DE102015012201A1 - Method and device for visualizing interventional instruments in magnetic resonance imaging (MRI) via discrete phase coding artifacts generated by means of sequence-triggered energization - Google Patents

Method and device for visualizing interventional instruments in magnetic resonance imaging (MRI) via discrete phase coding artifacts generated by means of sequence-triggered energization Download PDF

Info

Publication number
DE102015012201A1
DE102015012201A1 DE102015012201.0A DE102015012201A DE102015012201A1 DE 102015012201 A1 DE102015012201 A1 DE 102015012201A1 DE 102015012201 A DE102015012201 A DE 102015012201A DE 102015012201 A1 DE102015012201 A1 DE 102015012201A1
Authority
DE
Germany
Prior art keywords
instruments
instrument
magnetic resonance
current
artifacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102015012201.0A
Other languages
German (de)
Inventor
Hansjörg Graf
Frank Eibofner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102015012201.0A priority Critical patent/DE102015012201A1/en
Publication of DE102015012201A1 publication Critical patent/DE102015012201A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • G01R33/287Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR involving active visualization of interventional instruments, e.g. using active tracking RF coils or coils for intentionally creating magnetic field inhomogeneities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3954Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
    • A61B2090/3958Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI emitting a signal

Abstract

Die Visualisierung von Instrumenten bei MRT-geführten Intervention wird üblicherweise über den Paramagnetismus des Instrumentenmaterials realisiert. Hierbei wird die Ortskodierung verfälscht; die Größe der Artefakte ist nicht sequenzunabhängig steuerbar. Im Speziellen sind bei der sogenannten Spinecho-Bildgebungsmethode suszeptibilitätsbedingte Artefakte zu gering für eine sichere Lokalisierung der Instrumente. Das angegeben Verfahren zusammen mit entsprechenden Vorrichtungen an den Instrumenten behebt diese Probleme. Instrumente aus Material mit gewebeäquivalenter magnetischer Suszeptibilität werden mit geeigneten Strompfaden versehen. Der Strom wird, getriggert durch die verwendete Bildgebungssequenz, nur für ausgewählte Phasenkodierzeilen (z. B. bei jeder zweiten) appliziert, vorzugsweise zu Zeiten, in denen keine Störung der Ortskodierung erfolgt. Dadurch, dass die Störung nicht in jeder Zeile erfolgt, tritt die Störung außerhalb des Bildes nochmals in Erscheinung. Dies ermöglicht die Separation der Artefakte aufgrund permanenter Feldstörungen vom Artefakt um das Instrument aufgrund der transienten Störung. Die Stärke des mit dem Strom verbundenen Magnetfeldes und damit die Artefaktgröße kann geregelt werden. Die Technik kann bei Sequenzen vom Gradienten- wie auch vom Spinecho-Typ eingesetzt werden. Anwendungsgebiet sind alle Techniken in der interventionellen MRT, die von regelbaren bzw. abschaltbaren Sollartefakten und unverzerrter Wiedergabe des Instruments ohne zusätzliche Messzeit profitieren. Beispiele sind Medikamentengaben bzw. Biopsien mittels Nadeln oder die Radiofrequenzablation.The visualization of instruments in MRI-guided intervention is usually realized via the paramagnetism of the instrument material. Here, the spatial encoding is corrupted; The size of the artifacts can not be controlled independently of the sequence. Specifically, in the so-called spin echo imaging method, susceptibility-based artifacts are too small for safe localization of the instruments. The stated method, along with corresponding devices on the instruments, overcomes these problems. Instruments made of material with tissue-equivalent magnetic susceptibility are provided with suitable current paths. The current, triggered by the imaging sequence used, is applied only to selected phase coding lines (eg every other second), preferably at times when there is no disturbance of the spatial coding. Due to the fact that the fault does not occur in every line, the disturbance appears again outside the picture. This allows for the separation of artifacts due to permanent field disturbances from the artifact around the instrument due to the transient disturbance. The strength of the magnetic field connected to the current and thus the artifact size can be regulated. The technique can be used with gradient-type as well as spin-echo-type sequences. Fields of application are all techniques in interventional MRI that benefit from adjustable or deactivatable nominal artifacts and undistorted reproduction of the instrument without additional measuring time. Examples are medication or biopsies using needles or radiofrequency ablation.

Description

Verfahren und Vorrichtung zur Visualisierung interventioneller Instrumente in der Magnetresonanzbildgebung über sequenz-getriggerte Bestromung mit Erzeugung spezieller Phasenkodierartefakte.Method and device for visualizing interventional instruments in magnetic resonance imaging via sequence-triggered energization with generation of special phase-coding artifacts.

Die Visualisierung von Instrumenten bei MRT-geführten Intervention wird üblicherweise über den Paramagnetismus des Instrumentenmaterials realisiert. Das magnetische Grundfeld des Tomographen wird in der Nähe des Instruments verzerrt, das Instrument lässt sich über Artefakte visualisieren (zum Beispiel „IEEE TRANSACTIONS ON MEDICAL IMAGING”, Bd. 19, Nr. 12, Dez. 2000, S. 1248–1252 ).The visualization of instruments in MRI-guided intervention is usually realized via the paramagnetism of the instrument material. The basic magnetic field of the tomograph is distorted near the instrument, the instrument can be visualized via artifacts (for example "IEEE TRANSACTIONS ON MEDICAL IMAGING", Vol. 19, No. 12, Dec. 2000, pp. 1248-1252 ).

In der Literatur sind neben der passiven Visualisierung auch aktive Techniken beschrieben, bei welchen über am Instrument angebrachte elektrische Leiter gezielt magnetische Störfelder in dessen Nähe erzeugt werden ( DE 696 34 035 T2 ). Diverse Möglichkeiten sind für die bestromungs-basierte MRT-Instrumentenlokalisierung bekannt ( US 5,951,472 A ), meist über Differenzbildberechnung, vgl. die Druckschrift DE 199 58 408 A1 , und damit verbundener doppelter Messzeit.In addition to passive visualization, active techniques are also described in the literature in which magnetic interference fields are generated in the vicinity of the instrument via electrical conductors ( DE 696 34 035 T2 ). Various possibilities are known for the current-based MRI instrument localization ( US 5,951,472 A ), mostly via differential image calculation, cf. the publication DE 199 58 408 A1 , and associated double measurement time.

Der in den Patentansprüchen präzisierten Erfindung liegt dasselbe Problem wie in Druckschrift DE 10 2012 023 124 A1 bereits ausgeführt zugrunde. Bei Instrumentenvisualisierung über die magnetischen Eigenschaften des Materials (magnetische Suszeptibilität) ist die Grundfeldstörung kontinuierlich und in immer derselben Ausprägung vorhanden, d. h. die Größe der Artefakte kann nicht sequenzunabhängig gesteuert werden und die Störung ist auch zu Zeiten in der Sequenz vorhanden ist, zu denen die Ortskodierung erfolgt. Die Artefaktgröße hängt bei allen Bildgebungstechniken von der Grundfeldstärke ab.The invention specified in the claims invention has the same problem as in the publication DE 10 2012 023 124 A1 already executed. In instrument visualization of the magnetic properties of the material (magnetic susceptibility), the ground field perturbation is continuous and always the same, ie the size of the artifacts can not be controlled independently of the sequence, and the perturbation is also present at times in the sequence, including the spatial coding he follows. Artifact size depends on the basic field strength for all imaging techniques.

Druckschrift DE 10 2012 023 124 A1 löst das oben erwähnte Problem der Messzeitverlängerung durch Darstellung des Instruments im Phasenbild mit Überlagerung in das Magnituden- bzw. anatomische Bild. Die hier beschrieben Technik verzichtet auf die Phasenbildauswertung und erzeugt im Magnitudenbild einen diskreten Phasenkodierartefakt vom Instrumentenbereich, vorzugsweise im signalfreien Hintergrund. Die Messzeitverdoppelung entfällt hier ebenfalls. Der Vorteil gegenüber der in Druckschrift DE 10 2012 023 124 A1 beschriebenen Technik ist, dass die Anwendung auch in Gradientenechotechniken zuverlässig möglich ist.pamphlet DE 10 2012 023 124 A1 solves the above-mentioned problem of measuring time extension by displaying the instrument in the phase image with superimposition into the magnitude or anatomical image. The technique described here dispenses with the phase image evaluation and generates in the magnitude image a discrete phase coding artifact from the instrument area, preferably in the signal-free background. The measurement time doubling is also omitted here. The advantage over in printed matter DE 10 2012 023 124 A1 described technique is that the application is reliably possible even in gradient echo techniques.

Die Lösung erfolgt durch das Verfahren gemäß dem Patentanspruch 1 sowie durch die Vorrichtungen gemäß der Druckschrift DE 10 2012 023 124 A1 , je nach Anwendungsfall kombiniert mit der in 4 dargestellten elektrischen Schaltung.The solution is carried out by the method according to claim 1 and by the devices according to the document DE 10 2012 023 124 A1 , depending on the application combined with the in 4 illustrated electrical circuit.

Die Verzerrung des Grundfeldes bei magnetisch neutralem Instrumentenmaterial über elektrischen Strom ermöglicht die Steuerung der Artefaktgröße über die Stromstärke. Messungen bei verschiedenen Stromstärken verbessern die Bestimmung der realen Instrumentenposition im Artefakt; eine Bestromung nur in ausgewählten Phasenkodierzeilen, z. B. jede Zweite -vorzugsweise zu Zeiten in welchen keine Spinanregung und kein Auslesen des Signals erfolgt, um eine fehlerhafte Ortskodierung in der Nähe des Instruments zu vermeiden- erlaubt die Generierung definierter Artefakte vom Instrumentenbereich in Phasenkodierrichtung. Lage und Anzahl ist darüber bestimmt, welche Phasenkodierzeilen für die Bestromung ausgewählt wurden. Die Artefaktgröße ist unabhängig von der Grundfeldstärke des Tomographen.Distortion of the fundamental field of magnetically neutral instrument material via electrical current allows the artifact size to be controlled by current intensity. Measurements at different current intensities improve the determination of the real instrument position in the artifact; an energization only in selected phase coding lines, z. For example, every second-preferably at times when there is no spin excitation and no readout of the signal to avoid erroneous location coding near the instrument-allows the generation of defined artifacts from the instrument domain in the phase encode direction. Location and number determines which phase coding lines have been selected for the current supply. The artifact size is independent of the basic field strength of the scanner.

Das Prinzip arbeitet für alle Sequenzen mit kartesischer Datenaufnahme. Insbesondere sind moderne Techniken, die die Darstellung eines Teilbereichs im Körperinneren ermöglichen, für die Anwendung der Technik geeignet, da hier sehr einfach ein signalfreier Bereich für den Phasenkodierartefakt erzeugt werden kann.The principle works for all sequences with Cartesian data acquisition. In particular, modern techniques that allow the representation of a partial area in the interior of the body are suitable for the application of the technique, since it is very easy to generate a signal-free area for the phase-encoding artifact.

Ein Ausführungsbeispiel für die zeilenweise selektive Bestromung gemäß Patentanspruch 1 ist in 1 gezeigt. Der Strom ist nur außerhalb der Zeiten des Anregens und Auslesens geschaltet und zwar hier nur in jeder zweiten Phasenkodierzeile. Das anatomische Bild zeigt neben dem Instrumenten-Artefakt an der originalen Stelle auch einen um N/2 in Phasenkodierrichtung (N: Zeilenzahl) verschobenen Artefakt, der den Instrumentenartefakt eindeutig macht. Artefakte aufgrund permanenter Feldstörungen werden von keinem solchen Phasenkodierartefakt begleitet.An exemplary embodiment of the line by line selective energization according to claim 1 is in 1 shown. The current is switched only outside of the times of the excitation and read only here in every second phase coding line. In addition to the instrument artifact at the original location, the anatomical image also shows an artifact shifted by N / 2 in the phase encoding direction (N: number of rows), which makes the instrumental art unique. Artifacts due to permanent field disturbances are not accompanied by any such phase encoding artifact.

2 zeigt ein Ausführungsbeispiel für ein einfaches interventionelles Instrument, das einer Nadel wie sie z. B. für die Biopsienahme oder die lokale Gabe von Medikamenten verwendet wird. Die Nadel hat einen exzentrisch positionierten Innenleiter. Der Strom fließt z. B. auf diesem Innenleiter zur Spitze. Durch eine elektrische Verbindung an dieser Stelle kann der Strom über das äußere Rohr zurückfließen. Durch diese asymmetrische Anordnung des Hin- und Rückleiters ergibt sich an der Oberfläche das gewünschte Störmagnetfeld zur Visualisierung der Nadel bei ihrem Einsatz am Magnetresonanztomographen. Ein geeignetes Material mit gewebeähnlicher magnetischer Suszeptibilität, welches auch geeignete mechanische Eigenschaften besitzt, ist beispielsweise Messing. 2 shows an embodiment of a simple interventional instrument that a needle such as z. B. is used for biopsy or the local administration of drugs. The needle has an eccentrically positioned inner conductor. The current flows z. B. on this inner conductor to the top. By an electrical connection at this point, the flow can flow back through the outer tube. As a result of this asymmetrical arrangement of the forward and return conductors, the desired interference magnetic field for visualizing the needle when used on the magnetic resonance tomograph is obtained on the surface. A suitable material with tissue-like magnetic susceptibility, which also has suitable mechanical properties, is brass, for example.

3 zeigt als Ausführungsbeispiel die notwendige Anordnung für die sogenannte Radiofrequenzablation (RFA) von Tumoren. Hier ist denkbar die bereits für die Applikation der Radiofrequenz vorhanden Anschlüsse an der Ablationsnadel zu nutzen, um mit der beschriebenen Technik die Nadel zu positionieren bzw. die Nadelposition nach Ablationsabschnitten zu kontrollieren. Bei der RFA ist die beschriebene Bestromungstechnik von besonderem Vorteil. Ohne Strom kann die Anatomie trotz Gegenwart des Applikators ungestört abgebildet werden, bei MR-technischen Temperaturmessungen mittels der Protonenresonanzfrequenz(PRF)-Methode treten keine Störungen auf. Ein Zusatzmodul, das beispielsweise im RF-Generator mit eingebaut werden kann, ermöglicht die Regelung des Visualisierungsstromes und leistet die Verarbeitung der vom MR-Tomographen gelieferten Triggersignale wie sie in die Bildgebungssequenz mit einprogrammiert sind. Moderne Tomographen bieten solche sequenzgesteuerten Triggerausgänge bereits für andere Zwecke. 3 shows as an exemplary embodiment the necessary arrangement for the so-called radiofrequency ablation (RFA) of tumors. Here, it is conceivable to use the connections on the ablation needle already present for the application of the radio frequency in order to position the needle with the described technique or to control the needle position after ablation sections. In the case of the RFA, the described current-carrying technique is of particular advantage. Without electricity, the anatomy can be imaged undisturbed despite the presence of the applicator, with MR technical temperature measurements by means of the Proton Resonance Frequency (PRF) method, no disturbances occur. An additional module, which can be installed, for example, in the RF generator, allows the control of the visualization current and makes the processing of the MR-scanner supplied trigger signals as they are programmed into the imaging sequence. Modern tomographs already offer such sequence-controlled trigger outputs for other purposes.

4 zeigt ein Schaltbild, das die Bestromungssteuerung über einen Lichtleiter ermöglicht und die induktive aufladung eines Kondensators oder einer Batterie während der Applikation des RF-Feldes für die Spinanregung nutzt. Auf diese Weise werden gefährliche RF-Einkopplungen in lange galvanische Zuleitungen und damit potenziell verbundene Gewebeerhitzungen vermieden. 4 shows a circuit diagram that allows the Bestromungssteuerung via a light guide and uses the inductive charging of a capacitor or a battery during the application of the RF field for the spin excitation. This avoids dangerous RF coupling into long galvanic leads and potentially associated tissue heating.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • DE 69634035 T2 [0003] DE 69634035 T2 [0003]
  • US 5951472 A [0003] US 5951472 A [0003]
  • DE 19958408 A1 [0003] DE 19958408 A1 [0003]
  • DE 102012023124 A1 [0004, 0005, 0005, 0006] DE 102012023124 A1 [0004, 0005, 0005, 0006]

Zitierte Nicht-PatentliteraturCited non-patent literature

  • „IEEE TRANSACTIONS ON MEDICAL IMAGING”, Bd. 19, Nr. 12, Dez. 2000, S. 1248–1252 [0002] "IEEE TRANSACTIONS ON MEDICAL IMAGING", Vol. 19, No. 12, Dec. 2000, pp. 1248-1252 [0002]

Claims (2)

Verfahren zur Visualisierung eines oder mehrerer interventioneller Instrumente in der Magnetresonanzbildgebung über bildgebungssequenz-getriggerte zeitweise Instrumenten-Bestromung durch Visualisierungsstrom zur Erzeugung eines gewünschten Störmagnetfeldes zur Störung des magnetischen Grundfeldes des Magnetresonanztomographen, der auf vordefinierten Leiterstrukturen mittels Regelung eines anpassbaren Gleichstroms oder Gleichstromanteils des oder der mehreren Instrumente fließt mit Auswertung der Magnitudenbilder, dadurch gekennzeichnet, dass der Visualisierungsstrom für ein oder mehrere dieser Instrumente unabhängig von der gewählten Bildgebungstechnik der Magnetresonanz nur für spezielle k-Raumzeilen geschaltet wird (z. B. jede zweite), so dass ein diskreter Artefakt in Phasenkodierrichtung zum beeinflussten Bereich um das Instrument entsteht. Die Rückrechnung dieses Artefakts in den Bereich des anatomischen Bildes ermöglicht eine präzise Instrumentenlokalisation ohne zusätzliche Messzeit.A method of visualizing one or more interventional instruments in magnetic resonance imaging via imaging sequence triggered temporal instrument energization by visualization current to produce a desired perturbing magnetic field perturbing the magnetic field of the magnetic resonance tomograph based on predefined conductor structures by controlling an adjustable DC or DC component of the one or more instruments flows with evaluation of the magnitude images, characterized in that the visualization current for one or more of these instruments is switched independently of the selected imaging technique of magnetic resonance only for special k-space lines (eg every other), so that a discrete artifact in the phase encoding direction influenced area around the instrument arises. Recalculating this artifact into the anatomical image area allows for precise instrument localization without additional measurement time. Vorrichtung zur Erzeugung der für das Verfahren in Anspruch 1 erforderlichen Strompulse aus den Radiofrequenzpulsen des Magnetresonanztomographen (vgl. Prinzipschaltbild in 4).Device for generating the current pulses required for the method in claim 1 from the radio-frequency pulses of the magnetic resonance tomograph (see block diagram in FIG 4 ).
DE102015012201.0A 2015-09-18 2015-09-18 Method and device for visualizing interventional instruments in magnetic resonance imaging (MRI) via discrete phase coding artifacts generated by means of sequence-triggered energization Withdrawn DE102015012201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102015012201.0A DE102015012201A1 (en) 2015-09-18 2015-09-18 Method and device for visualizing interventional instruments in magnetic resonance imaging (MRI) via discrete phase coding artifacts generated by means of sequence-triggered energization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015012201.0A DE102015012201A1 (en) 2015-09-18 2015-09-18 Method and device for visualizing interventional instruments in magnetic resonance imaging (MRI) via discrete phase coding artifacts generated by means of sequence-triggered energization

Publications (1)

Publication Number Publication Date
DE102015012201A1 true DE102015012201A1 (en) 2017-03-23

Family

ID=58224845

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015012201.0A Withdrawn DE102015012201A1 (en) 2015-09-18 2015-09-18 Method and device for visualizing interventional instruments in magnetic resonance imaging (MRI) via discrete phase coding artifacts generated by means of sequence-triggered energization

Country Status (1)

Country Link
DE (1) DE102015012201A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154186A1 (en) * 2020-01-28 2021-08-05 Bogazici Universitesi A system which facilitates determination of the position of a biopsy needle under magnetic resonance imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951472A (en) 1996-11-04 1999-09-14 U.S. Philips Corporation MR system and invasive device for interventional procedures
DE19958408A1 (en) 1999-12-02 2001-06-07 Philips Corp Intellectual Pty Magnetic resonance arrangement with devices to localize or visualize instrument inserted in patient; has magnet device controlled and positioned by control unit, to vary position in MRI datasets
DE69634035T2 (en) 1995-11-24 2005-12-08 Koninklijke Philips Electronics N.V. SYSTEM FOR IMAGING BY MAGNETIC RESONANCE AND CATHETER FOR PROCEDURE PROCEDURE
DE102012023124A1 (en) 2012-11-27 2014-05-28 Hansjörg Graf Method for visualization of MRI-guided interventional instrument e.g. biopsy needle, involves triggering direct current signal through imaging sequence that is applied only at times in which no disturbance of spatial coding occurs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69634035T2 (en) 1995-11-24 2005-12-08 Koninklijke Philips Electronics N.V. SYSTEM FOR IMAGING BY MAGNETIC RESONANCE AND CATHETER FOR PROCEDURE PROCEDURE
US5951472A (en) 1996-11-04 1999-09-14 U.S. Philips Corporation MR system and invasive device for interventional procedures
DE19958408A1 (en) 1999-12-02 2001-06-07 Philips Corp Intellectual Pty Magnetic resonance arrangement with devices to localize or visualize instrument inserted in patient; has magnet device controlled and positioned by control unit, to vary position in MRI datasets
DE102012023124A1 (en) 2012-11-27 2014-05-28 Hansjörg Graf Method for visualization of MRI-guided interventional instrument e.g. biopsy needle, involves triggering direct current signal through imaging sequence that is applied only at times in which no disturbance of spatial coding occurs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
„IEEE TRANSACTIONS ON MEDICAL IMAGING", Bd. 19, Nr. 12, Dez. 2000, S. 1248–1252

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154186A1 (en) * 2020-01-28 2021-08-05 Bogazici Universitesi A system which facilitates determination of the position of a biopsy needle under magnetic resonance imaging

Similar Documents

Publication Publication Date Title
EP0928972B1 (en) Magnetic resonance method comprising a micro-coil in the volume of investigation
DE102009004183B4 (en) Magnetic resonance imaging device with localization system and method for localizing a local coil
EP1113284B1 (en) MR method of excitation of nuclear magnetization in a limited spatial region
DE102011077724A1 (en) Local shim coil within a local coil, as local BO homogenization in an MRI
DE10151779A1 (en) Method for localizing an object in an MR apparatus, and catheter and MR apparatus for performing the method
DE112015001951T5 (en) System and method for magnetic resonance imaging with reduced field of view
DE102011083619B4 (en) Method for generating a series of MR images for monitoring a position of an intervention device, magnetic resonance system and electronically readable data carrier located in an examination area
DE10207736B4 (en) Method for determining the position of a local antenna
DE3135335A1 (en) CORE SPIN TOMOGRAPHY METHOD
DE102008063457B3 (en) Local coil arrangement for magnetic resonance applications with activatable marker
DE19958408A1 (en) Magnetic resonance arrangement with devices to localize or visualize instrument inserted in patient; has magnet device controlled and positioned by control unit, to vary position in MRI datasets
DE102010033322A1 (en) Local coil for magnet resonance tomography system, has antenna elements, where antenna element has connection detachable for formation of opening
DE102016111245A1 (en) Magnetic resonance imaging system and method
DE102015204955A1 (en) Method for magnetic resonance imaging
DE60320376T2 (en) COIL SYSTEM FOR AN MR DEVICE AND MR SYSTEM EQUIPPED WITH SUCH A REEL SYSTEM
DE102017200446A1 (en) Correction of an MR transmission signal
DE102016207641A1 (en) Parallel Magnetic Resonance Acquisition Technique
DE102014210657A1 (en) Axis-displaceable local coil
DE102011083871B4 (en) Adaptation of the fundamental frequency of an RF excitation pulse during the non-selective excitation of nuclear spin signals in an examination subject
DE102012217459A1 (en) Imaging of the teeth by means of magnetic resonance technique with ambiguous gradients
DE102015012201A1 (en) Method and device for visualizing interventional instruments in magnetic resonance imaging (MRI) via discrete phase coding artifacts generated by means of sequence-triggered energization
DE102010001597B4 (en) Method and magnetic resonance apparatus for imaging magnetically active particles
DE102013217012B4 (en) Local SAR reduction for e.g. Patients with metallic implants
DE102012023124B4 (en) Method and device for visualizing interventional instruments in magnetic resonance imaging via sequence-triggered energization with evaluation of the magnitude and phase images
DE202015104743U1 (en) Systems for inserting a MRI hyperpolarization of a patient with a weak field

Legal Events

Date Code Title Description
R086 Non-binding declaration of licensing interest
R123 Application deemed withdrawn due to non-payment of filing fee
R073 Re-establishment requested
R074 Re-establishment allowed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee