnet ist, dass sie mindestens eine chemische Modifikation aufweist. Eine alpha-Amylase mit einer solchen Veränderung wird als Derivat bezeichnet, d.h. die alpha-Amylase ist derivatisiert.
  • Unter Derivaten werden im Sinne der vorliegenden Anmeldung demnach solche Proteine verstanden, deren reine Aminosäurekette chemisch modifiziert worden ist. Solche Derivatisierungen können beispielsweise in vivo durch die Wirtszelle erfolgen, die das Protein exprimiert. Diesbezüglich sind Kopplungen niedrigmolekularer Verbindungen wie von Lipiden oder Oligosacchariden besonders hervorzuheben. Derivatisierungen können aber auch in vitro durchgeführt werden, etwa durch die chemische Umwandlung einer Seitenkette einer Aminosäure oder durch kovalente Bindung einer anderen Verbindung an das Protein. Beispielsweise ist die Kopplung von Aminen an Carboxylgruppen eines Enzyms zur Veränderung des isoelektrischen Punkts möglich. Eine solche andere Verbindung kann auch ein weiteres Protein sein, das beispielsweise über bifunktionelle chemische Verbindungen an ein erfindungsgemäßes Protein gebunden wird. Ebenso ist unter Derivatisierung die kovalente Bindung an einen makromolekularen Träger zu verstehen, oder auch ein nichtkovalenter Einschluss in geeignete makromolekulare Käfigstrukturen. Derivatisierungen können beispielsweise die Substratspezifität oder die Bindungsstärke an das Substrat beeinflussen oder eine vorübergehende Blockierung der enzymatischen Aktivität herbeiführen, wenn es sich bei der angekoppelten Substanz um einen Inhibitor handelt. Dies kann beispielsweise für den Zeitraum der Lagerung sinnvoll sein. Derartige Modifikationen können ferner die Stabilität oder die enzymatische Aktivität beeinflussen. Sie können ferner auch dazu dienen, die Allergenizität und/oder Immunogenizität des Proteins herabzusetzen und damit beispielsweise dessen Hautverträglichkeit zu erhöhen. Beispielsweise können Kopplungen mit makromolekularen Verbindungen, beispielsweise Polyethylenglykol, das Protein hinsichtlich der Stabilität und/oder Hautverträglichkeit verbessern.
  • Unter Derivaten eines erfindungsgemäßen Proteins können im weitesten Sinne auch Präparationen dieser Proteine verstanden werden. Je nach Gewinnung, Aufarbeitung oder Präparation kann ein Protein mit diversen anderen Stoffen vergesellschaftet sein, beispielsweise aus der Kultur der produzierenden Mikroorganismen. Ein Protein kann auch, beispielsweise zur Erhöhung seiner Lagerstabilität, mit anderen Stoffen gezielt versetzt worden sein. Erfindungsgemäß sind deshalb auch alle Präparationen eines erfindungsgemäßen Proteins. Das ist auch unabhängig davon, ob es in einer bestimmten Präparation tatsächlich diese enzymatische Aktivität entfaltet oder nicht. Denn es kann gewünscht sein, dass es bei der Lagerung keine oder nur geringe Aktivität besitzt, und erst zum Zeitpunkt der Verwendung seine enzymatische Funktion entfaltet. Dies kann beispielsweise über entsprechende Begleitstoffe gesteuert werden. Insbesondere die gemeinsame Präparation von alpha-Amylasen mit spezifischen Inhibitoren ist diesbezüglich möglich.
  • Betreffend alle vorstehend beschriebenen alpha-Amylasen beziehungsweise alpha-Amylasevarianten und/oder Derivate sind im Rahmen der vorliegenden Erfindung diejenigen besonders bevorzugt, deren katalytische Aktivität und/oder deren Substrattoleranz derjenigen der alpha-Amylase gemäß SEQ ID NO:1 entspricht, wobei die katalytische Aktivität und die Substrattoleranz wie vorstehend beschrieben bestimmt werden.
  • Ein weiterer Gegenstand der Erfindung ist eine Nukleinsäure, die für eine erfindungsgemäße alpha-Amylase codiert, sowie ein Vektor enthaltend eine solche Nukleinsäure, insbesondere ein Klonierungsvektor oder ein Expressionsvektor. In bevorzugten Ausführungsformen ist die Nukleinsäure eine Nukleinsäure gemäß SEQ ID NO:2. Entsprechend ist ein besonders bevorzugter erfindungsgemäßer Vektor ein Vektor, der eine Nukleinsäure gemäß SEQ ID NO:2 umfasst.
  • Hierbei kann es sich um DNA- oder RNA-Moleküle handeln. Sie können als Einzelstrang, als ein zu diesem Einzelstrang komplementärer Einzelstrang oder als Doppelstrang vorliegen. Insbesondere bei DNA-Molekülen sind die Sequenzen beider komplementärer Stränge in jeweils allen drei möglichen Leserastern zu berücksichtigen. Ferner ist zu berücksichtigen, dass verschiedene Codons, also Basentriplets, für die gleichen Aminosäuren codieren können, so dass eine bestimmte Aminosäuresequenz von mehreren unterschiedlichen Nukleinsäuren codiert werden kann. Auf Grund dieser Degeneriertheit des genetischen Codes sind sämtliche Nukleinsäuresequenzen in diesen Erfindungsgegenstand mit eingeschlossen, die eine der vorstehend beschriebenen alpha-Amylasen codieren können. Der Fachmann ist in der Lage, diese Nukleinsäuresequenzen zweifelsfrei zu bestimmen, da trotz der Degeneriertheit des genetischen Codes einzelnen Codons definierte Aminosäuren zuzuordnen sind. Daher kann der Fachmann ausgehend von einer Aminosäuresequenz für diese Aminosäuresequenz codierende Nukleinsäuren problemlos ermitteln. Weiterhin können bei erfindungsgemäßen Nukleinsäuren ein oder mehrere Codons durch synonyme Codons ersetzt sein. Dieser Aspekt bezieht sich insbesondere auf die heterologe Expression der erfindungsgemäßen Enzyme. So besitzt jeder Organismus, beispielsweise eine Wirtszelle eines Produktionsstammes, eine bestimmte Codon-Verwendung. Unter Codon-Verwendung wird die Übersetzung des genetischen Codes in Aminosäuren durch den jeweiligen Organismus verstanden. Es kann zu Engpässen in der Proteinbiosynthese kommen, wenn die auf der Nukleinsäure liegenden Codons in dem Organismus einer vergleichsweise geringen Zahl von beladenen tRNA-Molekülen gegenüberstehen. Obwohl für die gleiche Aminosäure codierend führt das dazu, dass in dem Organismus ein Codon weniger effizient translatiert wird als ein synonymes Codon, das für dieselbe Aminosäure codiert. Auf Grund des Vorliegens einer höheren Anzahl von tRNA-Molekülen für das synonyme Codon kann dieses in dem Organismus effizienter translatiert werden.
  • Einem Fachmann ist es über heutzutage allgemein bekannte Methoden, wie beispielsweise die chemische Synthese oder die Polymerase-Kettenreaktion (PCR) in Verbindung mit molekularbiologischen und/oder proteinchemischen Standardmethoden möglich, anhand bekannter DNA- und/oder Aminosäuresequenzen die entsprechenden Nukleinsäuren bis hin zu vollständigen Genen herzustellen. Derartige Methoden sind beispielsweise aus Sambrook, J., Fritsch, E.F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3. Edition Cold Spring Laboratory Press. bekannt.
  • Unter Vektoren werden im Sinne der vorliegenden Erfindung aus Nukleinsäuren bestehende Elemente verstanden, die als kennzeichnenden Nukleinsäurebereich eine erfindungsgemäße Nukleinsäure enthalten. Sie vermögen diese in einer Spezies oder einer Zellinie über mehrere Generationen oder Zellteilungen hinweg als stabiles genetisches Element zu etablieren. Vektoren sind insbesondere bei der Verwendung in Bakterien spezielle Plasmide, also zirkulare genetische Elemente. Im Rahmen der vorliegenden Erfindung wird eine erfindungsgemäße Nukleinsäure in einen Vektor kloniert. Zu den Vektoren zählen beispielsweise solche, deren Ursprung bakterielle Plasmide, Viren oder Bacteriophagen sind, oder überwiegend synthetische Vektoren oder Plasmide mit Elementen verschiedenster Herkunft. Mit den weiteren jeweils vorhandenen genetischen Elementen vermögen Vektoren sich in den betreffenden Wirtszellen über mehrere Generationen hinweg als stabile Einheiten zu etablieren. Sie können extrachromosomal als eigene Einheiten vorliegen oder in ein Chromosom oder chromosomale DNA integrieren.
  • Expressionsvektoren umfassen Nukleinsäuresequenzen, die sie dazu befähigen, in den sie enthaltenden Wirtszellen, vorzugsweise Mikroorganismen, besonders bevorzugt Bakterien, zu replizieren und dort eine enthaltene Nukleinsäure zur Expression zu bringen. Die Expression wird insbesondere von dem oder den Promotoren beeinflusst, welche die Transkription regulieren. Prinzipiell kann die Expression durch den natürlichen, ursprünglich vor der zu exprimierenden Nukleinsäure lokalisierten Promotor erfolgen, aber auch durch einen auf dem Expressionsvektor bereitgestellten Promotor der Wirtszelle oder auch durch einen modifizierten oder einen völlig anderen Promotor eines anderen Organismus oder einer anderen Wirtszelle. Im vorliegenden Fall wird zumindest ein Promotor für die Expression einer erfindungsgemäßen Nukleinsäure zur Verfügung gestellt und für deren Expression genutzt. Expressionsvektoren können ferner regulierbar sein, beispielsweise durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte der sie enthaltenen Wirtszellen oder durch Zugabe von bestimmten Substanzen, insbesondere Aktivatoren der Genexpression. Ein Beispiel für eine solche Substanz ist das Galactose-Derivat Isopropyl-β-D-thiogalactopyranosid (IPTG), welches als Aktivator des bakteriellen Lactose-Operons (lac-Operons) verwendet wird. Im Gegensatz zu Expressionsvektoren wird die enthaltene Nukleinsäure in Klonierungsvektoren nicht exprimiert.
  • Ein weiterer Gegenstand der Erfindung ist eine nicht menschliche Wirtszelle, die eine erfindungsgemäße Nukleinsäure oder einen erfindungsgemäßen Vektor beinhaltet, oder die eine erfindungsgemäße alpha-Amylase beinhaltet, insbesondere eine, die die alpha-Amylase in das die Wirtszelle umgebende Medium sezerniert. Bevorzugt wird eine erfindungsgemäße Nukleinsäure oder ein erfindungsgemäßer Vektor in einen Mikroorganismus transformiert, der dann eine erfindungsgemäße Wirtszelle darstellt. Alternativ können auch einzelne Komponenten, d.h. Nukleinsäure-Teile oder -Fragmente einer erfindungsgemäßen Nukleinsäure derart in eine Wirtszelle eingebracht werden, dass die dann resultierende Wirtszelle eine erfindungsgemäße Nukleinsäure oder einen erfindungsgemäßen Vektor enthält. Dieses Vorgehen eignet sich besonders dann, wenn die Wirtszelle bereits einen oder mehrere Bestandteile einer erfindungsgemäßen Nukleinsäure oder eines erfindungsgemäßen Vektors enthält und die weiteren Bestandteile dann entsprechend ergänzt werden. Verfahren zur Transformation von Zellen sind im Stand der Technik etabliert und dem Fachmann hinlänglich bekannt. Als Wirtszellen eignen sich prinzipiell alle Zellen, das heißt prokaryotische oder eukaryotische Zellen. Bevorzugt sind solche Wirtszellen, die sich genetisch vorteilhaft handhaben lassen, was beispielsweise die Transformation mit der Nukleinsäure oder dem Vektor und dessen stabile Etablierung angeht, beispielsweise einzellige Pilze oder Bakterien. Ferner zeichnen sich bevorzugte Wirtszellen durch eine gute mikrobiologische und biotechnologische Handhabbarkeit aus. Das betrifft beispielsweise leichte Kultivierbarkeit, hohe Wachstumsraten, geringe Anforderungen an Fermentationsmedien und gute Produktions- und Sekretionsraten für Fremdproteine. Bevorzugte erfindungsgemäße Wirtszellen sezernieren das (transgen) exprimierte Protein in das die Wirtszellen umgebende Medium. Ferner können die alpha-Amylasen von den sie produzierenden Zellen nach deren Herstellung modifiziert werden, beispielsweise durch Anknüpfung von Zuckermolekülen, Formylierungen, Aminierungen, usw. Solche posttranslationale Modifikationen können die alpha-Amylase funktionell beeinflussen.
  • Weitere bevorzugte Ausführungsformen stellen solche Wirtszellen dar, die aufgrund genetischer Regulationselemente, die beispielsweise auf dem Vektor zur Verfügung gestellt werden, aber auch von vornherein in diesen Zellen vorhanden sein können, in ihrer Aktivität regulierbar sind. Beispielsweise durch kontrollierte Zugabe von chemischen Verbindungen, die als Aktivatoren dienen, durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte können diese zur Expression angeregt werden. Dies ermöglicht eine wirtschaftliche Produktion der erfindungsgemäßen Proteine. Ein Beispiel für eine solche Verbindung ist IPTG wie vorstehend beschrieben.
  • Bevorzugte Wirtszellen sind prokaryontische oder bakterielle Zellen. Bakterien zeichnen sich durch kurze Generationszeiten und geringe Ansprüche an die Kultivierungsbedingungen aus. Dadurch können kostengünstige Kultivierungsverfahren oder Herstellungsverfahren etabliert werden. Zudem verfügt der Fachmann bei Bakterien in der Fermentationstechnik über einen reichhaltigen Erfahrungsschatz. Für eine spezielle Produktion können aus verschiedensten, im Einzelfall experimentell zu ermittelnden Gründen wie Nährstoffquellen, Produktbildungsrate, Zeitbedarf usw., gramnegative oder grampositive Bakterien geeignet sein.
  • Bei gramnegativen Bakterien wie beispielsweise Escherichia coli wird eine Vielzahl von Proteinen in den periplasmatischen Raum sezerniert, also in das Kompartiment zwischen den beiden die Zellen einschließenden Membranen. Dies kann für spezielle Anwendungen vorteilhaft sein. Ferner können auch gramnegative Bakterien so ausgestaltet werden, dass sie die exprimierten Proteine nicht nur in den periplasmatischen Raum, sondern in das das Bakterium umgebende Medium ausschleusen. Grampositive Bakterien wie beispielsweise Bacilli oder Actinomyceten oder andere Vertreter der Actinomycetales besitzen demgegenüber keine äußere Membran, so dass sezernierte Proteine sogleich in das die Bakterien umgebende Medium, in der Regel das Nährmedium, abgegeben werden, aus welchem sich die exprimierten Proteine aufreinigen lassen. Sie können aus dem Medium direkt isoliert oder weiter prozessiert werden. Zudem sind grampositive Bakterien mit den meisten Herkunftsorganismen für technisch wichtige Enzyme verwandt oder identisch und bilden meist selbst vergleichbare Enzyme, so dass sie über eine ähnliche Codon-Verwendung verfügen und ihr Protein-Syntheseapparat naturgemäß entsprechend ausgerichtet ist.
  • Erfindungsgemäße Wirtszellen können hinsichtlich ihrer Anforderungen an die Kulturbedingungen verändert sein, andere oder zusätzliche Selektionsmarker aufweisen oder noch andere oder zusätzliche Proteine exprimieren. Es kann sich insbesondere auch um solche Wirtszellen handeln, die mehrere Proteine oder Enzyme transgen exprimieren.
  • Die vorliegende Erfindung ist prinzipiell auf alle Mikroorganismen, insbesondere auf alle fermentierbaren Mikroorganismen, besonders bevorzugt auf solche der Gattung Bacillus, anwendbar und führt dazu, dass sich durch den Einsatz solcher Mikroorganismen erfindungsgemäße Proteine herstellen lassen. Solche Mikroorganismen stellen dann Wirtszellen im Sinne der Erfindung dar.
  • In einer weiteren Ausführungsform der Erfindung ist die Wirtszelle dadurch gekennzeichnet, dass sie ein Bakterium ist, bevorzugt eines, das ausgewählt ist aus der Gruppe der Gattungen von Escherichia, Klebsiella, Bacillus, Staphylococcus, Corynebakterium, Arthrobacter, Streptomyces, Stenotrophomonas und Pseudomonas, weiter bevorzugt eines, das ausgewählt ist aus der Gruppe von Escherichia coli, Klebsiella planticola, Bacillus licheniformis, Bacillus lentus, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus, Bacillus globigii, Bacillus gibsonii, Bacillus clausii, Bacillus halodurans, Bacillus pumilus, Staphylococcus carnosus, Corynebacterium glutamicum, Arthrobacter oxidans, Streptomyces lividans, Streptomyces coelicolor und Stenotrophomonas maltophilia.
  • Die Wirtszelle kann aber auch eine eukaryontische Zelle sein, die dadurch gekennzeichnet ist, dass sie einen Zellkern besitzt. Einen weiteren Gegenstand der Erfindung stellt daher eine Wirtszelle dar, die dadurch gekennzeichnet ist, dass sie einen Zellkern besitzt. Im Gegensatz zu prokaryontischen Zellen sind eukaryontische Zellen in der Lage, das gebildete Protein posttranslational zu modifizieren. Beispiele dafür sind Pilze wie Actinomyceten oder Hefen wie Saccharomyces oder Kluyveromyces. Dies kann beispielsweise dann besonders vorteilhaft sein, wenn die Proteine im Zusammenhang mit ihrer Synthese spezifische Modifikationen erfahren sollen, die derartige Systeme ermöglichen. Zu den Modifikationen, die eukaryontische Systeme besonders im Zusammenhang mit der Proteinsynthese durchführen, gehören beispielsweise die Bindung niedermolekularer Verbindungen wie Membrananker oder Oligosaccharide. Derartige Oligosaccharid-Modifikationen können beispielsweise zur Senkung der Allergenizität eines exprimierten Proteins wünschenswert sein. Auch eine Coexpression mit den natürlicherweise von derartigen Zellen gebildeten Enzymen, wie beispielsweise Cellulasen, kann vorteilhaft sein. Ferner können sich beispielsweise thermophile pilzliche Expressionssysteme besonders zur Expression temperaturbeständiger Proteine oder Varianten eignen.
  • Die erfindungsgemäßen Wirtszellen werden in üblicher Weise kultiviert und fermentiert, beispielsweise in diskontinuierlichen oder kontinuierlichen Systemen. Im ersten Fall wird ein geeignetes Nährmedium mit den Wirtszellen beimpft und das Produkt nach einem experimentell zu ermittelnden Zeitraum aus dem Medium geerntet. Kontinuierliche Fermentationen zeichnen sich durch Erreichen eines Fließgleichgewichts aus, in dem über einen vergleichsweise langen Zeitraum Zellen teilweise absterben aber auch nachwachsen und gleichzeitig aus dem Medium das gebildete Protein entnommen werden kann.
  • Erfindungsgemäße Wirtszellen werden bevorzugt verwendet, um erfindungsgemäße alpha-Amylasen herzustellen. Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung einer alpha-Amylase umfassend
    • a) Kultivieren einer erfindungsgemäßen Wirtszelle, und
    • b) Isolieren der alpha-Amylase aus dem Kulturmedium oder aus der Wirtszelle.
  • Dieser Erfindungsgegenstand umfasst bevorzugt Fermentationsverfahren. Fermentationsverfahren sind an sich aus dem Stand der Technik bekannt und stellen den eigentlichen großtechnischen Produktionsschritt dar, in der Regel gefolgt von einer geeigneten Aufreinigungsmethode des hergestellten Produktes, beispielsweise der erfindungsgemäßen alpha-Amylase. Alle Fermentationsverfahren, die auf einem entsprechenden Verfahren zur Herstellung einer erfindungsgemäßen alpha-Amylase beruhen, stellen Ausführungsformen dieses Erfindungsgegenstandes dar.
  • Fermentationsverfahren, die dadurch gekennzeichnet sind, dass die Fermentation über eine Zulaufstrategie durchgeführt wird, kommen insbesondere in Betracht. Hierbei werden die Medienbestandteile, die durch die fortlaufende Kultivierung verbraucht werden, zugefüttert. Hierdurch können beträchtliche Steigerungen sowohl in der Zelldichte als auch in der Zellmasse beziehungsweise Trockenmasse und/oder insbesondere in der Aktivität der interessierenden alpha-Amylase erreicht werden. Ferner kann die Fermentation auch so gestaltet werden, dass unerwünschte Stoffwechselprodukte herausgefiltert oder durch Zugabe von Puffer oder jeweils passende Gegenionen neutralisiert werden.
  • Die hergestellte alpha-Amylase kann aus dem Fermentationsmedium geerntet werden. Ein solches Fermentationsverfahren ist gegenüber einer Isolation der alpha-Amylase aus der Wirtszelle, d.h. einer Produktaufbereitung aus der Zellmasse (Trockenmasse) bevorzugt, erfordert jedoch die Zurverfügungstellung von geeigneten Wirtszellen oder von einem oder mehreren geeigneten Sekretionsmarkern oder -mechanismen und/oder Transportsystemen, damit die Wirtszellen die alpha-Amylase in das Fermentationsmedium sezernieren. Ohne Sekretion kann alternativ die Isolation der alpha-Amylase aus der Wirtszelle, d.h. eine Aufreinigung derselben aus der Zellmasse, erfolgen, beispielsweise durch Fällung mit Ammoniumsulfat oder Ethanol, oder durch chromatographische Reinigung.
  • Alle vorstehend ausgeführten Sachverhalte können zu Verfahren kombiniert werden, um erfindungsgemäße alpha-Amylasen herzustellen.
  • Ein weiterer Gegenstand der Erfindung ist ein Mittel, das dadurch gekennzeichnet ist, dass es eine erfindungsgemäße alpha-Amylase wie vorstehend beschrieben enthält. Bevorzugt ist das Mittel ein Wasch- oder Reinigungsmittel.
  • Zu diesem Erfindungsgegenstand zählen alle denkbaren Wasch- oder Reinigungsmittelarten, sowohl Konzentrate als auch unverdünnt anzuwendende Mittel, zum Einsatz im kommerziellen Maßstab, in der Waschmaschine oder bei der Handwäsche beziehungsweise -reinigung. Dazu gehören beispielsweise Waschmittel für Textilien, Teppiche, oder Naturfasern, für die die Bezeichnung Waschmittel verwendet wird. Dazu gehören beispielsweise auch Geschirrspülmittel für Geschirrspülmaschinen oder manuelle Geschirrspülmittel oder Reiniger für harte Oberflächen wie Metall, Glas, Porzellan, Keramik, Kacheln, Stein, lackierte Oberflächen, Kunststoffe, Holz oder Leder, für die die Bezeichnung Reinigungsmittel verwendet wird, also neben manuellen und maschinellen Geschirrspülmitteln beispielsweise auch Scheuermittel, Glasreiniger, WC-Duftspüler, usw. Zu den Wasch- und Reinigungsmittel im Rahmen der Erfindung zählen ferner Waschhilfsmittel, die bei der manuellen oder maschinellen Textilwäsche zum eigentlichen Waschmittel hinzudosiert werden, um eine weitere Wirkung zu erzielen. Ferner zählen zu Wasch- und Reinigungsmittel im Rahmen der Erfindung auch Textilvor- und Nachbehandlungsmittel, also solche Mittel, mit denen das Wäschestück vor der eigentlichen Wäsche in Kontakt gebracht wird, beispielsweise zum Anlösen hartnäckiger Verschmutzungen, und auch solche Mittel, die in einem der eigentlichen Textilwäsche nachgeschalteten Schritt dem Waschgut weitere wünschenswerte Eigenschaften wie angenehmen Griff, Knitterfreiheit oder geringe statische Aufladung verleihen. Zu letztgenannten Mittel werden u.a. die Weichspüler gerechnet.
  • Die erfindungsgemäßen Wasch- oder Reinigungsmittel, die als pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können neben einer erfindungsgemäßen alpha-Amylase alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten, wobei bevorzugt mindestens ein weiterer Inhaltsstoff in dem Mittel vorhanden ist. Die erfindungsgemäßen Mittel können insbesondere Tenside, Builder (Gerüststoffe), Persauerstoffverbindungen oder Bleichaktivatoren enthalten. Ferner können sie wassermischbare organische Lösungsmittel, weitere Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und/oder weitere Hilfsstoffe wie optische Aufheller, Vergrauungsinhibitoren, Schaumregulatoren sowie Farb- und Duftstoffe sowie Kombinationen hiervon enthalten.
  • Insbesondere eine Kombination einer erfindungsgemäßen alpha-Amylase mit einem oder mehreren weiteren Inhaltsstoff(en) des Mittels ist vorteilhaft, da ein solches Mittel in bevorzugten erfindungsgemäßen Ausgestaltungen eine verbesserte Reinigungsleistung durch sich ergebende Synergismen aufweist. Insbesondere durch die Kombination einer erfindungsgemäßen alpha-Amylase mit einem Tensid und/oder einem Builder (Gerüststoff) und/oder einer Persauerstoffverbindung und/oder einem Bleichaktivator kann ein solcher Synergismus erreicht werden.
  • Vorteilhafte Inhaltsstoffe erfindungsgemäßer Mittel sind offenbart in der internationalen Patentanmeldung WO2009/121725 , dort beginnend auf Seite 5, vorletzter Absatz, und endend auf Seite 13 nach dem zweiten Absatz. Auf diese Offenbarung wird ausdrücklich Bezug genommen und der dortige Offenbarungsgehalt in die vorliegende Patentanmeldung einbezogen.
  • In weiteren Ausführungsformen der Erfindung ist das Mittel dadurch gekennzeichnet, dass es
    • (a) 1–85 Gew.-%, vorzugsweise 5–65 Gew.-%, Tenside enthält; und/oder
    • (b) 0–45 Gew.-%, vorzugsweise 0,1–15 Gew.-%, Builder (Gerüststoffe) enthält; und/oder
    • (c) 0,0005–15 Gew.-%, vorzugsweise 0,001–5 Gew.-%, Protease enthält; und/oder
    • (d) 0,0005–15 Gew.-%, vorzugsweise 0,001–5 Gew.-%, Lipase enthält; und/oder
    • (e) 0,00005–15 Gew.-%, vorzugsweise 0,0001–5 Gew.-%, Mannanase enthält; und/oder
    • (f) 0,00005–15 Gew.-%, vorzugsweise 0,0001–5 Gew.-%, Cellulase/Pektatlyase enthält; und/oder
    • (g) 0,00005–15 g/Waschladung, vorzugsweise 0,0001–5 g/Waschladung, Xanthanlyase enthält; und/oder
    • (h) 0,00005–15 g/Waschladung, vorzugsweise 0,00005–15 g/Waschladung, Endoglucanase, die fähig ist Xanthan zu verdauen, enthält.
  • Ein erfindungsgemäßes Mittel enthält die alpha-Amylase vorteilhafterweise in einer Menge von 2µg bis 20mg, vorzugsweise von 5µg bis 17,5mg, besonders bevorzugt von 20µg bis 15mg und ganz besonders bevorzugt von 50µg bis 10mg pro g des Mittels. Darüber hinaus kann das erfindungsgemäße Mittel die alpha-Amylse vorteilhafterweise in einer Menge von 0,00005–15 Gew.-% bezogen auf das aktive Enzym und das Gesamtgewicht des Mittels, vorzugsweise von 0,0001–5 Gew.-% und besonders bevorzugt von 0,001–1 Gew.-% enthalten. Ferner kann die in dem Mittel enthaltene alpha-Amylase, und/oder weitere Inhaltsstoffe des Mittels, mit einer bei Raumtemperatur oder bei Abwesenheit von Wasser für das Enzym undurchlässigen Substanz umhüllt sein, welche unter Anwendungsbedingungen des Mittels durchlässig für das Enzym wird. Eine solche Ausführungsform der Erfindung ist somit dadurch gekennzeichnet, dass die alpha-Amylase mit einer bei Raumtemperatur oder bei Abwesenheit von Wasser für die alpha-Amylase undurchlässigen Substanz umhüllt ist. Weiterhin kann auch das Wasch- oder Reinigungsmittel selbst in einem Behältnis, vorzugsweise einem luftdurchlässigen Behältnis, verpackt sein, aus dem es kurz vor Gebrauch oder während des Waschvorgangs freigesetzt wird.
  • In weiteren Ausführungsformen der Erfindung ist das Mittel dadurch gekennzeichnet, dass es
    • (a) in fester Form vorliegt, insbesondere als rieselfähiges Pulver mit einem Schüttgewicht von 300 g/l bis 1200 g/l, insbesondere 500 g/l bis 900 g/l, oder
    • (b) in pastöser oder in flüssiger Form vorliegt, und/oder
    • (c) in gelförmiger oder dosierbeutelförmiger (Pouches) Form vorliegt, und/oder
    • (d) als Einkomponentensystem vorliegt, oder
    • (e) in mehrere Komponenten aufgeteilt ist.
  • Diese Ausführungsformen der vorliegenden Erfindung umfassen alle festen, pulverförmigen, flüssigen, gelförmigen oder pastösen Darreichungsformen erfindungsgemäßer Mittel, die gegebenenfalls auch aus mehreren Phasen bestehen können sowie in komprimierter oder nicht komprimierter Form vorliegen können. Das Mittel kann als rieselfähiges Pulver vorliegen, insbesondere mit einem Schüttgewicht von 300 g/l bis 1200 g/l, insbesondere 500 g/l bis 900 g/l oder 600 g/l bis 850 g/l. Zu den festen Darreichungsformen des Mittels zählen ferner Extrudate, Granulate, Tabletten oder Pouches. Alternativ kann das Mittel auch flüssig, gelförmig oder pastös sein, beispielsweise in Form eines nicht-wässrigen Flüssigwaschmittels oder einer nicht-wässrigen Paste oder in Form eines wässrigen Flüssigwaschmittels oder einer wasserhaltigen Paste. Weiterhin kann das Mittel als Einkomponentensystem vorliegen. Solche Mittel bestehen aus einer Phase. Alternativ kann ein Mittel auch aus mehreren Phasen bestehen. Ein solches Mittel ist demnach in mehrere Komponenten aufgeteilt.
  • Erfindungsgemäße Wasch- oder Reinigungsmittel können ausschließlich eine alpha-Amylase enthalten. Alternativ können sie auch weitere hydrolytische Enzyme oder andere Enzyme in einer für die Wirksamkeit des Mittels zweckmäßigen Konzentration enthalten. Eine weitere Ausführungsform der Erfindung stellen somit Mittel dar, die ferner eines oder mehrere weitere Enzyme umfassen. Als weitere Enzyme bevorzugt einsetzbar sind alle Enzyme, die in dem erfindungsgemäßen Mittel eine katalytische Aktivität entfalten können, insbesondere eine Protease, Lipase, Cellulase, Hemicellulase, Mannanase, Tannase, Xylanase, Xanthanase, Xyloglucanase, ß-Glucosidase, Pektinase, Carrageenase, Perhydrolase, Oxidase, Oxidoreduktase oder andere – von den erfindungsgemäßen alpha-Amylasen unterscheidbare – alpha-Amylasen, sowie deren Gemische. Weitere Enzyme sind in dem Mittel vorteilhafterweise jeweils in einer Menge von 1 × 10–8 bis 5 Gewichts-Prozent bezogen auf aktives Protein enthalten. Zunehmend bevorzugt ist jedes weitere Enzym in einer Menge von 1 × 10–7–3 Gew.-%, von 0,00001–1 Gew.-%, von 0,00005–0,5 Gew.-%, von 0,0001 bis 0,1 Gew.-% und besonders bevorzugt von 0,0001 bis 0,05 Gew.-% in erfindungsgemäßen Mitteln enthalten, bezogen auf aktives Protein. Besonders bevorzugt zeigen die Enzyme synergistische Reinigungsleistungen gegenüber bestimmten Anschmutzungen oder Flecken, d.h. die in der Mittelzusammensetzung enthaltenen Enzyme unterstützen sich in ihrer Reinigungsleistung gegenseitig. Ganz besonders bevorzugt liegt ein solcher Synergismus vor zwischen der erfindungsgemäß enthaltenen alpha-Amylase und einem weiteren Enzym eines erfindungsgemäßen Mittels, darunter insbesondere zwischen der genannten alpha-Amylase und einer Lipase und/oder einer Protease und/oder einer Mannanase und/oder einer Cellulase und/oder einer Pektinase. Synergistische Effekte können nicht nur zwischen verschiedenen Enzymen, sondern auch zwischen einem oder mehreren Enzymen und weiteren Inhaltsstoffen des erfindungsgemäßen Mittels auftreten.
  • Ein weiterer Erfindungsgegenstand ist ein Verfahren zur Reinigung von Textilien oder harten Oberflächen, das dadurch gekennzeichnet ist, dass in mindestens einem Verfahrensschritt ein erfindungsgemäßes Mittel angewendet wird, oder dass in mindestens einem Verfahrensschritt eine erfindungsgemäße alpha-Amylase katalytisch aktiv wird, insbesondere derart, dass die alpha-Amylase in einer Menge von 40µg bis 4g, vorzugsweise von 50µg bis 3g, besonders bevorzugt von 100µg bis 2g und ganz besonders bevorzugt von 200µg bis 1g eingesetzt wird.
  • In verschieden Ausführungsformen zeichnet sich das oben beschriebene Verfahren dadurch aus, dass die alpha-Amylase bei einer Temperatur von 0–100˚C, bevorzugt 0–60˚C, weiter bevorzugt 20–45˚C und am meisten bevorzugt bei 40˚C eingesetzt wird.
  • Hierunter fallen sowohl manuelle als auch maschinelle Verfahren, wobei maschinelle Verfahren bevorzugt sind. Verfahren zur Reinigung von Textilien zeichnen sich im allgemeinen dadurch aus, dass in mehreren Verfahrensschritten verschiedene reinigungsaktive Substanzen auf das Reinigungsgut aufgebracht und nach der Einwirkzeit abgewaschen werden, oder dass das Reinigungsgut in sonstiger Weise mit einem Waschmittel oder einer Lösung oder Verdünnung dieses Mittels behandelt wird. Entsprechendes gilt für Verfahren zur Reinigung von allen anderen Materialien als Textilien, insbesondere von harten Oberflächen. Alle denkbaren Wasch- oder Reinigungsverfahren können in wenigstens einem der Verfahrensschritte um die Anwendung eines erfindungsgemäßen Wasch- oder Reinigungsmittels oder einer erfindungsgemäßen alpha-Amylase bereichert werden und stellen dann Ausführungsformen der vorliegenden Erfindung dar. Alle Sachverhalte, Gegenstände und Ausführungsformen, die für erfindungsgemäße alpha-Amylasen und sie enthaltende Mittel beschrieben sind, sind auch auf diesen Erfindungsgegenstand anwendbar. Daher wird an dieser Stelle ausdrücklich auf die Offenbarung an entsprechender Stelle verwiesen mit dem Hinweis, dass diese Offenbarung auch für die vorstehenden erfindungsgemäßen Verfahren gilt.
  • Da erfindungsgemäße alpha-Amylasen natürlicherweise bereits eine hydrolytische Aktivität besitzen und diese auch in Medien entfalten, die sonst keine Reinigungskraft besitzen wie beispielsweise in bloßem Puffer, kann ein einzelner und/oder der einzige Schritt eines solchen Verfahrens darin bestehen, dass gewünschtenfalls als einzige reinigungsaktive Komponente eine erfindungsgemäße alpha-Amylase mit der Anschmutzung in Kontakt gebracht wird, bevorzugt in einer Pufferlösung oder in Wasser. Dies stellt eine weitere Ausführungsform dieses Erfindungsgegenstandes dar.
  • Alternative Ausführungsformen dieses Erfindungsgegenstandes stellen auch Verfahren zur Behandlung von Textilrohstoffen oder zur Textilpflege dar, bei denen in wenigstens einem Verfahrensschritt eine erfindungsgemäße alpha-Amylase aktiv wird. Hierunter sind Verfahren für Textilrohstoffe, Fasern oder Textilien mit natürlichen Bestandteilen bevorzugt, und ganz besonders für solche mit Wolle oder Seide.
  • In einem weiteren Aspekt bezieht sich die vorliegende Erfindung auf die Verwendung einer erfindungsgemäßen alpha-Amylase oder einer nach einem erfindungsgemäßen Verfahren erhältliche alpha-Amylase in einem Wasch- oder Reinigungsmittel zur Entfernung von Stärkehaltigen Anschmutzungen.
  • Alle Sachverhalte, Gegenstände und Ausführungsformen, die für erfindungsgemäße alpha-Amylase und sie enthaltende Mittel beschrieben sind, sind auch auf die beschriebenen Verfahren und Verwendungen anwendbar. Daher wird an dieser Stelle ausdrücklich auf die Offenbarung an entsprechender Stelle verwiesen mit dem Hinweis, dass diese Offenbarung auch für die vorstehenden erfindungsgemäßen Verwendungen und Verfahren gilt.
  • Beispiele
  • Beispiel 1: Identifizierung der Amylase
  • Aus 20 Bacillusstämmen wurde eine Metagenomdatenbank erstellt, welche auf Amylaseaktivität hin untersucht wurde. Dabei wurde ein Wildtyp Enzym, annotiert als alpha-Amylase aus Bacillus cereus, entdeckt. Das entsprechende Gen konnte isoliert, in E.coli transformiert und anschließend darin exprimiert werden. Die von E.coli produzierte Amylase wurde auf verschiedenen stärkehaltigen Textilien auf ihre Waschleistung untersucht. Die aufgefundene Sequenz unterscheidet sich signifikant von den Sequenzen aus Amylasen, die bislang in Wasch- und Reinigungsmitteln eingesetzt wurden.
  • Beispiel 2: Aktivitätsassay
  • Für die Bestimmung der amylolytischen Aktivität von erfindungsgemäßen Amylasen wurde ein modifiziertes para-Nitrophenyl-Maltoheptaosid verwendet, dessen terminale Glucose-Einheit durch eine Benzylidengruppe blockiert wurde. Aus diesem Molekül wird durch die Amylase para-Nitrophenyl-Oligosaccharid freigesetzt, das wiederum mit Hilfe der Enzyme Glucoamylase und alpha-Glucosidase zu Glucose und para-Nitrophenol umgesetzt wird. Somit ist die Menge des freigesetzten para-Nitrophenol proportional zur Aktivität der Amylase. Die Messung erfolgt beispielsweise unter Zuhilfenahme des Quick-Start® Test-Kits der Firma Abbott (Abbott Park, lllinois, USA). Der Anstieg der Absorption (405 nm) im Testansatz wurde bei 37°C über 3 min gegenüber einem photometrischen Kontrollwert (Blindwert) ermittelt. Die Kalibrierung erfolgte auf einen Enzymstandard mit bekannter Aktivität (z.B. Maxamyl® / Purastar® 2900 Genencor 2900 TAU / g). Die Auswertung erfolgte durch die Ermittlung der Absorptionsdifferenz dE (405 nm) pro min gegen die Enzymkonzentration des Standards.
  • Beispiel 3: Waschtest und Ergebnisse
  • Ein Waschtest wurde durchgeführt mit dem aufgereinigten Überstand aus E.coli, der die Wildtyp alpha-Amylase aus Bacillus cereus enthält.
    Bedingungen: 30°C, 16°dH Wasser, 1 h;
    Enzymkonzentration: 0,186 TAU/ml (Bestimmung der Amylase Aktivität mit Benzyliden blockiertem para-Nitrophenol-Maltoheptaosid); dies entspricht der üblicherweise in Waschmittel eingesetzten Amylase Menge. Anschmutzungen:
    1. C-S-26 Maisstärke 053
    2. C-S-27 Kartoffelstärke 048
    3. C-S-28 Reissärke 135
    4. C-S-29 Tapiokastärke 024
    • – Ausgestanztes Gewebe (Durchmesser = 10 mm) in Mikrotiterplatte vorlegen, Waschlauge auf 30°C vortemperieren, Endkonzentration 4,7 g/L;
    • – Lauge und Enzym auf die Anschmutzung geben, für 1 h bei 30°C und 600 rpm inkubieren;
    • – anschließend die Anschmutzung mehrmals mit klarem Wasser spülen, trocken lassen und mit einem Farbmessgerät die Helligkeit bestimmen.
  • Je heller das Gewebe wird, desto besser ist die Reinigungsleistung. Gemessen wird hier der L-Wert = Helligkeit, je höher desto heller.
    Es wird mit einem gängigen Flüssigwaschmittel ohne Enzyme gewaschen (Siehe Tabelle 2).
    Probe 1: nur Waschmittel als Benchmark (Vergleichsreferenz)
    Probe 2: Waschmittel plus alpha-Amylase aus Bacillus cereus (erfindungsgemäß)
    Die Ergebnisse sind in Tabelle 1 dargestellt. Tabelle 1: Ergebnisse der Waschversuche
    Anschmutzung Probe 1 Probe 2
    Maisstärke 76,6 78,9
    Kartoffelstärke 76,0 79,3
    Reisstärke 76,5 79,3
    Tapiokastärke 76,1 80,0
  • Es wird deutlich, dass die Amylase auf allen vier Anschmutzungen eine gute Leistung zeigt. Von einer signifikanten Leistungsverbesserung spricht man schon ab 1 Einheit, hier wurden bis zu 3,9 Einheiten Verbesserung erzielt. Als Negativkontrolle wurde der abgekochte, aufgereinigte Überstand aus dem Produktionsorganismus E.coli mitgewaschen (99°C für 30 min), der keinerlei Waschleistung zeigt. Tabelle 2: Verwendete Waschmittelmatrix
    Chemischer Name Gew.-% Aktivsubstanz im Rohmaterial Gew.-% Aktivsubstanz in der Formulierung
    Wasser demin. 100 Rest
    Alkylbenzolsulfonsäure 96 4,40
    Weitere anionische Tenside 70 5,60
    C12-C18 Fettsäuren Na-Salz 30 2,40
    Nicht-ionische Tenside 100 4,40
    Phosphonate 40 0,20
    Zitronensäure 100 1,43
    NaOH 50 0,95
    Entschäumer t.q. 0,01
    Glycerin 100 2,00
    Konservierungsmittel 100 0,08
    Ethanol 93 1,00
    Die verwendete Matrix enthielt keine optischen Aufheller, Parfüms, Farbstoffe oder Enzyme.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2009/121725 [0065]
  • Zitierte Nicht-Patentliteratur
    • Lin et al., Biotechnol Appl Biochem, 28: 61–68, 1998 [0003]
    • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403–410 [0014]
    • Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J. Lipman (1997): "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs"; Nucleic Acids Res., 25, S.3389–3402 [0014]
    • Chenna et al. (2003): Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Research 31, 3497–3500 [0014]
    • Notredame et al. (2000): T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205–217 [0014]
    • A. G. Gornall, C. S. Bardawill und M.M. David, J. Biol. Chem., 177 (1948), S. 751–766 [0022]
    • M. Bender et al., J. Am. Chem. Soc. 88, 24 (1966), S. 5890–5913 [0022]
    • Sambrook, J., Fritsch, E.F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3. Edition Cold Spring Laboratory Press. [0044]

Claims (11)

  1. Alpha-Amylase umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist.
  2. Alpha-Amylase, dadurch gekennzeichnet, dass (a) sie aus einer alpha-Amylase nach Anspruch 1 als Ausgangsmolekül erhältlich ist durch ein- oder mehrfache konservative Aminosäuresubstitution aufweist; und/oder (b) sie aus einer alpha-Amylase nach Anspruch 1 als Ausgangsmolekül erhältlich ist durch Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese und eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510 oder 513 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt.
  3. Verfahren zur Herstellung einer alpha-Amylase nach Anspruch 1 oder 2 umfassend das Bereitstellen einer Ausgangsalpha-Amylase, die mindestens 70 % Sequenzidentität zu der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist.
  4. Verfahren nach Anspruch 3, ferner umfassend einen oder beide der folgenden Verfahrensschritte: (a) Einbringen einer ein- oder mehrfachen konservativen Aminosäuresubstitution; (b) Veränderung der Aminosäuresequenz durch Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese derart, dass die alpha-Amylase eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510 oder 513 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt.
  5. Nukleinsäure codierend für eine alpha-Amylase nach einem der Ansprüche 1 oder 2 oder codierend für eine nach einem Verfahren der Ansprüche 3 oder 4 erhaltene alpha-Amylase.
  6. Vektor enthaltend eine Nukleinsäure nach Anspruch 5, insbesondere ein Klonierungsvektor oder ein Expressionsvektor.
  7. Nicht menschliche Wirtszelle, die eine Nukleinsäure nach Anspruch 5 oder einen Vektor nach Anspruch 6 beinhaltet, oder die eine alpha-Amylase nach einem der Ansprüche 1 oder 2 beinhaltet, oder die eine nach einem Verfahren der Ansprüche 3 oder 4 erhaltene alpha-Amylase beinhaltet, insbesondere eine, die die alpha-Amylase in das die Wirtszelle umgebende Medium sezerniert.
  8. Verfahren zur Herstellung einer alpha-Amylase umfassend a) Kultivieren einer Wirtszelle gemäß Anspruch 7 b) Isolieren der alpha-Amylase aus dem Kulturmedium oder aus der Wirtszelle.
  9. Mittel, insbesondere ein Wasch- oder Reinigungsmittel, dadurch gekennzeichnet, dass es mindestens eine alpha-Amylase nach einem der Ansprüche 1 oder 2 oder eine nach einem Verfahren der Ansprüche 3 oder 4 erhaltene alpha-Amylase enthält, insbesondere ist die alpha-Amylase in einer Menge bis zu 1 Gew.-% bezogen auf aktives Protein enthalten.
  10. Verfahren zur Reinigung von Textilien oder harten Oberflächen, dadurch gekennzeichnet, dass in mindestens einem Verfahrensschritt ein Mittel nach Anspruch 9 angewendet wird, oder dass in mindestens einem Verfahrensschritt eine alpha-Amylase nach einem der Ansprüche 1 oder 2 oder eine nach einem Verfahren der Ansprüche 3 oder 4 erhaltene alpha-Amylase katalytisch aktiv wird.
  11. Verwendung einer alpha-Amylase nach einem der Ansprüche 1 oder 2 oder einer nach einem Verfahren der Ansprüche 3 oder 4 erhältliche alpha-Amylase in einem Wasch- oder Reinigungsmittel zur Entfernung von Stärke-haltigen Anschmutzungen.
DE102016201643.1A 2016-02-03 2016-02-03 Verbesserte Waschleistung durch eine alpha-Amylase aus Bacillus cereus Withdrawn DE102016201643A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102016201643.1A DE102016201643A1 (de) 2016-02-03 2016-02-03 Verbesserte Waschleistung durch eine alpha-Amylase aus Bacillus cereus
PCT/EP2017/051743 WO2017133973A1 (de) 2016-02-03 2017-01-27 Verbesserte waschleistung durch eine alpha-amylase aus bacillus cereus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016201643.1A DE102016201643A1 (de) 2016-02-03 2016-02-03 Verbesserte Waschleistung durch eine alpha-Amylase aus Bacillus cereus

Publications (1)

Publication Number Publication Date
DE102016201643A1 true DE102016201643A1 (de) 2017-08-03

Family

ID=57960421

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016201643.1A Withdrawn DE102016201643A1 (de) 2016-02-03 2016-02-03 Verbesserte Waschleistung durch eine alpha-Amylase aus Bacillus cereus

Country Status (2)

Country Link
DE (1) DE102016201643A1 (de)
WO (1) WO2017133973A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009121725A1 (de) 2008-04-02 2009-10-08 Henkel Ag & Co. Kgaa Wasch- und reinigungsmittel enthaltend proteasen aus xanthomonas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341495A (zh) * 2009-03-10 2012-02-01 丹尼斯科美国公司 巨大芽孢杆菌菌株DSM90相关的α-淀粉酶及其使用方法
CN105209613A (zh) * 2013-05-17 2015-12-30 诺维信公司 具有α淀粉酶活性的多肽
WO2015077126A1 (en) * 2013-11-20 2015-05-28 Danisco Us Inc. Variant alpha-amylases having reduced susceptibility to protease cleavage, and methods of use, thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009121725A1 (de) 2008-04-02 2009-10-08 Henkel Ag & Co. Kgaa Wasch- und reinigungsmittel enthaltend proteasen aus xanthomonas

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A. G. Gornall, C. S. Bardawill und M.M. David, J. Biol. Chem., 177 (1948), S. 751–766
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403–410
Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J. Lipman (1997): "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs"; Nucleic Acids Res., 25, S.3389–3402
Chenna et al. (2003): Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Research 31, 3497–3500
Lin et al., Biotechnol Appl Biochem, 28: 61–68, 1998
M. Bender et al., J. Am. Chem. Soc. 88, 24 (1966), S. 5890–5913
Notredame et al. (2000): T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205–217
Sambrook, J., Fritsch, E.F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3. Edition Cold Spring Laboratory Press.

Also Published As

Publication number Publication date
WO2017133973A1 (de) 2017-08-10

Similar Documents

Publication Publication Date Title
EP3299457A1 (de) Neue lipase
DE102020105721A1 (de) Leistungsverbesserte Proteasevarianten VII
DE102020105720A1 (de) Stabilitätsverbesserte Proteasevarianten VI
WO2019048486A1 (de) Leistungsverbesserte proteasevarianten ii
EP3433360B1 (de) Proteasen mit verbesserte enzymstabilität in waschmittel
DE102013221206A1 (de) Proteasevarianten mit erhöhter Stabilität
DE102016208463A1 (de) Leistungsverbesserte Proteasen
DE102016204814A1 (de) Verbesserte Reinigungsleistung an Protein sensitiven Anschmutzungen
EP3433350B1 (de) Lipasen für den einsatz in wasch- und reinigungsmitteln
WO2017133974A1 (de) Verbesserte waschleistung durch eine alpha-amylase aus bacillus cereus
WO2017198487A1 (de) Verbesserte waschleistung durch eine neue alpha-amylase aus rhizoctonia solani
WO2018145927A1 (de) Lipasen mit erhöhter thermostabilität
EP3387122A1 (de) Lipasen mit erhöhter thermostabilität
WO2017133973A1 (de) Verbesserte waschleistung durch eine alpha-amylase aus bacillus cereus
WO2019101417A1 (de) Amylase und eine solche enthaltendes wasch- oder reinigungsmittel
WO2019228877A1 (de) Verbesserte waschleistung durch eine neue alpha-amylase aus fomitopsis pinicola (fpi)
DE102018208446A1 (de) Verbesserte Waschleistung durch eine neue alpha-Amylase aus Fomes fomentarius (Ffo)
EP3440203B1 (de) Neue protease mit verbesserter waschleistung
DE102018208443A1 (de) Verbesserte Waschleistung durch eine neue alpha-Amylase Irpex lacteus (IIa)
DE102018208444A1 (de) Verbesserte Waschleistung durch eine neue alpha-Amylase aus Trametes hirsuta (Thi)
EP3464577A1 (de) Neue amylasen
WO2017162711A1 (de) Flüssigformulierung enthaltend eine lipase
EP3772540A1 (de) Lipasen mit erhöhter thermostabilität
DE102012220101A1 (de) Leistungsverbesserte Proteasevarianten
DE102018208777A1 (de) Leistungsverbesserte Proteasevarianten V

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee