DE102015015816A1 - Sensory device for the optical detection of the particle concentration in suspensions of microscopic particles - Google Patents
Sensory device for the optical detection of the particle concentration in suspensions of microscopic particles Download PDFInfo
- Publication number
- DE102015015816A1 DE102015015816A1 DE102015015816.3A DE102015015816A DE102015015816A1 DE 102015015816 A1 DE102015015816 A1 DE 102015015816A1 DE 102015015816 A DE102015015816 A DE 102015015816A DE 102015015816 A1 DE102015015816 A1 DE 102015015816A1
- Authority
- DE
- Germany
- Prior art keywords
- light source
- sensory
- photodiode
- light
- suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 48
- 230000001953 sensory effect Effects 0.000 title claims abstract description 36
- 239000000725 suspension Substances 0.000 title claims abstract description 36
- 230000003287 optical effect Effects 0.000 title claims description 9
- 238000001514 detection method Methods 0.000 title claims description 5
- 230000005540 biological transmission Effects 0.000 claims abstract description 20
- 230000004907 flux Effects 0.000 claims abstract description 13
- 238000011156 evaluation Methods 0.000 claims abstract description 5
- 230000004913 activation Effects 0.000 claims abstract description 4
- 230000003213 activating effect Effects 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 12
- 230000008033 biological extinction Effects 0.000 description 5
- 239000002028 Biomass Substances 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 230000002745 absorbent Effects 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 238000010364 biochemical engineering Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/36—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/01—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/075—Investigating concentration of particle suspensions by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0042—Investigating dispersion of solids
- G01N2015/0053—Investigating dispersion of solids in liquids, e.g. trouble
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Dispersion Chemistry (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Es wird eine sensorische Vorrichtung zur optischen Erfassung der Partikelkonzentration in dichten Suspensionen mikroskopischer Partikeln bereitgestellt. Die Vorrichtung umfasst eine Lichtquelle 1, die einen Photonenfluss durch die Suspension auf einer Transmissionsstrecke erzeugt. Außerdem enthält sie mindestens zwei für die emittierten Photonen empfindliche Photodioden, die an dem Gefäß mit der Suspension so angeordnet sind, dass sie für Teile des emittierten Lichtes erreichbar sind. Die Photodioden unterscheiden sich durch ihre unterschiedliche Position zur Lichtquelle und zur Transmissionsstrecke. Eine der Photodioden, die Referenz-Photodiode 2, ist so angeordnet, dass das von ihr bei der Aktivierung der Lichtquelle gebildete Referenzsignal der Lichtintensität am Anfang der Transmissionsstrecke proportional ist. Die sensorische(n) Photodiode(n) 3 ist/sind so angeordnet, dass das von ihr/ihnen bei der Aktivierung der Lichtquelle gebildete sensorische Signal der Lichtintensität am Ende einer definierten Transmissionsstrecke proportional ist. Zur Erfindung gehören ferner eine elektronische Vorrichtung, welche die Lichtquelle für definierte Zeitintervalle aktiviert und eine elektronische Auswerte-Einheit. Die Auswerte-Einheit zeigt das mit der Partikelkonzentration zunehmende Attenuations-Verhältnis R zwischen dem Referenzsignal und dem im gleichen Zeitintervall erzeugten sensorischen Signal an oder setzt R zur Berechnung eines der Partikelkonzentration proportionalen Parameters ein.A sensory device is provided for optically detecting particle concentration in dense suspensions of microscopic particles. The device comprises a light source 1, which generates a photon flux through the suspension on a transmission path. In addition, it contains at least two photodiodes sensitive to the emitted photons, which are arranged on the vessel with the suspension so that they can be reached for parts of the emitted light. The photodiodes differ by their different position to the light source and the transmission path. One of the photodiodes, the reference photodiode 2, is arranged so that the reference signal formed by it upon activation of the light source is proportional to the light intensity at the beginning of the transmission path. The sensory photodiode (s) 3 is / are arranged such that the sensory signal formed by it upon activation of the light source is proportional to the light intensity at the end of a defined transmission path. The invention further includes an electronic device which activates the light source for defined time intervals and an electronic evaluation unit. The evaluation unit displays the attenuation ratio R increasing with the particle concentration between the reference signal and the sensory signal generated in the same time interval or sets R to calculate a parameter proportional to the particle concentration.
Description
Eine häufige Aufgabe in der biotechnologischen Forschung und in der Bioprozesstechnik besteht in der Messung der Zelldichte bzw. Biomassekonzentration. Sie wird üblicherweise entweder durch Messung der Lichtschwächung (Attenuation) durch Streulichtverluste oder durch Erfassung von Streulichtsignalen gelöst. Die beiden genannten optischen Prinzipien besitzen ein breites Anwendungsgebiet in der Messung der Konzentration von mikroskopischen künstlichen oder natürlichen Feststoffpartikeln. Zur Erfassung der Streulichtverluste oder Streulichtsignale wird üblicherweise Licht mit Wellenlängen > 600 nm bzw. infrarotes Licht bis zu einer Wellenlänge von 1000 nm eingesetzt, wodurch die absorptiv bedingte Lichtschwächung und damit der Einfluss der Pigmentierung der Partikeln minimiert wird. Zur optischen Erfassung des Streulichtes oder der Streulichtverluste in Suspensionen von Cyanobakterien oder Mikroalgen muss die Lichtwellenlänge wegen der Absorption des Lichtes durch Chlorophyll > 730 nm sein.A common task in biotechnological research and bioprocess engineering is the measurement of cell density or biomass concentration. It is usually achieved either by measuring the attenuation of light (attenuation) by scattered light losses or by detecting scattered light signals. The two optical principles mentioned have a broad field of application in the measurement of the concentration of microscopic artificial or natural solid particles. Light with wavelengths> 600 nm or infrared light up to a wavelength of 1000 nm is usually used to detect the scattered light losses or scattered light signals, thereby minimizing the absorptively induced light attenuation and thus the influence of the pigmentation of the particles. For optical detection of scattered light or stray light losses in suspensions of cyanobacteria or microalgae, the wavelength of light must be> 730 nm due to the absorption of the light by chlorophyll.
Häufig ist es wünschenswert, zur Erfassung der Partikelkonzentration externe Sensoren für die Konzentrationsbestimmung in Reaktions- oder Durchflussgefäßen einzusetzen. Mobile externe Sensoren sind beispielsweise für die Messung des Zuwachses der Konzentration von Mikroorganismen oder Zellen während des Wachstumsverlaufes in Kulturgefäßen vorteilhaft.It is often desirable to use external sensors for determining the concentration in reaction or flow-through vessels for detecting the particle concentration. Mobile external sensors are advantageous, for example, for measuring the increase in the concentration of microorganisms or cells during growth in culture vessels.
In neuerer Zeit werden kommerziell erhältliche Geräte zu diesem Zweck eingesetzt, welche die Zellkonzentration nach dem Prinzip der Rückstreuung eines eingestrahlten Lichtimpulses durch eine oder mehrere Photodioden erfassen und einen breiten Bereich der Partikelkonzentration abdecken. Da die Partikelkonzentration durch eine komplexe Analyse mehrerer Streulichtintensitäten berechnet wird, ergibt sich für diese Geräte neben einer gewissen Anfälligkeit gegen Störfaktoren wie die Variation der Gefäßwandstärke und die Lichtbrechung an den Gefäßwänden die Notwendigkeit komplizierte Eichprozeduren.Recently, commercially available devices are used for this purpose, which detect the cell concentration according to the principle of backscattering of an incident light pulse by one or more photodiodes and cover a wide range of particle concentration. Since the particle concentration is calculated by a complex analysis of several scattered light intensities, these devices are subject to a certain susceptibility to disturbing factors such as the variation of the vessel wall thickness and the refraction of light on the vessel walls, the need for complicated calibration procedures.
Während das Prinzip der Messung von multiplen Streulichtintensitäten mit externen sensorischen Vorrichtungen (
Die Aufgabe der Erfindung besteht in der Bereitstellung einer externen sensorischen Vorrichtung auf der Grundlage der Lichtschwächung (Attenuation) durch Streulichtverluste zur Messung der Konzentration suspendierter mikroskopischer Partikeln in abgeschlossenen Gefäßen, beispielsweise von Mikroorganismen in geschüttelten oder gerührten Kulturgefäßen. Die externe sensorische Vorrichtung soll eine Messung der Partikelkonzentrationen bis zu OD*-Werten von 80 ohne Entnahme von Proben oder Verdünnung auf einer relativ langen Transmissionsstrecke von beispielsweise 10 bis 20 mm ermöglichen und damit in der biotechnologischen Forschung und Bioprozesstechnik breit einsetzbar sein. Die Aufgabe der Erfindung wird durch eine sensorische Vorrichtung nach Anspruch 1 gelöst. In den Unteransprüchen werden vorteilhafte Ausführungsformen der Erfindung dargestellt.The object of the invention is to provide an external sensory device based on light attenuation (attenuation) by scattered light losses for measuring the concentration of suspended microscopic Particles in sealed vessels, for example of microorganisms in shaken or stirred culture vessels. The external sensory device should enable a measurement of particle concentrations up to OD * values of 80 without sampling or dilution on a relatively long transmission distance of, for example, 10 to 20 mm and thus be widely used in biotechnology research and bioprocessing. The object of the invention is achieved by a sensory device according to
Die erfindungsgemäße Vorrichtung (
Das Referenzsignal wird gebildet, wenn die Lichtquelle für ein kurzes Zeitintervall aktiv ist. Zu seiner Erfassung wird ein Teil des von der Lichtquelle ausgehenden Photonenflusses von der Lichtquelle auf die Referenzphotodiode gelenkt, während ein anderer Teil des gleichen Photonenflusses über eine Transmissionsstecke definierter Länge durch die Suspension auf die sensorische Photozelle gelenkt wird. Die Photonen, die von der Referenzphotozelle erfasst werden, nehmen einen Referenzweg, der nicht durch die Suspension oder nur auf einer vergleichsweis kurzen Strecke durch die Suspension führt. Das Referenzsignal entspricht nicht dem bei Photometern üblichen Blindwert, der den Photonenfluss auf der Transmissionsstrecke im partikelfreien transparenten Suspensionsmedium widerspiegelt. Es repräsentiert lediglich einen Anteil der von der Lichtquelle emittierten Photonen, welcher nicht oder in vergleichsweise geringerem Maße als der für das sensorische Signal verantwortliche Anteil von der Partikelkonzentration abhängt.The reference signal is formed when the light source is active for a short time interval. For its detection, part of the photon flux emanating from the light source is directed from the light source to the reference photodiode, while another part of the same photon flux is directed through a suspension of defined length through the suspension onto the sensory photocell. The photons detected by the reference photocell take a reference path that does not pass through the suspension or only a comparatively short distance through the suspension. The reference signal does not correspond to the blank value customary with photometers, which reflects the photon flux on the transmission path in the particle-free transparent suspension medium. It only represents a portion of the photons emitted by the light source, which does not depend on the particle concentration, or does so to a lesser extent than the fraction responsible for the sensory signal.
Durch die elektronische Auswerteinheit wird aus den Signalen A und B das Attenuationsverhältnis
Auch in diesem Fall nimmt das Attenuationsverhältnis
BezugszeichenlisteLIST OF REFERENCE NUMBERS
- 11
- Lichtquellelight source
- 22
- Referenz-PhotodiodeReference photodiode
- 33
- sensorische Photodiodesensory photodiode
- 44
- transparentes Mediumtransparent medium
Berücksichtige PatentschriftenConsider patent specifications
-
US 4193 692 US 6573991 B1 US 8405033B2 US 8603772B2 US 4,193,692 US 6573991 B1 US 8405033B2 US 8603772B2
Zitierte LiteraturQuoted literature
-
Myers J, Curtis, BS, Curtis: Improving accuracy of cell and chromophore concentration measurements using optical density. WR BMC Biophysics 6: 4 (2013) 1–15Myers J, Curtis, BS, Curtis: Improving accuracy of cell and chromophore concentration measurements using optical density. WR BMC Biophysics 6: 4 (2013) 1-15
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- US 6573991 B1 [0004, 0014] US 6573991 B1 [0004, 0014]
- US 8405033 B2 [0004, 0014] US 8405033 B2 [0004, 0014]
- US 8603772 B2 [0004, 0014] US 8603772 B2 [0004, 0014]
- US 4193692 [0004, 0014] US 4193692 [0004, 0014]
Zitierte Nicht-PatentliteraturCited non-patent literature
- Myers J, Curtis, BS, Curtis WR, 2013, BMC Biophysics 6: 4, 1–15 [0004] Myers J, Curtis, BS, Curtis WR, 2013, BMC Biophysics 6: 4, 1-15 [0004]
- Myers et al., 2013 [0004] Myers et al., 2013 [0004]
- Myers et al. 2013 [0014] Myers et al. 2013 [0014]
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015015816.3A DE102015015816B4 (en) | 2015-12-07 | 2015-12-07 | Sensory device for the optical detection of the particle concentration in suspensions of microscopic particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015015816.3A DE102015015816B4 (en) | 2015-12-07 | 2015-12-07 | Sensory device for the optical detection of the particle concentration in suspensions of microscopic particles |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102015015816A1 true DE102015015816A1 (en) | 2017-06-08 |
DE102015015816B4 DE102015015816B4 (en) | 2021-03-25 |
Family
ID=58722800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102015015816.3A Active DE102015015816B4 (en) | 2015-12-07 | 2015-12-07 | Sensory device for the optical detection of the particle concentration in suspensions of microscopic particles |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102015015816B4 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4193692A (en) | 1978-06-07 | 1980-03-18 | Monitek, Inc. | Method and apparatus for the optical measurement of the concentration of a particulate in a fluid |
US6573991B1 (en) | 2000-04-26 | 2003-06-03 | Martin Paul Debreczeny | Self-compensating radiation sensor with wide dynamic range |
US8405033B2 (en) | 2010-07-30 | 2013-03-26 | Buglab Llc | Optical sensor for rapid determination of particulate concentration |
US8603772B2 (en) | 2007-07-28 | 2013-12-10 | Bug Lab LLC | Particle sensor with wide linear range |
-
2015
- 2015-12-07 DE DE102015015816.3A patent/DE102015015816B4/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4193692A (en) | 1978-06-07 | 1980-03-18 | Monitek, Inc. | Method and apparatus for the optical measurement of the concentration of a particulate in a fluid |
US6573991B1 (en) | 2000-04-26 | 2003-06-03 | Martin Paul Debreczeny | Self-compensating radiation sensor with wide dynamic range |
US8603772B2 (en) | 2007-07-28 | 2013-12-10 | Bug Lab LLC | Particle sensor with wide linear range |
US8405033B2 (en) | 2010-07-30 | 2013-03-26 | Buglab Llc | Optical sensor for rapid determination of particulate concentration |
Non-Patent Citations (6)
Title |
---|
2) MYERS, John A, ; CURTIS, Brandon S. ; CURTIS, Wayne R.: Improving accuracy of cell and chromophore concentration measurements using optical density. In: BMC Biophysics, Vol. 6, 2013, No. 4, 15 S. – ISSN 2046-1682 * |
2) MYERS, John A, ; CURTIS, Brandon S. ; CURTIS, Wayne R.: Improving accuracy of cell and chromophore concentration measurements using optical density. In: BMC Biophysics, Vol. 6, 2013, No. 4, 15 S. – ISSN 2046-1682 |
Myers et al. 2013 |
Myers et al., 2013 |
Myers J, Curtis, BS, Curtis WR, 2013, BMC Biophysics 6: 4, 1–15 |
Myers J, Curtis, BS, Curtis: Improving accuracy of cell and chromophore concentration measurements using optical density. WR BMC Biophysics 6: 4 (2013) 1–15 |
Also Published As
Publication number | Publication date |
---|---|
DE102015015816B4 (en) | 2021-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3103476C2 (en) | ||
DE112009002702B4 (en) | Automatic analyzer | |
DE2902776A1 (en) | METHOD FOR ANALYZING WITH COLOR IDENTIFICATION TEST PAPER AND A DEVICE FOR CARRYING OUT THE METHOD | |
DE10008517C2 (en) | Optical measuring system | |
WO1998022802A1 (en) | Method and device for combined absorption and reflectance spectroscopy | |
DE102008033214A1 (en) | Method for optically determining a measured variable of a measuring medium | |
DE2349271A1 (en) | DEVICE FOR DETERMINING PARAMETERS OF BLOOD CELLS | |
DE69819227T2 (en) | Device and method for measuring turbidity | |
Naik et al. | Phytoplankton light absorption of cultures and natural samples: comparisons using two spectrophotometers | |
EP1054252B1 (en) | Optical measuring device for the determination of transmitted and scattered radiation | |
DE69026448T2 (en) | Improvement in weakened total reflection spectroscopy | |
DE102015015816B4 (en) | Sensory device for the optical detection of the particle concentration in suspensions of microscopic particles | |
DE3706458C2 (en) | ||
EP2981809B1 (en) | Device for measuring the scattering of a sample | |
DE102012108620A1 (en) | Method for determining the path length of a sample and validation of the measurement obtained therewith | |
DE102008047467B4 (en) | Measuring method for the assessment of the contamination of fluid media and measuring cell therefor | |
CN109696423A (en) | A kind of automatic switching range high-precision transmissometer | |
DE102021117542A1 (en) | OPTICAL MULTIMETER | |
DE102006033326B4 (en) | culture vessel | |
EP2107362B1 (en) | Device for measuring the dispersion and/or absorption and/or refraction of a sample | |
EP0515905B1 (en) | Device for the detection of hydrocarbons, especially oil, in water conveying pipework systems | |
DE19920184A1 (en) | Simultaneous detection of diffuse, specular reflections from specimens involves coupling radiation from receiver plane into space between receiver, optical planes, using two receivers | |
DD262090A1 (en) | METHOD FOR SIMULTANEOUS MEASUREMENT OF TURBIDITY AND PARTICLE CONCENTRATION OF LIQUIDS | |
DE19647222C1 (en) | Absorption and reflection spectroscopy method | |
WO2016193066A1 (en) | Fluid sample device, production of same, fluid analysis device, and optical measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R086 | Non-binding declaration of licensing interest | ||
R012 | Request for examination validly filed | ||
R082 | Change of representative |
Representative=s name: EHWALD, RUDOLF, PROF.-DR., DE |
|
R016 | Response to examination communication | ||
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final | ||
R081 | Change of applicant/patentee |
Owner name: CELLDEG GMBH, DE Free format text: FORMER OWNERS: BAEHR, LARS, 10553 BERLIN, DE; LEHMANN, ROBERT, 14558 NUTHETAL, DE; RUESIKE, VINCENT, 14480 POTSDAM, DE |
|
R082 | Change of representative |