DE102016102607A1 - Scananordnung und Verfahren zum Scannen eines Objektes - Google Patents

Scananordnung und Verfahren zum Scannen eines Objektes Download PDF

Info

Publication number
DE102016102607A1
DE102016102607A1 DE102016102607.7A DE102016102607A DE102016102607A1 DE 102016102607 A1 DE102016102607 A1 DE 102016102607A1 DE 102016102607 A DE102016102607 A DE 102016102607A DE 102016102607 A1 DE102016102607 A1 DE 102016102607A1
Authority
DE
Germany
Prior art keywords
scan
registration
scanner
laser scanner
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016102607.7A
Other languages
English (en)
Inventor
Christoph Fröhlich
Markus Mettenleiter
Franz Härtl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zoller and Froehlich GmbH
Original Assignee
Zoller and Froehlich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55361384&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE102016102607(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Zoller and Froehlich GmbH filed Critical Zoller and Froehlich GmbH
Publication of DE102016102607A1 publication Critical patent/DE102016102607A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Offenbart sind eine Scananordnung und ein Verfahren zum Scannen eines Objekts, wobei einem Laserscanner ein sich im Feld befindlicher Satellitenrechner zugeordnet ist, über den die Registrierung und/oder Auswertung der Scans im Feld erfolgt.

Description

  • Die Erfindung betrifft eine Scananordnung gemäß dem Oberbegriff des Patentanspruchs 1 und ein Verfahren zum Scannen eines Objektes.
  • Die 3D-Vermessung von Objekten mit Hilfe von Laserscannern gewinnt in der Praxis zunehmend an Bedeutung. Bei komplexen oder schwierig zugänglichen Objekten werden stets mehrere Laserscans nacheinander von unterschiedlichen Standpunkten aufgenommen und in einem gemeinsamen Projektordner abgespeichert, die dann in ein gemeinsames übergeordnetes Koordinatensystem überführt werden müssen. Dieser Prozess wird als „Registrierung“ bezeichnet. Zur Berechnung der Transformationen der einzelnen Standpunkte in das übergeordnete Koordinatensystem ist es erforderlich, einzelne, im übergeordneten System bekannte Punkte in den jeweiligen Scans zu finden und über deren Lage eine Transformation zu errechnen, die dann auf die gesamte Punktwolke angewendet wird.
  • Aus der DE 20 2010 013 825 U1 ist eine Scananordnung zur 3D-Vermessung von Objekten bekannt, bei der ein Laserstrahl mittels eines Strahlablenkungssystems auf ein Objekt gerichtet wird und die von diesem reflektierten Messstrahlen über eine Recheneinheit ausgewertet werden. Die bekannte Scananordnung hat des Weiteren eine Navigationseinheit, die eine grobe Erfassung des Standorts ermöglicht.
  • Die Bedienung der Scananordnung kann bei dem bekannten Stand der Technik mittels eines mobilen Endgerätes, beispielsweise eines Smartphones erfolgen. Die eigentliche Auswertung der Scans erfolgt über den internen Rechner, so dass das mobile Endgerät lediglich eine Art Fernbedienung darstellt.
  • Die Lage der gesuchten Punkte im Scan muss des Weiteren sehr genau bekannt sein, da sich sonst die Transformation nicht korrekt berechnen lässt und die Lage der verschiedenen Laserscans, sowohl zueinander als auch zum übergeordneten Koordinatensystem, nur mit geringer Genauigkeit gegeben sind. Aus diesem Grund werden bisher – wie in der DE 10 2008 034 198 B4 der Anmelderin beschrieben – in der zu vermessenden Umgebung eine Vielzahl von Targets aufgebracht, auf denen oft eine Kennzeichnung, beispielsweise eine laufende Nummer zu Identifikation aufgedruckt ist, die bei der Auswertung manuell erfasst wird. Zur Qualitätssicherung sollten alle Targets mit einer sogenannten „Totalstation“ / „Tachymeter“ eingemessen (einhäusen) und notiert werden – dieser Vorgang ist mit zusätzlichem Messaufwand verbunden und bedarf zusätzlichen messtechnischen Fachwissens. Dabei muss die Positionierung so erfolgen, dass zumindest 3 Targets in jedem Scan zu sehen sind.
  • Zur Verringerung dieses Aufwandes kann auch eine targetlose Registrierung der dreidimensionalen Punktwolken erfolgen. Dabei erfolgt die Registrierung weitestgehend automatisch anhand der Informationen aus den Objektmesspunkten. Dabei ist es jedoch erforderlich, dass das Objekt gewisse Besonderheiten aufweist, die eine eindeutige automatische Zuordnung der einzelnen Scans ermöglichen und dass die Scans gewisse Überlappungsbereiche aufweisen. Allerdings weisen reale Umgebungen oft Mehrdeutigkeiten (z.B. Säulen in immer gleichen Abständen in einer Produktions-Halle oder immer gleiche Türen in Bürofluren) auf, die zu fehlerhaften Zuordnungen führen können. Auch kann bei oftmals mehreren Hundert aufgenommenen Laserscans aufgrund der damit verbundenen exponentiellen Rechenzeitzunahme nicht jeder mit jedem verglichen werden zum Zwecke der automatischen Registrierung. Nur auf den vorhergehenden Scan zu registrieren ist nicht immer praktikabel, etwa wenn dieser hinter einer Abschattung liegt. Aus diesen Gründen ist eine gewisse vor-Orientierung (Position und Ausrichtung) der zu registrierenden Scans meist unabdingbar, was bislang in der Regel durch ein grobes manuelles „Hinschieben“ / “Ausrichten“ der Scannerposition/-orientierung (Standort) im „Feldbuch“ (Darstellung der Laserscanner Position, sowie des gerade aufgenommenen Scans in einer elektronischen Karte in Draufsicht) erfolgt. Dabei hat man jedoch im Feld (vor Ort) keine ausreichende Kontrolle, ob mittels dieses Verfahrens aufgenommene und grob positionierte Scans sich tatsächlich später (am Rechner im Büro) registrieren lassen. Für den Anwender ist es bisher nicht möglich, die Registrierung der Scan-Daten sofort vor Ort zu kontrollieren oder sogar die Daten weiter zu verarbeiten – es verbleibt ihm lediglich, die Scans von den vorbestimmten Standorten aus durchzuführen und dann zu hoffen, dass die Scan-Positionen bei der folgenden Auswertung im „Büro“ registriert werden können.
  • Dabei ist der bislang übliche Workflow folgender: Zur Auswertung werden üblicherweise die Scandaten vom Laserscanner auf einen PC herunter geladen. Daraufhin erfolgt ein Öffnen jedes einzelnen Scans mittels der Registrier- und Auswerte-Software (beispielsweise Lasercontrol®) und eine Identifizierung der einzelnen Targets im Scan.
  • Falls die Aufnahmen ohne Targets erstellt wurden, erfolgt ein manuelles Verknüpfen benachbarter Scans zur targetlosen Registrierung, unter Verwendung natürlicher Objekte oder Strukturen.
  • Wie vorstehend ausgeführt, ist als Startwert für die targetlose Registrierung die Kenntnis über die Scannerposition und Scannerorientierung erforderlich, weshalb die groben Werte aus dem Feldbuch manuell genau auf benachbarte Scans abgestimmt werden müssen.
  • Stellt es sich nun während dieser Auswertung heraus, dass die Scans aufgrund mangelnder Überlappungsbereiche oder sonstiger Gründe nicht registriert werden können, besteht keine sofortige Möglichkeit der Nachbesserung, da, wie gesagt, diese Auswertung nicht im Feld erfolgt.
  • Die Durchführung von einfachen Vermessungen des Objektes ist üblicherweise erst am PC nach der Registrierung des Scans durchführbar. Dies ist allerdings bei einigen Anwendungen nachteilig, etwa wenn die bei der Vermessung entstandenen Datensätze geheim sind und die Anlage nicht verlassen dürfen. Das heißt, sämtliche Entscheidungen, Auswertungen und Datenerfassungen müssen vor Ort erfolgen, so dass die nachträgliche Vermessung des Objektes bei der oben geschilderten Nachbearbeitung unzulässig ist.
  • Demgegenüber liegt der Erfindung die Aufgabe zugrunde, eine Scananordnung sowie ein Verfahren zum Scannen eines Objektes zu schaffen, mit denen ein neuer Workflow eingeführt wird, der eine vereinfachte Datenauswertung ermöglicht.
  • Diese Aufgabe wird durch eine Scananordnung mit den Merkmalen des Patentanspruchs 1 bzw. durch ein Verfahren zum Scannen eines Objektes mit den Merkmalen des nebengeordneten Patentanspruchs 9 gelöst.
  • Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
  • Die erfindungsgemäße Scananordnung hat zumindest einen Laserscanner zur 2D- oder 3D-Vermessung von Objekten und einen Speicher zum Ablegen von projektbezogenen Daten (Projektfile, beispielsweise den Scandaten und der Scannerposition und der Scannerorientierung). Die Scananordnung hat des Weiteren eine Navigationseinheit zum Erfassen dieser Scannerposition und der Scannerorientierung, bzw. einer Scannerrelativposition mit Bezug zu einer Startposition. Weiterhin vorhanden ist eine Datenverbindung (vorzugsweise eine Funkverbindung) zu einem sich im Feld (vor Ort) befindlichen Satellitenrechner, der bei einem Ausführungsbeispiel als Handheld ausgeführt ist. Die Scananordnung ist mit einer geeigneten Einrichtung zum Übertragen der aufgenommenen Scans an den Satellitenrechner ausgeführt, wobei dieser ausgelegt ist, in Abhängigkeit von der jeweiligen Scannerposition/-orientierung eine Registrierung des betreffenden Scans in einem übergeordneten (projektspezifischen) Koordinatensystem durch zu führen. Der Satellitenrechner kann des Weiteren eine Einrichtung zum Generieren einer Fehlermeldung, wenn die Registrierung eines Scans fehlgeschlagen ist, aufweisen.
  • Diese Scananordnung ermöglicht eine sehr komfortable Scandatenverarbeitung und Registrierung im Feld, wobei fehlerhafte oder unzureichende Messungen automatisch im Feld erkannt werden, sowie Versäumnisse des Anwenders an Ort und Stelle aufgedeckt werden, welche sonst später zu Problemen führen könnten.
  • Ein weiterer Vorteil der erfindungsgemäßen Anordnung besteht darin, dass die relativ zeitaufwendige Registrierung durch die Auslagerung auf den Satellitenrechner parallel zu einem sich anschließenden Scanvorgang mittels des Laserscanners erfolgen kann, so dass zum Einen die Wartezeit während des Messvorgangs an einem Standort zur Auswertung der Messung am zuvor vermessenen Standorts ausgenutzt werden kann. Das Scannen und Auswerten des Scans erfolgt somit wesentlich schneller als bei herkömmlichen Lösungen.
  • Der Aufbau der Scananordnung ist besonders einfach, wenn die Datenübertragung per Bluetooth-Verbindung, Mobilfunk oder nach WiFi-Standard erfolgt, kann aber auch kabelgebunden sein.
  • Der Satellitenrechner kann derart ausgelegt sein, dass eine Registrierung der Scans mit und ohne Targets möglich ist und auch der Laserscanner ansteuerbar ist. Das heißt, über den Satellitenrechner kann im Feld eine Auswertung der Scans im Sinne einer voll- oder teilautomatischen Registrierung erfolgen und gegebenenfalls der Laserscanner zur Wiederholung, zur Nacherfassung eines Teilbereichs, oder Durchführung eines Scans von einer anderen Position angesteuert werden.
  • Der Zeitbedarf zum Erfassen eines Objektes kann weiter minimiert werden, wenn einem gemeinsamen Satellitenrechner mehrere Laserscanner zugeordnet sind, so dass die Auswertung der verschiedenen Scans zentral vor Ort erfolgt.
  • Die Koordination der einzelnen Laserscanner kann entweder direkt über den Satellitenrechner oder über einen gemeinsamen Server oder einen Projektleitungsrechner erfolgen, der in Datenverbindung mit dem oder den Satellitenrechnern steht und über den eine gemeinsame Auswertung und Koordination der Scanvorgänge erfolgt.
  • Bei einer besonders komfortablen Lösung kann die Scananordnung mit einer Schnittstelle zum Ansteuern eines automatischen Positioniersystems zum Verfahren des Laserscanners an einen zum Scannen geeigneten Standort ausgeführt sein. Dies kann beispielsweise ein Roboter sein, der den Laserscanner zur softwareseitig vorgegebenen optimalen Position verfährt.
  • Wie bereits oben angeführt, ist der Satellitenrechner vorzugsweise als Handheld oder Tablet ausgeführt.
  • Zur Erfassung von Farbinformationen kann die Scananordnung zusätzlich mit einer Farbkamera oder weiteren Sensoren, etwa zur Aufnahme von Thermografie Daten, ausgeführt sein. Diese können auch in den Scanner integriert sein.
  • Gemäß dem erfindungsgemäßen Verfahren zum Scannen eines Objektes, vorzugsweise mit einer Scananordnung der vorbeschriebenen Art, ergeben sich folgende Schritte:
    Aufnehmen eines Scans mittels zumindest eines Laserscanners und Bestimmung des Standorts und der Orientierung des Laserscanners. Die aus dem Scanvorgang resultierende 3D-Punktwolke des Scans und Navigationsdaten des Scanners werden dann an den lokalen Satellitenrechner übertragen. Diese Übertragung erfolgt vorzugsweise per Funk, etwa Bluetooth, WiFi oder Mobilfunk. Alternativ kann auch eine kabelgebundene Kommunikation durchgeführt werden. Mittels der dort vorhandenen Software (z.B. Lasercontrol „Scout®“) erfolgt das automatische Registrieren des Scans in Abhängigkeit vom Scannerstandort und der Scannerorientierung entweder in ein übergeordnetes Koordinatensystem oder relativ zu einem vorhergehenden Scan. Die automatische Registrierung ist typischer Weise in zwei Schritte aufgeteilt:
    • 1) der Vor-Registrierung, die automatisch die grobe Position und Orientierung des aufgenommenen Scans berechnet. Diese kann alternativ auch vom Anwender durch manuelles „Verschieben/Verdrehen“ des Laserscans im elektronischen Feldbuch durchgeführt werden.
    • 2) der Fein-Registrierung, die automatisch aus den groben Informationen der Vor-Registrierung eine exakte Registrierung berechnet, entweder basierend auf der Minimierung von 3D Pixel-Abständen (ICP) oder der Zuordnung vorhandener Objekte (z.B. Flächen, Zylinder) oder Strukturen (z.B. Ecken, Kanten) in den zu registrierenden 3D-Punktwolken.
  • Die Software, beziehungsweise der Satellitenrechner ist vorzugsweise so ausgelegt, dass in dem Fall, in dem der Scan nicht oder nur fehlerbehaftet registrierbar ist, eine Fehlermeldung abgegeben wird, so dass gegebenenfalls der Scanvorgang wiederholt wird oder diese Wiederholung von einem anderen Standort aus erfolgt. Auch kann der Anwender durch manuelle Eingriffe versuchen, das Registrierergebnis zu verbessern.
  • Derartige manuelle Eingriffe können beispielsweise darin bestehen, dass zunächst andere Registrier-Parameter gesetzt werden oder eine manuelle Vor-Registrierung erfolgt und dann die eigentliche Registrierung nochmals durchgeführt wird.
  • Alternativ kann – wie oben ausgeführt – nach einer Änderung von Scan-Parametern oder einer Änderung des Scanners-Standpunkts ein neuer Scan aufgenommen werden.
  • Für den Fall, dass keine Fehlermeldung abgegeben wird, werden die auf dem Laserscanner abgelegten Daten aktualisiert, in dem die auf dem Tablet berechneten Resultate übertragen werden (Upload), so dass eine Datenkonsistenz zwischen Laserscanner und Tablet gewährleistet ist.
  • Diese Abfolge wird wiederholt, bis eine vollständige Vermessung des Objektes vorliegt und alle Scandaten in der erforderlichen Weise registriert sind. Der Fortschritt dieser Registrierung wird dabei stets im Feld (vor Ort) kontrolliert, so dass sofort eingegriffen werden kann, falls eine unvollständige Vermessung des Objektes vorliegt.
  • Wie erläutert, können mehrere Laserscanner einem Satellitenrechner zugeordnet werden. Prinzipiell ist es auch möglich, mehrere derartige Gruppen (Laserscanner und Satellitenrechner) miteinander zu vernetzen.
  • Bei komplexen Messaufgaben kann es vorteilhaft sein, wenn der Satellitenrechner mit einem zentralen Server oder einem Projektleitungsrechner verbunden ist, über den die Vermessung des Objektes koordiniert ist.
  • Besonders vorteilhaft ist es, wenn der Satellitenrechner, beziehungsweise dessen Software so ausgelegt ist, dass mittels des Satellitenrechners einfachere Messungen nach Registrierung der Scans durchgeführt werden können. Derartige einfachere Messungen können beispielsweise die Erfassung von Abmessungen, Flächen, Volumina, Abständen und dergleichen sein.
  • Bei einer Variante der Erfindung hat der Laserscanner einen integrierten Rechner, auf dem beispielsweise bei Ausfall einer Funkverbindung eine Registrierung oder Auswertung durchgeführt werden kann.
  • Bevorzugte Ausführungsbeispiele der Erfindung werden im Folgenden anhand von schematischen Zeichnungen näher erläutert. Es zeigen:
  • 1 den Grundaufbau einer derartigen Scananordnung;
  • 2 eine Variante der Scananordnung gemäß 1 mit mehreren Laserscannern oder ähnlichen Aufnahmegeräten und
  • 3 ein Fließdiagramm zur Verdeutlichung eines erfindungsgemäßen Scanvorgangs.
  • 1 zeigt den Grundaufbau einer Scananordnung 1. Demgemäß hat diese zumindest einen Laserscanner 2, wie er beispielsweise von der Patentanmelderin unter dem Namen „Imager®“ vertrieben wird. Dieser Laserscanner 2 hat einen rotierenden Messkopf 4, der um eine Horizontalachse (Ansicht nach 1) rotiert und über den ein Laserstrahl auf ein zu vermessendes Objekt gerichtet wird. Eine Sende- und Empfangseinheit des Laserscanners 1 ist in einem Gehäuse 6 angeordnet, das um eine vertikale Schwenkachse 8 um zumindest 180° verschwenkbar ist, so dass ein zu vermessendes Objekt nahezu vollständig durch Verschwenken des Gehäuses 4 um die Schwenkachse 8 und dabei rotierenden Messkopf 2 abgetastet werden kann, wobei unterhalb des Messkopfs befindliche Bereiche des Objektes durch das Gehäuse 6 abgedeckt sind und somit nicht erfassbar sind. Hinsichtlich weiterer Einzelheiten des Aufbaus eines derartigen Scanners sei beispielsweise auf die DE 101 50 439 B4 oder die DE 10 2006 024 534 A1 verwiesen.
  • Im Gehäuse 2 kann des Weiteren noch ein Speicher für die Scandaten sowie eine Auswerteeinheit zu einer ersten groben Auswertung der Scandaten, beispielsweise eine Vor-Registrierung in einem elektronischen Feldbuch angeordnet sein.
  • Wie in 1 angedeutet, steht der Laserscanner 2 in Funkverbindung mit einem sich im Feld befindlichen Satellitenrechner, der im vorliegenden Fall als Tablet 10 ausgeführt ist. Die Funkverbindung kann beispielsweise eine Bluetooth-Verbindung oder eine nach dem WiFi-Standard geregelte Verbindung sein. Über diese Funkverbindung können Daten, beispielsweise der Standort und die Orientierung des Laserscanners 2 beim Scannen und die 3D-Punktwolke des Scans auf den Speicher des Tablets 10 übertragen werden. Zur Ermittlung des Scannerstandorts und der Scannerorientierung kann der Laserscanner 2 mit einem integrierten Navigationssystem ausgeführt sein, das eine GNSS(z.B. GPS)-unabhängige Bestimmung der absoluten Position des Laserscanners oder zumindest einer Relativposition zu einem bekannten Ort im Feld ermöglicht. Der Aufbau eines derartigen Navigationssystems ist in der parallelen Patentanmeldung der Anmelderin offenbart, so dass im Hinblick auf weitere Details auf die Ausführungen in dieser Parallelanmeldung verwiesen wird, deren Offenbarung zu derjenigen der vorliegenden zu zählen ist.
  • Wie erläutert, werden die grob vorregistrierten Daten eines beispielsweise gerade aufgenommenen Scans auf das Tablet 10 übertragen (Download). Dabei wird davon ausgegangen, dass ein Mitglied der Messcrew das Tablet 10 im Feld bedient.
  • Über die im Tablet 10 gespeicherte Software (z.B Lasercontrol „Scout®") wird dann die grobe Registrierung des Scans im übergeordneten Koordinatensystem überprüft und gegebenenfalls bearbeitet, wobei diese Registrierung dadurch erleichtert wird, dass die Position des Laserscanners und seine Orientierung entweder relativ zu einem vorhergehenden bekannten Standort oder sogar als absolute Position bekannt ist.
  • Dieser relative oder absolute Standort ist damit ausreichend exakt bestimmt, um als Startwert für eine targetlose Registrierung zu dienen. Es kann jedoch auch über die tabletseitige Software entschieden werden, dass anstelle der targetlosen Registrierung eine Targetregistrierung erfolgt.
  • Im Feld wird dann mittels der Tabletsoftware eine Registrierung (vorzugsweise targetlos) gestartet oder aber es werden, manuell oder automatisch, alle Targets im Scan bestimmt. Einzelne oder die Gesamtheit aller Scans kann mit diesen bestimmten Targets zu einer Tachymeterdatei (welche die mit einem Tachymeter oder einer Totalstation eingemessenen Weltkoordinaten aller Target-Mittelpunkte enthält) registriert werden.
  • Schlägt diese Registrierung am Tablet fehl, bekommt der Anwender unmittelbar eine Fehlermeldung und kann den Laserscan entweder am gleichen Standort oder an einem weiteren, besser geeigneten Standort wiederholen. Die Ansteuerung des Laserscanners kann dabei über das Tablet erfolgen.
  • Optional ist es vorgesehen, dass die Tabletsoftware so ausgelegt ist, dass ein optimaler Standort softwareseitig vorgeschlagen wird, der automatisch aus den aufgenommenen Punktwolken und Positionen / Orientierungen errechnet wird
  • Nach vollständiger Registrierung des Scans erfolgt dann das Verbringen des Laserscanners 2 an den nächsten Aufnahme-Standort – der Vorgang wiederholt sich, bis eine vollständige Vermessung des Objekts vorliegt, wobei alle Scans entweder relativ zueinander oder im übergeordneten Koordinatensystem registriert sind. Das heißt, die komplette Registrierung erfolgt bereits im Feld und nicht – wie bei herkömmlichen Lösungen – nach dem Auslesen aller Laserscans und der Auswertung auf einem Bürocomputer.
  • Ein weiterer Vorteil besteht darin, dass vor Ort softwareseitig einfache Messungen durchgeführt werden können und aus diesen Messungen auch Rückschlüsse auf die weiteren Scanvorgänge gezogen werden können.
  • Für den Fall, dass der Laserscanner 2 mit einer Farbkamera ausgeführt ist, kann bei genügender Reserve an Rechenkapazität auf dem Handheld sogar ein (HDR-)Farbmapping im Hintergrund durchgeführt werden, was wiederum Auswertezeit im Büro spart.
  • Nach der vollständigen Vermessung ist im Tablet 10 ein Feldbuch mit den jeweiligen optimalen Scannerpositionen und Scannerorientierungen 14 abgelegt. Dieses Feldbuch so wie die damit verbundenen Scandaten können dann wieder per WLAN-Verbindung oder dergleichen an einen zentralen Server 16 oder den Rechner eines Projektleiters übertragen werden, so dass eine zentrale Kontrolle seitens der Projektleitung erfolgen kann und gegebenenfalls an die sich noch im Messfeld befindliche Crew Anweisung zur Wiederholung oder zusätzlichen Durchführung von Scans gegeben werden kann. Diese Anweisungen werden dann ebenfalls per WLAN, Mobilfunk oder dergleichen an das Tablet 10 übertragen.
  • 2 zeigt eine Variante, bei der das Tablet 10 über eine Funkverbindung mit mehreren, sich gleichzeitig im Feld befindlichen, Laserscannern 2a, 2b verbunden ist. Wie in 2 rechts angedeutet, kann das Tablet 10 auch mit einem Referenzmessgerät 18 verbunden sein, über das Referenzdaten an das Tablet 10 übertragen werden, die dann bei der Registrierung und Auswertung der Scans mit eingehen.
  • Bei sehr großen Objekten kann es auch möglich sein, mehrere der in 2 dargestellten Einheiten mit jeweils einem Tablet 10 und mehreren zugeordneten Laserscannern 2a, 2b im Feld zu haben, wobei dann die Tablets 10 der einzelnen Gruppen so miteinander vernetzt sind, dass der Datenbestand jeweils aktualisiert ist. Gerade bei derart komplexen Systemen ist der Datenaustausch mit dem zentralen Server 16 oder einem Projektleitungsrechner zur Koordinierung der Aktivitäten der Messcrews wichtig.
  • In 3 sind grundlegende Schritte der Funktionsweise der erfindungsgemäßen Scananordung und des erfindungsgemäßen Verfahrens zum Scannen eines Objektes schematisch dargestellt. Wie erläutert, erfolgt zunächst eine Standortbestimmung des oder der Laserscanner 2 im Feld. Diese Standortbestimmung kann relativ mit Bezug zu einem bekannten vorhergehenden Standort oder auch absolut erfolgen. An diesem Standort erfolgt auch die Aufnahme eines Scans, die Abspeicherung der gescannten Daten im Speicher des Laserscanners 2 und eventuell eine Vor-Registrierung bereits auf einem im Laserscanner 2 integrierten Rechner.
  • Der gespeicherte Standort sowie die 3D-Punktwolke des Scans wird dann per Funk im Feld an das Tablet 10 (Handheld) übertragen („Download“), dort erfolgt zunächst eine Vor-Registrierung (falls diese nicht auf dem Laserscanner bereits erfolgt ist), sowie anschließend eine Fein-Registrierung.
  • Für den Fall, dass eine Registrierung aufgrund fehlerhafter Messdaten oder dergleichen nicht möglich ist, wird softwareseitig eine Fehlermeldung ausgegeben. Der Anwender kann dann versuchen, durch manuellen Eingriff (wie etwa eine manuelle Vor-Registrierung oder eine Veränderung der Registrierungs-Einstellungen) eine bessere Registrierung zu erzielen.
  • Alternativ nimmt der Anwender erneut einen Laserscan auf, etwa mit besseren Scan-Einstellungen oder von einem geeigneteren Standpunkt aus.
  • Da der alte Standort bekannt war, kann über das Navigationssystem die Relativposition des neuen Standorts zum bekannten Standort oder auch die absolute Position bestimmt werden.
  • Falls der Scan ohne Fehlermeldung registriert wird, wird der Laserscanner zum nächsten Standpunkt versetzt und der Scanvorgang erfolgt in der vorbestimmten Weise von neuem.
  • Wie in 3 dargestellt, werden die Ergebnisse der auf dem Tablet 10 erfolgten Registrierung, wie etwa die (durch die Registrierung bestimmte) exakte Position und Orientierung des aktuellen Standpunktes, eventuell gefundene Target-Mittelpunkte oder andere Informationen, zum Laserscanner zurück übertragen („Upload“), so dass immer alle Daten auf Laserscanner und Tablet konsistent bleiben.
  • Dies wird wiederholt, bis das gesamte Objekt vermessen ist – der Fortschritt dieser Vermessung und die Registrierung der einzelnen Scans im Feldbuch wird am Tablet 10 stets kontrolliert, so dass rechtzeitig eingegriffen werden kann, wenn die Vermessung unzureichend ist.
  • Zusätzlich können über die Projektleitung Anweisungen an die Crew im Messfeld gegeben werden, falls mehrere Crews mit unterschiedlichen Scannern und Tablets 10 im Feld arbeiten.
  • Wie in der parallelen Anmeldung erläutert, besteht das Navigationssystem im Wesentlichen aus einer Kombination von Magnetometer, Barometer, Gyroskop, Accelerometer sowie einem GNSS-Empfänger. Bei fehlendem GNSS-Empfang kann mit einem derartigen System eine Positionsänderung des Laserscanners 2 von einem Standort zum nächsten Standort relativ mitgekoppelt werden, so dass hinreichend genaue Positions-/Orientierungs-Schätzungen des neuen Standortes vorliegen. Es sind jedoch auch andere Methoden der Navigation, beispielsweise über die Standorte bekannter WLAN Punkte (RSS- oder Laufzeit-Auswertung) oder GSM Daten (Peilung zu Basis-Stationen von Mobil-Telefonen) denkbar. Diese Navigationsdaten sind, wie erläutert, im internen Speicher des Lasercanners 2 abgelegt.
  • Weiterhin ist es vorteilhaft, wenn die Datenverbindung zwischen dem Laserscanner 2 und dem Tablet 10 sehr schnell ist. Als besonders geeignet hat sich eine sehr schnelle WiFi-Verbindung vom Laserscanner 2 zum Tablet 10 durch zwei Antennen und Ausnützung verfügbarer g-/a- und n-Funkstandards für den schnellen Download des Scans vom Laserscanner 2 zum Tablet 10 des Anwenders herausgestellt.
  • Die tabletseitige Software bietet vorzugsweise eine vollständige „Touch“-Bedienung und enthält alle erforderlichen Messtools, um die vorstehend erwähnten, einfacheren Messungen durchführen zu können. Des Weiteren sind softwareseitig die automatischen Abläufe der Registrierung mit und ohne Targets abgelegt, so dass dem Anwender automatisch Ergebnisse bzw. Fehler angezeigt werden können und dieser ggf. den Scan wiederholen oder zum nächsten Scan übergehen kann.
  • Bei der zuvor beschriebenen Verbindung mit der Projektleitung bzw. einem zentralen Server kann eine übergeordnete Instanz, beispielsweise der Projektleiter im Vermessungsbüro, den aktuellen Stand aller Laserscanner im Feld erfassen. Je nach Anforderung kann er dann Planungsdaten in die elektronischen „Feldbücher“ der eingesetzten Laserscanner schicken, auf denen zum Beispiel die von der Feldcrew zu scannenden Bereiche markiert sind. Die gewonnenen Daten können, wie erläutert, online an die Zentrale oder aber auch in eine „Cloud“ übertragen werden. Die Feldcrew kann mit dem Satellitenrechner auch zusätzlich Bilder aufnehmen und Dokumente erstellen, die den Projektdaten zugeordnet und mit der Projektleitung ausgetauscht werden können.
  • Offenbart sind eine Scananordnung und ein Verfahren zum Scannen eines Objekts, wobei einem Laserscanner ein sich im Feld befindlicher Satellitenrechner zugeordnet ist, über den die Registrierung und/oder Auswertung der Scans im Feld erfolgt.
  • Bezugszeichenliste
  • 1
    Scananordnung
    2
    Laserscanner
    4
    Messkopf
    6
    Gehäuse
    8
    Schwenkachse
    10
    Tablet mit Registrier-/Auswerte-Software
    12
    Scannerposition
    14
    Scannerorientierung
    16
    Server
    18
    Referenzmessgerät
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 202010013825 U1 [0003]
    • DE 102008034198 B4 [0005]
    • DE 10150439 B4 [0039]
    • DE 102006024534 A1 [0039]

Claims (13)

  1. Scananordnung mit zumindest einem Laserscanner (2) zur 2D- oder 3D-Vermessung von Objekten, mit einem Speicher zum Ablegen von projektbezogenen Daten, gekennzeichnet durch eine Navigationseinheit zum Erfassen einer Scannerposition und/oder einer Scannerrelativposition zu einer Startposition, eine Datenfernverbindung, vorzugsweise einer Funkverbindung zu einem Satellitenrechner, vorzugsweise einem Handheld und mit einer Einrichtung zum Übertragen von aufgenommenen Scans an den Satellitenrechner, wobei dieser derart ausgelegt ist, dass in Abhängigkeit von der jeweiligen Scannerposition eine Registrierung des betreffenden Scans in einem projektspezifischen Koordinatensystem durchführbar ist, wobei der Satellitenrechner vorzugsweise eine Einrichtung zum Generieren einer Fehlermeldung in dem Fall hat, wenn die Registrierung eines Scans fehlschlägt.
  2. Scananordnung nach Patentanspruch 1, wobei die Datenübertragung per Bluetooth-Verbindung oder nach WiFi-Standard oder Mobilfunk erfolgt.
  3. Scananordnung nach Patentanspruch 1 oder 2, wobei eine Software des Satellitenrechners derart ausgelegt ist, dass eine voll- oder teil-automatische Registrierung des Scans mit und ohne Targets ermöglicht ist und auch der Laserscanner (2) ansteuerbar ist.
  4. Scananordnung nach einem der vorhergehenden Patentansprüche, wobei einem Satellitenrechner mehrere Laserscanner (2) zugeordnet sind.
  5. Scananordnung nach einem der vorhergehenden Patentansprüche, mit einem gemeinsamen Server (16) oder einem Projektleitungsrechner, der mit dem Satellitenrechner verbunden ist und über den eine gemeinsame Auswertung und Koordination der Scanvorgänge erfolgt.
  6. Scananordnung nach einem der vorhergehenden Patentansprüche, mit einer Schnittstelle zum Ansteuern eines automatischen Positioniersystems zum Verfahren des Laserscanners (2) an einem zum Scannen geeigneten Standort.
  7. Scananordnung nach einem der vorhergehenden Patentansprüche, wobei der Satellitenrechner ein Handheld, vorzugsweise ein Tablet (10) ist.
  8. Scananordnung nach einem der vorhergehenden Patentansprüche, mit einer Farbkamera zum Erfassen von Farbinformationen.
  9. Verfahren zum Scannen eines Objekts, vorzugsweise mittels einer Scananordnung nach einem der vorhergehenden Patentansprüche, mit den Schritten (3): a) Aufnehmen eines Scans mit zumindest einem Laserscanner (2); b) Bestimmen des Standorts und der Orientierung des Laserscanners (2); c) Übertragen der Scan- und Navigations-Daten an einen lokalen Satellitenrechner (Download); d) Registrieren des Scans in Abhängigkeit vom Scannerstandort und der Scannerorientierung in einem übergeordneten Koordinatensystem oder relativ zu einem zuvor aufgenommenen Scan oder Registrieren des Scans in Abhängigkeit von manuell oder automatisch im Scan identifizierten Targets in einem übergeordneten Koordinatensystem oder relativ zu einem zuvor aufgenommenen Scan; e) vorzugsweise Ausgabe einer Fehlermeldung, falls der Scan nicht oder nur fehlerhaft registrierbar ist; f) vorzugsweise manueller Eingriff des Anwenders durch – Setzen anderer Registrier-Parameter oder manuelle Vor-Registrierung oder – erneuter Scan mit anderen Scan-Parametern oder von anderem Standpunkt g) Versetzen des Laserscanners (2) an einen neuen Standort und Wiederholen der Schritte a) bis f) h) anhand des Satellitenrechners erfassbar ist, dass eine vollständige Vermessung des Objekts vorliegt.
  10. Verfahren nach Patentanspruch 9, wobei eine Aktualisierung der Daten auf dem Laserscanner (2) durch Rück-Übertragung (Upload) der bei der Registrierung / Auswertung auf dem Tablet (10) gewonnenen Ergebnisse erfolgt.
  11. Verfahren nach Patentanspruch 9 oder 10, wobei die Daten mehrerer Laserscanner mittels des Satellitenrechners verarbeitbar sind.
  12. Verfahren nach Patentanspruch 9, 10 oder 11, wobei der oder die Satellitenrechner mit einem zentralen Server (16) oder einem Projektleitungsrechner verbunden sind.
  13. Verfahren nach einem der Patentansprüche 9 bis 12, wobei die Registrierung und/oder Auswertung der aufgenommenen Daten auch auf einem im Laserscanner integrierten Rechner erfolgt.
DE102016102607.7A 2015-02-13 2016-02-15 Scananordnung und Verfahren zum Scannen eines Objektes Pending DE102016102607A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102015102154 2015-02-13
DE102015102154.4 2015-02-13
DE102015113382.2 2015-08-13
DE102015113382 2015-08-13

Publications (1)

Publication Number Publication Date
DE102016102607A1 true DE102016102607A1 (de) 2016-08-18

Family

ID=55361384

Family Applications (3)

Application Number Title Priority Date Filing Date
DE202016008719.4U Active DE202016008719U1 (de) 2015-02-13 2016-02-15 Scananordnung zum Scannen eines Objektes
DE202016008907.3U Active DE202016008907U1 (de) 2015-02-13 2016-02-15 Scananordnung
DE102016102607.7A Pending DE102016102607A1 (de) 2015-02-13 2016-02-15 Scananordnung und Verfahren zum Scannen eines Objektes

Family Applications Before (2)

Application Number Title Priority Date Filing Date
DE202016008719.4U Active DE202016008719U1 (de) 2015-02-13 2016-02-15 Scananordnung zum Scannen eines Objektes
DE202016008907.3U Active DE202016008907U1 (de) 2015-02-13 2016-02-15 Scananordnung

Country Status (4)

Country Link
EP (2) EP3056923B1 (de)
DE (3) DE202016008719U1 (de)
DK (1) DK3056923T3 (de)
ES (1) ES2878455T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016119155A1 (de) 2016-09-15 2018-03-15 Zoller + Fröhlich GmbH Laserscanner

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
EP3315906B1 (de) * 2016-10-27 2023-05-31 Leica Geosystems AG Verfahren zur verarbeitung von scandaten
CN116699631A (zh) * 2016-11-10 2023-09-05 莱卡地球系统公开股份有限公司 激光扫描仪
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11123070B2 (en) 2017-10-30 2021-09-21 Cilag Gmbh International Clip applier comprising a rotatable clip magazine
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11026712B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Surgical instruments comprising a shifting mechanism
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11678881B2 (en) * 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
CN111512386A (zh) * 2017-12-28 2020-08-07 爱惜康有限责任公司 外科集线器在手术室中的空间感知
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US10987178B2 (en) * 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US20190201042A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Determining the state of an ultrasonic electromechanical system according to frequency shift
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US10595887B2 (en) 2017-12-28 2020-03-24 Ethicon Llc Systems for adjusting end effector parameters based on perioperative information
US20190201142A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Automatic tool adjustments for robot-assisted surgical platforms
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11596291B2 (en) 2017-12-28 2023-03-07 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11678927B2 (en) 2018-03-08 2023-06-20 Cilag Gmbh International Detection of large vessels during parenchymal dissection using a smart blade
US11464532B2 (en) 2018-03-08 2022-10-11 Cilag Gmbh International Methods for estimating and controlling state of ultrasonic end effector
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11197668B2 (en) 2018-03-28 2021-12-14 Cilag Gmbh International Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11291445B2 (en) 2019-02-19 2022-04-05 Cilag Gmbh International Surgical staple cartridges with integral authentication keys
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
WO2022074083A1 (de) 2020-10-06 2022-04-14 Zoller & Fröhlich GmbH Mobile scananordnung und verfahren zur ansteuerung einer mobilen scananordnung
WO2022136479A1 (de) 2020-12-21 2022-06-30 Zoller & Fröhlich GmbH Plattform für mobile scananordnung und mobile scananordnung
CN112987612B (zh) * 2021-02-24 2022-06-07 浙江优纳特科学仪器有限公司 一种位置扫描的方法、装置、系统、电子装置和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024534A1 (de) 2006-05-05 2007-11-08 Zoller & Fröhlich GmbH Laserscanner
DE202010013825U1 (de) 2010-10-04 2011-02-17 V&R Vision & Robotics Gmbh Tragbare 3D Messvorrichtung
DE102008034198B4 (de) 2008-07-21 2014-01-23 Zoller & Fröhlich GmbH Target und Verfahren zum Auswerten von Scans

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150436B4 (de) 2001-08-30 2008-05-08 Zoller & Fröhlich GmbH Laser-Meßsystem
US6759979B2 (en) 2002-01-22 2004-07-06 E-Businesscontrols Corp. GPS-enhanced system and method for automatically capturing and co-registering virtual models of a site
JP2005537535A (ja) 2002-07-10 2005-12-08 ハーマン ベッカー オートモーティブ システムズ ゲーエムベーハー オブジェクトの3次元電子モデルを生成するシステム
DE102013102554A1 (de) 2013-03-13 2014-09-18 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024534A1 (de) 2006-05-05 2007-11-08 Zoller & Fröhlich GmbH Laserscanner
DE102008034198B4 (de) 2008-07-21 2014-01-23 Zoller & Fröhlich GmbH Target und Verfahren zum Auswerten von Scans
DE202010013825U1 (de) 2010-10-04 2011-02-17 V&R Vision & Robotics Gmbh Tragbare 3D Messvorrichtung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016119155A1 (de) 2016-09-15 2018-03-15 Zoller + Fröhlich GmbH Laserscanner
WO2018050516A1 (de) 2016-09-15 2018-03-22 Zoller & Fröhlich GmbH Laserscanner
US10901088B2 (en) 2016-09-15 2021-01-26 Zoller & Fröhlich GmbH Laser scanner with light
US10983214B2 (en) 2016-09-15 2021-04-20 Zoller & Fröhlich GmbH Laser scanner comprising a removeable internal memory controlling function of the scanner

Also Published As

Publication number Publication date
EP3056923A1 (de) 2016-08-17
EP3872525A1 (de) 2021-09-01
DE202016008719U1 (de) 2019-03-12
DE202016008907U1 (de) 2020-08-04
DK3056923T3 (da) 2021-07-12
EP3056923B1 (de) 2021-04-14
ES2878455T3 (es) 2021-11-18

Similar Documents

Publication Publication Date Title
EP3056923B1 (de) Scananordnung und verfahren zum scannen eines objektes
DE102016105496A1 (de) System zur Prüfung von Objekten mittels erweiterter Realität
EP3256877B1 (de) Laserscanner und verfahren zum vermessen eines objektes
EP2994770B1 (de) Verfahren und vorrichtungen zum bestimmen der position einer beweglichen kommunikationseinrichtung
EP2985624B1 (de) Verfahren und Vorrichtungen zum Bestimmen der Orientierung einer beweglichen Kommunikationseinrichtung
DE112018002048T5 (de) Hochgenaues kalibriersystem und kalibrierverfahren
DE102013202393A1 (de) Bestimmen von Neigungswinkel und Neigungsrichtung unter Verwendung von Bildverarbeitung
EP2824525B1 (de) Verfahren und Einrichtung zur Bestimmung der Position von Betriebsmitteln einer industriellen Automatisierungsanordnung
DE112017000244T5 (de) Endgerät-vorrichtung, steuerungs-vorrichtung, vorrichtung zum integrieren von daten, arbeitsfahrzeug, bildaufnahme-system, bildaufnahme-verfahren
DE102012103980A1 (de) Verfahren und Vorrichtung zur Ausrichtung einer Komponente
DE102019216548A1 (de) Verfahren und mobile Erfassungsvorrichtung zur Erfassung von Infrastrukturelementen eines unterirdischen Leitungsnetzwerks
DE102017216735A1 (de) Verfahren, System zum Beseitigen von Fahrzeugkarosseriedefekten unter Verwendung einer virtuellen Markierung
EP2208964A1 (de) Einrichtung und Verfahren zum Vermessen, insbesondere zum Vermessen von Tunnelausbrüchen
DE102014104514B4 (de) Verfahren zur Messdatenvisualisierung und Vorrichtung zur Durchführung des Verfahrens
DE212019000129U1 (de) System zur Inspektion eines Elektroenergiesystems mittels eines unbemannten Luftfahrzeugs
EP3931524A1 (de) Aufbau von schalungen und gerüsten mit hilfe von mobilgeräten
DE112020000410T5 (de) Orientierungsausrichtung von erweiterten realitätsmodellen
DE102022104880B4 (de) Verfahren zur Kalibrierung eines portablen Referenzsensorsystems, portables Referenzsensorsystem und Verwendung des portablen Referenzsensorsystems
DE102015206432B4 (de) Vermessungssystem und Vermessungsverfahren
EP3037837B1 (de) Verfahren und Positionsbestimmungssystem zum Bestimmen der Position wenigstens einer mobilen, eine digitale Bilderfassungseinrichtung aufweisenden Kommunikationseinrichtung
DE102016109919A1 (de) Vorrichtung zur Vermessung von Objekten
DE102015102128A1 (de) Laserscanner und Verfahren zum Vermessen eines Objektes
DE102019118127A1 (de) Vorrichtung und Verfahren zur dreidimensionalen optischen Vermessung eines Objektes mit einem topometrischen Sensor und Messanordnung und Zielmarke hierzu
AT522028A1 (de) Verfahren sowie 3D-Sensoreinheit zum Bestimmen von dreidimensionalen Koordinaten von Punkten auf der Oberfläche eines Objekts
DE102017007764A1 (de) Verfahren und Vorrichtung zum Generieren einer sensorspezifischen Sensormerkmalkarte einer Umgebung eines Fahrzeugs

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: WINTER, BRANDL - PARTNERSCHAFT MBB, PATENTANWA, DE

Representative=s name: WINTER, BRANDL, FUERNISS, HUEBNER, ROESS, KAIS, DE

R012 Request for examination validly filed