DE102016118309A1 - Method for operating an internal combustion engine and device for exhaust aftertreatment of such an internal combustion engine - Google Patents
Method for operating an internal combustion engine and device for exhaust aftertreatment of such an internal combustion engine Download PDFInfo
- Publication number
- DE102016118309A1 DE102016118309A1 DE102016118309.1A DE102016118309A DE102016118309A1 DE 102016118309 A1 DE102016118309 A1 DE 102016118309A1 DE 102016118309 A DE102016118309 A DE 102016118309A DE 102016118309 A1 DE102016118309 A1 DE 102016118309A1
- Authority
- DE
- Germany
- Prior art keywords
- exhaust gas
- internal combustion
- combustion engine
- catalyst
- selective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/103—Oxidation catalysts for HC and CO only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/12—Introducing corrections for particular operating conditions for deceleration
- F02D41/123—Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/06—Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/14—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
- F01N2900/1404—Exhaust gas temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1602—Temperature of exhaust gas apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/0022—Controlling intake air for diesel engines by throttle control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/36—Control for minimising NOx emissions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/28—Layout, e.g. schematics with liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/35—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Die Erfindung betrifft ein verbrennungsmotorisches Arbeitsverfahren mit dem Zweck einer Erhöhung der Abgastemperatur zur Steigerung der Effizienz eines Abgasnachbehandlungssystems. Dabei ist vorgesehen, dass in dem Abgaskanal des Verbrennungsmotors mindestens ein Katalysator zur selektiven, katalytischen Reduktion von Stickoxiden (SCR-Katalysator) oder ein Partikelfilter mit einer Beschichtung zur selektiven, katalytischen Reduktion von Stickoxiden vorgesehen ist. Um eine Abkühlung des SCR-Katalysators oder des Partikelfilters mit der SCR-wirksamen Beschichtung zu vermeiden oder zumindest zu reduzieren, ist vorgesehen, dass bei niedriger Teillast oder im Schubbetrieb des Verbrennungsmotors die Füllung der Brennräume des Verbrennungsmotors reduziert wird, um eine konvektive Abkühlung des SCR-Katalysators durch einen hohen Volumenstrom an Frischluft durch den Abgaskanal zu vermeiden und somit die Effizienz des SCR-Katalysators zu erhöhen. Ferner ist eine Vorrichtung zur Abgasnachbehandlung vorgesehen, mit der sich ein solches Verfahren durchführen lässt.The invention relates to an internal combustion engine operating method with the purpose of increasing the exhaust gas temperature to increase the efficiency of an exhaust aftertreatment system. It is provided that in the exhaust passage of the internal combustion engine is provided at least one catalyst for the selective catalytic reduction of nitrogen oxides (SCR catalyst) or a particulate filter with a coating for the selective catalytic reduction of nitrogen oxides. In order to avoid or at least reduce cooling of the SCR catalytic converter or of the particulate filter with the SCR-active coating, it is provided that the filling of the combustion chambers of the internal combustion engine is reduced at low partial load or in overrun operation of the internal combustion engine in order to achieve convective cooling of the SCR Catalyst by a high volume flow of fresh air through the exhaust passage to avoid and thus to increase the efficiency of the SCR catalyst. Furthermore, a device for exhaust aftertreatment is provided with which such a method can be carried out.
Description
Die Erfindung betrifft ein Verfahren zum Betreiben eines Verbrennungsmotors, insbesondere zur Abgasnachbehandlung eines Verbrennungsmotors, besonders bevorzugt ein verbrennungsmotorisches Arbeitsverfahren mit dem Zweck der Erhöhung einer Abgastemperatur des Verbrennungsmotors zur Steigerung der Effizienz eines Abgasnachbehandlungssystems, sowie eine Vorrichtung zur Durchführung eines solchen Verfahrens. The invention relates to a method for operating an internal combustion engine, in particular for exhaust aftertreatment of an internal combustion engine, particularly preferably an internal combustion engine operating method with the purpose of increasing an exhaust gas temperature of the internal combustion engine to increase the efficiency of an exhaust aftertreatment system, and an apparatus for performing such a method.
Die aktuelle und eine zukünftig immer schärfer werdende Abgasgesetzgebung stellt hohe Anforderungen an motorische Rohemissionen und die Abgasnachbehandlung von Verbrennungsmotoren. Die Fahrzeug- und Motorenhersteller sind angehalten, den Verbrauch der Verbrennungsmotoren und die damit verbundenen CO2-Emissionen weiter zu reduzieren. Dies führt unter anderem dazu, dass für Verbrennungsmotoren verbrauchsoptimierte Brennverfahren entwickelt werden. Bei Dieselmotoren konnte durch die Kraftstoff-Direkteinspritzung und verbesserte Brennverfahren eine signifikante Steigerung des Wirkungsgrades des Verbrennungsmotors erreicht werden. Da bei einem Dieselmotor oder einem mit einem Magerbrennverfahren betriebenen Ottomotor die NOx-Emissionen nicht mehr hinreichend mit einem konventionellen Drei-Wege-Katalysator aus dem Abgas umgesetzt werden können, sind zusätzliche Katalysatoren wie Katalysatoren zur selektiven, katalytischen Reduktion von Stickoxiden (SCR-Katalysatoren) notwendig, mit denen die Stickoxid-Emissionen im Abgas reduziert werden können. The current and increasingly stringent emissions legislation in the future places high demands on engine raw emissions and the exhaust aftertreatment of internal combustion engines. The vehicle and engine manufacturers are required to further reduce the consumption of internal combustion engines and the associated CO2 emissions. Among other things, this leads to the development of consumption-optimized combustion processes for internal combustion engines. In diesel engines, direct fuel injection and improved combustion processes have made it possible to achieve a significant increase in the efficiency of the internal combustion engine. Since NOx emissions can no longer be adequately reacted with a conventional three-way catalytic converter from the exhaust gas in a diesel engine or a lean-burn gasoline engine, additional catalysts such as catalysts for the selective, catalytic reduction of nitrogen oxides (SCR catalysts) are available. necessary with which the nitrogen oxide emissions in the exhaust gas can be reduced.
Zur Reduzierung der Rohemissionen von Verbrennungsmotoren und zur Einhaltung sind bei modernen Verbrennungsmotoren Abgasrückführungen vorgesehen. Diese Abgasrückführungen können sowohl als sogenannte Hochdruck-Abgasrückführungen als auch als Niederdruck-Abgasrückführungen ausgeführt sein. Dabei wird bei einer Hochdruck-Abgasrückführung ein Abgasstrom stromauf einer Turbine des Abgasturboladers entnommen und der Frischluftleitung stromabwärts eines Verdichters des Abgasturboladers zugeführt. Bei einer Niederdruck-Abgasrückführung wird der rückgeführte Abgasstrom stromabwärts der Turbine aus dem Abgaskanal entnommen und stromaufwärts des Verdichters in die Frischluftleitung des Verbrennungsmotors eingeleitet. Die Dosierung eines zurückgeführten Abgasstroms in die Frischluftleitung erfolgt in der Regel mittels eines Abgasrückführungsventils. To reduce the raw emissions of internal combustion engines and compliance with exhaust gas recirculation are provided in modern internal combustion engines. These exhaust gas recirculations can be designed both as so-called high-pressure exhaust gas recirculations and as low-pressure exhaust gas recirculations. In this case, an exhaust gas stream is removed upstream of a turbine of the exhaust gas turbocharger and fed to the fresh air line downstream of a compressor of the exhaust gas turbocharger in a high-pressure exhaust gas recirculation. In a low-pressure exhaust gas recirculation, the recirculated exhaust gas stream downstream of the turbine is removed from the exhaust passage and introduced into the fresh air line of the internal combustion engine upstream of the compressor. The metering of a recirculated exhaust gas flow into the fresh air line is generally effected by means of an exhaust gas recirculation valve.
Aus der
Aus der
Darüber hinaus offenbart die
Der Erfindung liegt nun die Aufgabe zugrunde, bei einem Verbrennungsmotor das Auskühlen eines Katalysators für die selektive, katalytische Reduktion zu vermeiden oder zumindest zu reduzieren, um eine möglichst hohe Effizienz des SCR-Systems zu erreichen. The invention is based on the object, in an internal combustion engine, to avoid or at least reduce the cooling of a catalyst for the selective, catalytic reduction in order to achieve the highest possible efficiency of the SCR system.
Die Aufgabe wird durch ein erfindungsgemäßes Verfahren zum Betreiben eines Verbrennungsmotors, vorzugsweise eines Dieselmotors, mit einem Abgaskanal, in welchem zumindest ein Katalysator zur selektiven, katalytischen Reduktion von Stickoxiden angeordnet ist, gelöst, wobei im Abgaskanal, vorzugsweise stromaufwärts des Katalysators zur selektiven, katalytischen Reduktion von Stickoxiden, eine Abgastemperatur ermittelt wird, und die Füllung der Brennräume des Verbrennungsmotors reduziert wird, wenn die Abgastemperatur unterhalb einer Schwellentemperatur liegt. Unter der Füllung des Verbrennungsmotors ist in diesem Zusammenhang die in die Brennräume des Verbrennungsmotors einströmende Gasmenge zu verstehen, welche sich aus der Frischluftmasse und der zurückgeführten Abgasmasse, insbesondere der über eine Hochdruck-Abgasrückführung zurückgeführten Abgasmasse, zusammensetzt. Unter einer Hochdruck-Abgasrückführung ist eine Abgasrückführung zu verstehen, welche Abgas aus den Brennräumen des Verbrennungsmotors oder dem Abgaskanal stromaufwärts einer Turbine des Abgasturboladers entnimmt und diese dem einlassseitigen Frischluftstrom, vorzugsweise stromabwärts einer Drosselklappe des Verbrennungsmotors, zuführt. Zur selektiven, katalytischen Reduktion von Stickoxiden ist neben einem Reduktionsmittel, insbesondere neben einer wässrigen Harnstofflösung, eine hinreichende Temperatur an dem Katalysator zur selektiven, katalytischen Reduktion notwendig, um die Stickoxide im Abgas des Verbrennungsmotors in molekularen Stickstoff reduzieren zu können. Durch das erfindungsgemäße Verfahren kann verhindert werden, dass der Abgaskanal in einem Betriebspunkt mit niedriger Last oder im Schubbetrieb derart auskühlt, dass in einer folgenden Betriebsphase eine effiziente Umsetzung der Stickoxide nicht unmittelbar, sondern erst nach einer motorischen Aufheizphase möglich ist und es in einer solchen Aufheizphase zu einem Schlupf an Stickoxid-Emissionen kommt. Dabei wird durch die Reduzierung der Füllung der Massenstrom durch den Abgaskanal reduziert, wodurch ein Abkühlen der Komponenten zur Abgasnachbehandlung und insbesondere des Katalysators zur selektiven, katalytischen Reduktion von Stickoxiden, verlangsamt wird. Durch das erfindungsgemäße Verfahren verbleibt der Katalysator zur selektiven, katalytischen Reduktion von Stickoxiden somit länger in seinem effizienten Betriebsbereich, sodass die Stickoxid-Emissionen reduziert werden können. The object is achieved by an inventive method for operating an internal combustion engine, preferably a diesel engine, with an exhaust gas passage, in which at least one catalyst for the selective, catalytic reduction of Nitrogen oxides is arranged dissolved, wherein in the exhaust duct, preferably upstream of the catalyst for the selective catalytic reduction of nitrogen oxides, an exhaust gas temperature is determined, and the filling of the combustion chambers of the internal combustion engine is reduced when the exhaust gas temperature is below a threshold temperature. In this context, the filling of the internal combustion engine is to be understood as meaning the quantity of gas flowing into the combustion chambers of the internal combustion engine, which is composed of the fresh air mass and the recirculated exhaust gas mass, in particular the exhaust gas mass recirculated via a high-pressure exhaust gas recirculation. A high-pressure exhaust gas recirculation means an exhaust gas recirculation, which takes exhaust gas from the combustion chambers of the internal combustion engine or the exhaust gas duct upstream of a turbine of the exhaust gas turbocharger and feeds this to the inlet side fresh air stream, preferably downstream of a throttle valve of the internal combustion engine. For the selective, catalytic reduction of nitrogen oxides, in addition to a reducing agent, in particular in addition to an aqueous urea solution, a sufficient temperature on the catalyst for selective, catalytic reduction necessary to reduce the nitrogen oxides in the exhaust gas of the internal combustion engine in molecular nitrogen can. By means of the method according to the invention, it can be prevented that the exhaust duct cools down in an operating point with low load or in overrun mode such that an efficient conversion of the nitrogen oxides is not possible immediately but only after a motorized heating phase in a following operating phase and in such a heating phase there is a slip in nitrogen oxide emissions. In this case, reducing the mass flow through the exhaust gas channel is reduced by the reduction of the filling, whereby cooling of the components for the exhaust gas aftertreatment and in particular of the catalyst for the selective, catalytic reduction of nitrogen oxides, is slowed down. As a result of the method according to the invention, the catalyst for the selective, catalytic reduction of nitrogen oxides thus remains in its efficient operating range for a longer time, so that the nitrogen oxide emissions can be reduced.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterentwicklungen und Verbesserungen des im unabhängigen Anspruch angegebenen Verfahrens zur Abgasnachbehandlung möglich. The measures listed in the dependent claims advantageous developments and improvements of the method specified in the independent claim for exhaust aftertreatment are possible.
In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass die Füllung durch ein Anstellen einer in einer Ansaugleitung des Verbrennungsmotors angeordneten Drosselklappe reduziert wird. Durch ein Abstellen der Drosselklappe kann auf effiziente Weise die Füllung der Brennräume des Verbrennungsmotors reduziert und der Massenstrom durch den Abgaskanal reduziert werden. In a preferred embodiment of the invention, it is provided that the filling is reduced by employing a throttle valve arranged in an intake line of the internal combustion engine. By shutting off the throttle flap, the filling of the combustion chambers of the internal combustion engine can be reduced in an efficient manner and the mass flow through the exhaust gas channel can be reduced.
In weiterer bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass die Abgasrückführungsrate prozentual zu der dem Verbrennungsmotor zugeführten Frischluftmenge zumindest im Wesentlichen konstant gehalten wird. Unter einer im Wesentlichen konstanten Abgasrückführungsrate ist eine Abweichung von maximal 5 Prozent, vorzugsweise maximal 3 Prozent, besonders bevorzugt von weniger als 2 Prozent zu verstehen. Dadurch lässt sich auf einfache Art und Weise ein Verhältnis über das gesamte Betriebskennfeld des Verbrennungsmotors festlegen, wobei nur wenige Betriebsartübergänge berücksichtigt werden müssen und somit das allgemeine Betriebsverhalten des Verbrennungsmotors und insbesondere ein Fahrverhalten eines Kraftfahrzeuges, in dem der Verbrennungsmotor als Antriebsaggregat eingebaut ist, verbessert werden kann. Dadurch sind keine weiteren motorischen Maßnahmen notwendig, welche zu veränderten NOx-Rohemissionen und/oder einer erhöhten Partikelemission des Verbrennungsmotors führen. In a further preferred embodiment of the invention, it is provided that the exhaust gas recirculation rate is kept at least substantially constant as a percentage of the amount of fresh air supplied to the internal combustion engine. A substantially constant exhaust gas recirculation rate is to be understood as a deviation of not more than 5 percent, preferably not more than 3 percent, particularly preferably less than 2 percent. As a result, a ratio over the entire operating map of the internal combustion engine can be set in a simple manner, whereby only a few mode transitions must be taken into account and thus the general operating behavior of the internal combustion engine and in particular a driving behavior of a motor vehicle in which the internal combustion engine is installed as a drive unit can be improved can. As a result, no further engine measures are necessary, which lead to changed raw NOx emissions and / or increased particulate emissions of the internal combustion engine.
In einer bevorzugten Weiterentwicklung der Erfindung ist vorgesehen, dass die Drosselklappe in einem Schubbetrieb des Verbrennungsmotors angestellt wird und somit der Strömungsquerschnitt der Ansaugleitung stark versperrt wird. Unter einer starken Versperrung ist eine Versperrung betriebspunktabhängig von mindestens 60%, vorzugsweise von mindestens 80 Prozent, besonders bevorzugt von mindestens 85% des Strömungsquerschnitts der Ansaugleitung zu verstehen. In einem Schubbetrieb kommt es in den Brennräumen des Verbrennungsmotors zu keiner Verbrennung eines zündfähigen Verbrennungsgemisches, sodass die Temperatur des in den Abgaskanal ausgeschobenen Abgases im Schubbetrieb besonders niedrig ist. Dadurch wäre bei einem ungedrosselten Einströmen von Frischluft in die Brennräume eine besonders starke Abkühlung der Komponenten zur Abgasnachbehandlung zu befürchten, was durch eine starke Androsselung und einen entsprechend geringen Gasdurchsatz durch die Brennräume und den Abgaskanal reduziert wird. In a preferred development of the invention, it is provided that the throttle valve is turned on in a coasting operation of the internal combustion engine and thus the flow cross section of the intake line is strongly blocked. Under a strong obstruction is an obstruction operating point dependent on at least 60%, preferably at least 80 percent, more preferably at least 85% of the flow cross section of the intake to understand. In a coasting operation, there is no combustion of an ignitable combustion mixture in the combustion chambers of the internal combustion engine, so that the temperature of the exhaust gas pushed out into the exhaust gas duct is particularly low during overrun operation. As a result, with an unthrottled inflow of fresh air into the combustion chambers, a particularly strong cooling of the components for exhaust gas aftertreatment would be to be feared, which is reduced by a strong throttling and a correspondingly low gas throughput through the combustion chambers and the exhaust gas duct.
Gemäß eine vorteilhaften Ausführungsform des Verfahrens ist vorgesehen, dass zusätzlich eine im Abgaskanal stromabwärts des Katalysators zur selektiven, katalytischen Reduktion von Stickoxiden angeordnete Abgasklappe angestellt wird und somit der Strömungsquerschnitt des Abgaskanals stark versperrt wird. Durch das Anstellen einer Abgasklappe im Abgaskanal lässt sich ein Staudruck erzeugen, welcher einem Abkühlen des Abgases durch eine Druckerhöhung im Abgaskanal entgegenwirkt. Zudem kann durch das Anstellen der Abgasklappe ein größerer Volumenstrom an Abgas über eine Niederdruck-Abgasrückführung dem Ansaugkanal zugeführt werden, sodass die Wärme im Wesentlichen im System bleibt und nicht durch ein Endrohr des Abgaskanals an die Umgebung abgegeben wird. According to an advantageous embodiment of the method, it is provided that in addition an exhaust gas flap arranged downstream of the catalytic converter for the selective, catalytic reduction of nitrogen oxides is made and thus the flow cross-section of the exhaust gas duct is strongly blocked. By employing an exhaust flap in the exhaust duct, a back pressure can be generated which counteracts cooling of the exhaust gas by increasing the pressure in the exhaust duct. In addition, by adjusting the exhaust flap, a larger volume flow of exhaust gas via a low-pressure exhaust gas recirculation to the intake passage be fed so that the heat remains essentially in the system and is not discharged through an exhaust duct to the environment.
In einer bevorzugten Ausführungsform des Verfahrens ist vorgesehen, dass in dem Abgaskanal eine zweite Abgastemperatur ermittelt wird, wobei aus der Differenz der ersten Abgastemperatur und der zweiten Abgastemperatur eine Temperatur am Eintritt in den Katalysator zur selektiven, katalytischen Reduktion von Stickoxiden ermittelt wird. Durch zwei Temperaturen im Abgaskanal lässt sich die Eingangstemperatur des Abgases beim Eintreten in den Katalysator zur selektiven, katalytischen Reduktion genauer bestimmen, da neben der absoluten Temperatur an einem Temperatursensor auch ein Wärmeverlust entlang des Abgaskanals über die Temperaturdifferenz zwischen den beiden Temperatursensoren ermittelt werden kann. In a preferred embodiment of the method, it is provided that a second exhaust gas temperature is determined in the exhaust gas channel, wherein a temperature at the inlet into the catalyst for the selective, catalytic reduction of nitrogen oxides is determined from the difference of the first exhaust gas temperature and the second exhaust gas temperature. By two temperatures in the exhaust passage, the inlet temperature of the exhaust gas when entering the catalyst for selective, catalytic reduction can be determined more accurately, since in addition to the absolute temperature at a temperature sensor, a heat loss along the exhaust duct on the temperature difference between the two temperature sensors can be determined.
In einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass die Schwellentemperatur in einem Bereich von 180°C bis 220°C, vorzugsweise bei ca. 200°C liegt. Zum einen besteht das Ziel, die Verluste während einer Aufheizphase der Komponenten zur Abgasnachbehandlung gering gehalten werden. Zum anderen findet eine besonders effiziente katalytische Reduktion von Stickoxiden durch den aus der wässrigen Harnstofflösung gewonnenen Ammoniak in einem Temperaturbereich von ca. 200°C bis 300°C statt. Daher wird die Schwellentemperatur mit Vorteil so gewählt, dass das erfindungsgemäße Verfahren eingeleitet wird, um die Komponenten der Abgasnachbehandlung möglichst schnell auf eine Betriebstemperatur aufzuheizen und im Betrieb ein (weiteres) Absinken der Abgastemperatur beim Eintreten in den Katalysator zur selektiven, katalytischen Reduktion von Stickoxiden unter diese Schwellentemperatur zu vermeiden und somit die Effizienz der katalytischen Reduktion der Stickoxide zu erhöhen. In a preferred embodiment of the invention it is provided that the threshold temperature is in a range of 180 ° C to 220 ° C, preferably at about 200 ° C. On the one hand, the goal is to minimize the losses during a heating phase of the components for exhaust aftertreatment. On the other hand, a particularly efficient catalytic reduction of nitrogen oxides by the ammonia obtained from the aqueous urea solution in a temperature range of about 200 ° C to 300 ° C instead. Therefore, the threshold temperature is advantageously chosen so that the inventive method is initiated to heat the components of the exhaust aftertreatment as quickly as possible to an operating temperature and in operation a (further) drop in exhaust gas temperature when entering the catalyst for selective catalytic reduction of nitrogen oxides under to avoid this threshold temperature and thus to increase the efficiency of the catalytic reduction of nitrogen oxides.
Erfindungsgemäß wird eine Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors vorgeschlagen, welche zumindest einen Abgaskanal und einen in dem Abgaskanal angeordneten Katalysator zur selektiven, katalytischen Reduktion von Stickoxiden, einen Temperatursensor zur Ermittlung einer Abgastemperatur im Abgaskanal sowie ein Steuergerät mit einem maschinenlesbaren Programmcode zur Durchführung eines erfindungsgemäßen Verfahrens aufweist. Durch eine erfindungsgemäße Vorrichtung zur Abgasnachbehandlung ist die Durchführung des erfindungsgemäßen Verfahrens möglich. According to the invention, a device for exhaust aftertreatment of an internal combustion engine is proposed, which has at least one exhaust gas channel and a catalyst arranged in the exhaust duct for the selective catalytic reduction of nitrogen oxides, a temperature sensor for determining an exhaust gas temperature in the exhaust duct and a control device with a machine-readable program code for performing a method according to the invention , By an inventive device for exhaust aftertreatment, the implementation of the method according to the invention is possible.
In einer bevorzugten Ausführungsform der Vorrichtung ist vorgesehen, dass in dem Abgaskanal zwei Katalysatoren zur selektiven, katalytischen Reduktion von Stickoxiden angeordnet sind. Durch einen ersten und einen zweiten Katalysator zur selektiven, katalytischen Reduktion von Stickoxiden, welche vorzugsweise in Reihe angeordnet sind, ist es möglich, dass zumindest einer der beiden Katalysatoren in dem Temperaturfenster zur besonders effizienten Reduktion von Stickoxiden betrieben werden kann und somit eine bestmögliche Abgasnachbehandlung der Abgase des Verbrennungsmotors erreicht wird. Alternativ kann auch zusätzlich zu einem Katalysator zur selektiven, katalytischen Reduktion von Stickoxiden auch ein NOx-Speicherkatalysator im Abgaskanal verbaut sein. Auch bei einer solchen Kombination von NOx-Speicherkatalysator und SCR-Katalysator hat das erfindungsgemäße Verfahren Vorteile, da die Abgastemperatur In a preferred embodiment of the device it is provided that two catalysts for the selective, catalytic reduction of nitrogen oxides are arranged in the exhaust gas channel. By a first and a second catalyst for the selective, catalytic reduction of nitrogen oxides, which are preferably arranged in series, it is possible that at least one of the two catalysts in the temperature window for particularly efficient reduction of nitrogen oxides can be operated and thus the best possible exhaust aftertreatment Exhaust gases of the internal combustion engine is achieved. Alternatively, in addition to a catalyst for the selective, catalytic reduction of nitrogen oxides, a NOx storage catalyst may also be installed in the exhaust gas duct. Even with such a combination of NOx storage catalyst and SCR catalyst, the inventive method has advantages, since the exhaust gas temperature
Besonders bevorzugt ist dabei, wenn eine Abgasrückführungsleitung stromabwärts des ersten Katalysators zur selektiven, katalytischen Reduktion von Stickoxiden und stromaufwärts des zweiten Katalysators zur selektiven, katalytischen Reduktion von Stickoxiden von dem Abgaskanal abzweigt. Dadurch kann Wärme über die Abgasrückführungsleitung abgeführt werden, sodass der in Strömungsrichtung zweite Katalysator mit einer deutlich niedrigeren Temperatur als der erste Katalysator betrieben werden kann. Dadurch ergeben sich in Hinblick auf weitere Betriebssituationen, insbesondere auf Betriebssituationen, in denen ein oberer Schwellenwert zur effizienten selektiven, katalytischen Reduktion der Stickoxide überschritten wird, weitere Applikationsmöglichkeiten, um eine besonders wirksame Reduktion der Stickoxide-Emissionen im Abgas zu erreichen. It is particularly preferred if an exhaust gas recirculation line branches off from the exhaust gas channel downstream of the first catalytic converter for the selective catalytic reduction of nitrogen oxides and upstream of the second catalytic converter for the selective catalytic reduction of nitrogen oxides. This allows heat to be dissipated via the exhaust gas recirculation line, so that the second catalyst in the flow direction can be operated at a significantly lower temperature than the first catalyst. As a result, with regard to further operating situations, in particular to operating situations in which an upper threshold value for efficient, selective catalytic reduction of the nitrogen oxides is exceeded, there are further possible applications in order to achieve a particularly effective reduction of the nitrogen oxide emissions in the exhaust gas.
Gemäß einer vorteilhaften Verbesserung der Vorrichtung ist vorgesehen, dass der erste Katalysator zur selektiven, katalytischen Reduktion von Stickoxiden als ein Partikelfilter mit einer Beschichtung zur selektiven, katalytischen Reduktion von Stickoxiden und der zweite Katalysator als ein SCR-Katalysator ausgebildet sind. Für viele Anwendungsfälle ist es vorteilhaft, wenn die Vorrichtung zur Abgasnachbehandlung sowohl einen Partikelfilter zur Reduktion der Rußemissionen sowie einen Katalysator zur selektiven, katalytischen Reduktion von Stickoxiden aufweist. Da zur Regeneration des Partikelfilters höhere Temperaturen, insbesondere Temperaturen oberhalb von 600°C notwendig sind, ist es vorteilhaft, diesen Partikelfilter motornah anzuordnen, um eine zur Regeneration des Partikelfilters notwendige Temperatur mit geringen motorischen Heizmaßnahmen zu erreichen. Dabei ist es vorteilhaft, wenn der Partikelfilter eine Beschichtung zur selektiven, katalytischen Reduktion von Stickoxiden aufweist, da in dieser motornahen Position nach einem Kaltstart, in einem Betrieb mit niedriger Teilleist oder in einem Schubbetrieb schneller das Temperaturfenster zur effizienten Reduktion von Stickoxiden erreicht wird. According to an advantageous improvement of the device, it is provided that the first catalyst for the selective, catalytic reduction of nitrogen oxides is designed as a particle filter with a coating for the selective, catalytic reduction of nitrogen oxides and the second catalyst as an SCR catalyst. For many applications, it is advantageous if the exhaust aftertreatment device has both a particulate filter for reducing soot emissions and a catalyst for the selective, catalytic reduction of nitrogen oxides. Since for the regeneration of the particulate filter higher temperatures, in particular temperatures above 600 ° C are necessary, it is advantageous to arrange this particulate filter close to the engine in order to achieve a necessary for the regeneration of the particulate filter temperature with low motor heating measures. It is advantageous if the particulate filter has a coating for the selective, catalytic reduction of nitrogen oxides, since in this near-engine position after a cold start, in a low-power operation or in a coasting operation the temperature window for the efficient reduction of nitrogen oxides is achieved faster.
Gemäß einer vorteilhaften Weiterentwicklung der Erfindung ist vorgesehen, dass in dem Abgaskanal stromaufwärts des ersten Katalysators zur selektiven, katalytischen Reduktion von Stickoxiden ein erster Temperatursensor und ein zweiter Temperatursensor angeordnet sind. Durch die beiden Temperatursensoren kann zum einen Redundanz erreicht werden, sodass eine Ermittlung der Abgastemperatur auch dann noch möglich ist, wenn einer der Temperatursensoren ausfällt. Ferner kann eine Temperatur am Eintritt in einen der Katalysatoren zur selektiven, katalytischen Reduktion genauer ermittelt werden, da aus der Temperaturdifferenz zwischen den beiden Temperatursensoren Wärmeverluste entlang des Abgaskanals bestimmt werden können. According to an advantageous further development of the invention, it is provided that a first temperature sensor and a second temperature sensor are arranged in the exhaust gas channel upstream of the first catalytic converter for the selective, catalytic reduction of nitrogen oxides. On the one hand, redundancy can be achieved by the two temperature sensors so that a determination of the exhaust gas temperature is still possible even if one of the temperature sensors fails. Furthermore, a temperature at the inlet to one of the catalysts for selective, catalytic reduction can be determined more accurately, since heat losses along the exhaust gas channel can be determined from the temperature difference between the two temperature sensors.
Besonders bevorzugt ist dabei, wenn der erste Temperatursensor stromabwärts eines Auslasses des Verbrennungsmotors und stromaufwärts einer Turbine eines Abgasturboladers, und der zweite Temperatursensor stromabwärts der Turbine des Abgasturboladers und stromaufwärts des in Strömungsrichtung ersten Katalysators zur selektiven, katalytischen Reduktion von Stickoxiden angeordnet ist. Dadurch kann eine erste Temperatur des Abgases möglichst motornah erfasst werden It is particularly preferred if the first temperature sensor is arranged downstream of an outlet of the internal combustion engine and upstream of a turbine of an exhaust gas turbocharger, and the second temperature sensor downstream of the turbine of the exhaust gas turbocharger and upstream of the first catalytic converter in the flow direction for the selective catalytic reduction of nitrogen oxides. As a result, a first temperature of the exhaust gas can be detected as close to the engine as possible
Gemäß einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass in dem Abgaskanal stromabwärts eines Auslasses des Verbrennungsmotors eine Turbine eines Abgasturboladers und weiter stromabwärts ein Oxidationskatalysator angeordnet sind, wobei stromabwärts des Oxidationskatalysators und stromaufwärts des Katalysators zur selektiven, katalytischen Reduktion von Stickoxiden ein Dosiermodul zur Eindosierung eines Reduktionsmittels in den Abgaskanal angeordnet ist. Durch einen dem Katalysator zur selektiven, katalytischen Reduktion vorgeschalteten Oxidationskatalysator können unverbrannter Kohlenwasserstoff, Kohlenmonoxid und Wasserstoff exotherm umgesetzt werden, wodurch sich das Abgas erwärmt. Auf diese Weise können zum einen diese Emissionen in unschädliche Abgaskomponenten, insbesondere in Wasserdampf und Kohlendioxid umgesetzt werden, zum anderen kann die Temperatur am Eintritt in den Katalysator zur selektiven, katalytischen Reduktion angehoben werden, wodurch es möglich ist, auch in Schwachlastphasen einen Temperaturbereich zur effizienten Reduktion der Stickoxide zu erreichen. According to a preferred embodiment of the invention it is provided that in the exhaust passage downstream of an outlet of the internal combustion engine, a turbine of an exhaust gas turbocharger and downstream of an oxidation catalyst are arranged, downstream of the oxidation catalyst and upstream of the catalyst for selective catalytic reduction of nitrogen oxides, a metering module for metering a Reductant is disposed in the exhaust passage. By an oxidation catalyst upstream of the catalyst for selective, catalytic reduction, unburned hydrocarbon, carbon monoxide and hydrogen can be exothermically reacted, whereby the exhaust gas is heated. In this way, on the one hand, these emissions can be converted into innocuous exhaust gas components, in particular into steam and carbon dioxide, on the other hand, the temperature at the inlet to the catalyst for selective, catalytic reduction can be raised, whereby it is possible, even in low load phases, a temperature range for efficient To achieve reduction of nitrogen oxides.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen. Further preferred embodiments of the invention will become apparent from the remaining, mentioned in the dependent claims characteristics.
Die verschiedenen in dieser Anmeldung genannten Ausführungsformen der Erfindung sind, sofern im Einzelfall nicht anders ausgeführt, mit Vorteil miteinander kombinierbar. The various embodiments of the invention mentioned in this application are, unless otherwise stated in the individual case, advantageously combinable with each other.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen erläutert. Es zeigen: The invention will be explained below in embodiments with reference to the accompanying drawings. Show it:
Der Verbrennungsmotor
Die Ansaugleitung
In
BezugszeichenlisteLIST OF REFERENCE NUMBERS
- 10 10
- Verbrennungsmotor internal combustion engine
- 12 12
- Abgaskanal exhaust duct
- 14 14
- Katalysator catalyst
- 16 16
- Partikelfilter particulate Filter
- 18 18
- Beschichtung zur selektiven, katalytischen Reduktion von Stickoxiden Coating for the selective, catalytic reduction of nitrogen oxides
- 20 20
- SCR-Katalysator SCR catalyst
- 22 22
- Abgasturbolader turbocharger
- 24 24
- Turbine turbine
- 26 26
- Verdichter compressor
- 28 28
- Dosiermodul dosing
- 30 30
- Mischer mixer
- 32 32
- Abgasklappe exhaust flap
- 34 34
- Verzweigung branch
- 36 36
- Abgasrückführleitung Exhaust gas recirculation line
- 38 38
- Filterelement filter element
- 40 40
- Abgaskühler exhaust gas cooler
- 42 42
- Abgasrückführungsventil Exhaust gas recirculation valve
- 44 44
- Ansaugleitung suction
- 46 46
- Luftfilter air filter
- 48 48
- Drosselklappe throttle
- 50 50
- Einlass inlet
- 52 52
- Auslass outlet
- 54 54
- erster Temperatursensor first temperature sensor
- 56 56
- zweiter Temperatursensor second temperature sensor
- 58 58
- Oxidationskatalysator oxidation catalyst
- 60 60
- Ladeluftkühler Intercooler
- 62 62
- Hochdruck-Abgasrückführungs-Ventil High-pressure exhaust gas recirculation valve
- 64 64
- Luftmassenmesser Air flow sensor
- 66 66
- Einmündung junction
- 68 68
- Steuergerät control unit
- 70 70
- erster Drucksensor first pressure sensor
- 72 72
- zweiter Drucksensor second pressure sensor
- 74 74
- Signalleitung signal line
- TA1 T A1
- Abgastemperatur am ersten Temperatursensor Exhaust gas temperature at the first temperature sensor
- TA2 T A2
- Abgastemperatur am zweiten Temperatursensor Exhaust gas temperature at the second temperature sensor
- TE T E
- Abgastemperatur beim Eintritt in den Katalysator zur selektiven, katalytischen Reduktion Exhaust gas temperature entering the catalyst for selective, catalytic reduction
- TS T S
- Schwellentemperatur threshold temperature
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- DE 102008015600 A1 [0004] DE 102008015600 A1 [0004]
- DE 102013212733 A1 [0005] DE 102013212733 A1 [0005]
- DE 10139848 A1 [0006] DE 10139848 A1 [0006]
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016118309.1A DE102016118309A1 (en) | 2016-09-28 | 2016-09-28 | Method for operating an internal combustion engine and device for exhaust aftertreatment of such an internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016118309.1A DE102016118309A1 (en) | 2016-09-28 | 2016-09-28 | Method for operating an internal combustion engine and device for exhaust aftertreatment of such an internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102016118309A1 true DE102016118309A1 (en) | 2018-03-29 |
Family
ID=61563885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102016118309.1A Withdrawn DE102016118309A1 (en) | 2016-09-28 | 2016-09-28 | Method for operating an internal combustion engine and device for exhaust aftertreatment of such an internal combustion engine |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102016118309A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018117124A1 (en) | 2018-07-16 | 2020-01-16 | Volkswagen Aktiengesellschaft | Internal combustion engine and method for exhaust gas aftertreatment of such an internal combustion engine |
DE102018118085A1 (en) * | 2018-07-26 | 2020-01-30 | Volkswagen Aktiengesellschaft | Process for exhaust gas aftertreatment of an internal combustion engine and exhaust gas aftertreatment system |
DE102018118091A1 (en) * | 2018-07-26 | 2020-01-30 | Volkswagen Aktiengesellschaft | Device and method for exhaust gas aftertreatment of an internal combustion engine |
DE102018131536A1 (en) * | 2018-12-10 | 2020-06-10 | Volkswagen Aktiengesellschaft | Internal combustion engine and method for exhaust gas aftertreatment of an internal combustion engine |
FR3095010A1 (en) * | 2019-04-09 | 2020-10-16 | Psa Automobiles Sa | METHOD OF LIMITING THE COOLING OF A THERMAL ENGINE CATALYST |
DE102019131829B3 (en) * | 2019-11-25 | 2021-01-14 | Volkswagen Aktiengesellschaft | Process for exhaust aftertreatment of an internal combustion engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10139848A1 (en) | 2001-08-09 | 2003-02-27 | Daimler Chrysler Ag | Air feed inlet element for motor vehicle is controlled so air quantity fed to internal combustion engine can be adjusted depending on temperature of exhaust gas cleaning system |
DE102008015600A1 (en) | 2008-03-26 | 2009-10-01 | Volkswagen Ag | Method for operating internal combustion engine, particularly diesel engine, involves guiding exhaust gas over particle filter, particularly diesel particle filter, in exhaust gas system |
DE102013212733A1 (en) | 2013-06-28 | 2014-12-31 | Volkswagen Ag | Process for the regeneration of a contaminated with solids filter element of an exhaust system and exhaust system |
DE102015000955A1 (en) * | 2014-01-20 | 2015-07-23 | Cummins Inc. | Systems and methods for reducing NOx and HC emissions |
DE102015204093A1 (en) * | 2015-03-06 | 2016-09-08 | Ford Global Technologies, Llc | A method for suppressing ammonia slip in the operation of an SCR catalyst of a hybrid electric drive |
-
2016
- 2016-09-28 DE DE102016118309.1A patent/DE102016118309A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10139848A1 (en) | 2001-08-09 | 2003-02-27 | Daimler Chrysler Ag | Air feed inlet element for motor vehicle is controlled so air quantity fed to internal combustion engine can be adjusted depending on temperature of exhaust gas cleaning system |
DE102008015600A1 (en) | 2008-03-26 | 2009-10-01 | Volkswagen Ag | Method for operating internal combustion engine, particularly diesel engine, involves guiding exhaust gas over particle filter, particularly diesel particle filter, in exhaust gas system |
DE102013212733A1 (en) | 2013-06-28 | 2014-12-31 | Volkswagen Ag | Process for the regeneration of a contaminated with solids filter element of an exhaust system and exhaust system |
DE102015000955A1 (en) * | 2014-01-20 | 2015-07-23 | Cummins Inc. | Systems and methods for reducing NOx and HC emissions |
DE102015204093A1 (en) * | 2015-03-06 | 2016-09-08 | Ford Global Technologies, Llc | A method for suppressing ammonia slip in the operation of an SCR catalyst of a hybrid electric drive |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018117124A1 (en) | 2018-07-16 | 2020-01-16 | Volkswagen Aktiengesellschaft | Internal combustion engine and method for exhaust gas aftertreatment of such an internal combustion engine |
DE102018117124B4 (en) | 2018-07-16 | 2022-01-20 | Volkswagen Aktiengesellschaft | Internal combustion engine and method for exhaust gas aftertreatment of such an internal combustion engine |
DE102018118085A1 (en) * | 2018-07-26 | 2020-01-30 | Volkswagen Aktiengesellschaft | Process for exhaust gas aftertreatment of an internal combustion engine and exhaust gas aftertreatment system |
DE102018118091A1 (en) * | 2018-07-26 | 2020-01-30 | Volkswagen Aktiengesellschaft | Device and method for exhaust gas aftertreatment of an internal combustion engine |
DE102018118091B4 (en) | 2018-07-26 | 2021-12-09 | Volkswagen Aktiengesellschaft | Device and method for exhaust gas aftertreatment of an internal combustion engine |
DE102018131536A1 (en) * | 2018-12-10 | 2020-06-10 | Volkswagen Aktiengesellschaft | Internal combustion engine and method for exhaust gas aftertreatment of an internal combustion engine |
US11333106B2 (en) | 2018-12-10 | 2022-05-17 | Volkswagen Akiihngesellschaft | Internal combustion engine and method for exhaust aftertreatment thereof |
FR3095010A1 (en) * | 2019-04-09 | 2020-10-16 | Psa Automobiles Sa | METHOD OF LIMITING THE COOLING OF A THERMAL ENGINE CATALYST |
DE102019131829B3 (en) * | 2019-11-25 | 2021-01-14 | Volkswagen Aktiengesellschaft | Process for exhaust aftertreatment of an internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102016118309A1 (en) | Method for operating an internal combustion engine and device for exhaust aftertreatment of such an internal combustion engine | |
DE102016211274A1 (en) | Method and device for exhaust aftertreatment of an internal combustion engine | |
DE102012216885B4 (en) | aftertreatment system | |
DE102010038153B3 (en) | Particle sensor for protection of components of exhaust system of turbocharged engine, is arranged at lower pressure side of turbocharger, and outputs signal for switching off exhaust gas recirculation | |
WO2008058596A1 (en) | Internal combustion engine with exhaust-gas recirculation | |
EP2635777B1 (en) | Motor vehicle internal combustion engine and method for operating a motor vehicle internal combustion engine | |
DE102008015600A1 (en) | Method for operating internal combustion engine, particularly diesel engine, involves guiding exhaust gas over particle filter, particularly diesel particle filter, in exhaust gas system | |
EP2151570B1 (en) | Exhaust gas recirculation system for a combustion engine | |
DE102008043487A1 (en) | Internal combustion engine with turbocharger and oxidation catalyst | |
DE112017006739T5 (en) | POST - TREATMENT TEMPERATURE CONTROL DEVICE AND METHOD | |
DE102009022938A1 (en) | Internal-combustion engine for motor vehicle, has exhaust gas recirculation line branching/diverting in front of turbine of exhaust-gas turbocharger from exhaust-gas tract and provided with oxidation catalytic converter | |
DE102010003337A1 (en) | Motor car, has gas recirculation circuit guided from exhaust gas tract to intake tract of engine via radiator and exhaust gas recirculation valve, and another gas recirculation circuit directly guided from exhaust gas tract to intake tract | |
DE102015111158A1 (en) | Engine system for controlling a flow of exhaust gas | |
DE102017103560A1 (en) | Internal combustion engine and method for the regeneration of a particulate filter in the exhaust passage of an internal combustion engine | |
DE102015216751A1 (en) | Motor vehicle with exhaust gas recirculation | |
DE102018102111A1 (en) | Device and method for exhaust aftertreatment of an internal combustion engine | |
DE102011017482A1 (en) | Operating method for motor vehicle diesel engine, involves arranging oxidation catalyst in flow direction of exhaust gas one behind other, and arranging addition unit for ammonia containing nitrogen oxide reducing agent | |
DE102015217394B4 (en) | Method for controlling a particle filter and motor vehicle | |
DE102019131829B3 (en) | Process for exhaust aftertreatment of an internal combustion engine | |
DE102013008827A1 (en) | Charged internal combustion engine | |
DE112013004219T5 (en) | Arrangement and method for the oxidative aftertreatment of exhaust gases from an internal combustion engine | |
EP4026994B1 (en) | Waste gas treatment system and method for treating the waste gas of a combustion engine | |
EP4074948A1 (en) | Cooling system for a reducing agent metering system and combustion engine with such a cooling system | |
DE102015220039A1 (en) | Operating method and motor vehicle | |
DE102015216730A1 (en) | Motor vehicle with exhaust gas recirculation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R163 | Identified publications notified | ||
R012 | Request for examination validly filed | ||
R016 | Response to examination communication | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |