DE102014117916A1 - Method for monitoring a wind turbine, acceleration sensor for a rotor blade, and rotor blade with acceleration sensor - Google Patents

Method for monitoring a wind turbine, acceleration sensor for a rotor blade, and rotor blade with acceleration sensor Download PDF

Info

Publication number
DE102014117916A1
DE102014117916A1 DE102014117916.1A DE102014117916A DE102014117916A1 DE 102014117916 A1 DE102014117916 A1 DE 102014117916A1 DE 102014117916 A DE102014117916 A DE 102014117916A DE 102014117916 A1 DE102014117916 A1 DE 102014117916A1
Authority
DE
Germany
Prior art keywords
rotor blade
acceleration sensor
acceleration
wind turbine
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102014117916.1A
Other languages
German (de)
Inventor
Matthias Schubert
Mathias Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vc Viii Polytech Holding Aps Dk
Original Assignee
fos4X GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by fos4X GmbH filed Critical fos4X GmbH
Priority to DE102014117916.1A priority Critical patent/DE102014117916A1/en
Priority to PCT/EP2015/078236 priority patent/WO2016087454A2/en
Publication of DE102014117916A1 publication Critical patent/DE102014117916A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/33Proximity of blade to tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/807Accelerometers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Wind Motors (AREA)

Abstract

Es ist ein Verfahren zur Überwachung einer Windkraftanlage beschrieben. Das Verfahren beinhaltet ein Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor in einem Rotorblatt der Windkraftanlage, wobei der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält.It is described a method for monitoring a wind turbine. The method includes measuring acceleration with a fiber optic acceleration sensor in a rotor blade of the wind turbine, wherein the acceleration sensor is less than 10 wt% of metal or contains less than 20 grams of metal.

Description

TECHNISCHES GEBIET TECHNICAL AREA

Ausführungsformen der vorliegenden Erfindung betreffen im Allgemein eine Steuerung und/oder Regelung bzw. Überwachung des Betriebs von Windkraftanlagen sowie die hierzu verwendeten Komponenten wie Beschleunigungssensoren und/oder die korrespondierenden Komponenten einer Windkraftanlage. Insbesondere betreffen Ausführungsformen einen faseroptischen Beschleunigungssensor. Dieser kann für Verfahren zur Überwachung einer Torsionsinstabilität eines Rotorblatts einer Windkraftanlage, Verfahren zur individuellen Pitchregelung von Rotorblättern einer Windkraftanlage, Verfahren zur Steuerung und/oder Regelung einer Windkraftanlage mit einem Beschleunigungssensor, insbesondere zur Turmfreigangs-Warnung, und Verfahren zur Überwachung einer Windkraftanlage mit einem faseroptischen Beschleunigungssensor verwendet werden. Ferner betreffen Ausführungsformen ein Profil für eine Hinterkante eines Rotorblatts einer Windkraftanlage, ein Rotorblatt einer Windkraftanlage, ein Rotor einer Windkraftanlage, und eine Windkraftanlage.  Embodiments of the present invention relate generally to a control and / or regulation or monitoring of the operation of wind turbines and the components used for this purpose, such as acceleration sensors and / or the corresponding components of a wind turbine. In particular, embodiments relate to a fiber optic acceleration sensor. This may be for methods for monitoring a torsional instability of a rotor blade of a wind turbine, methods for individual pitch control of rotor blades of a wind turbine, method for controlling and / or regulating a wind turbine with an acceleration sensor, in particular for tower release warning, and method for monitoring a wind turbine with a fiber optic Acceleration sensor can be used. Further, embodiments relate to a profile for a trailing edge of a rotor blade of a wind turbine, a rotor blade of a wind turbine, a rotor of a wind turbine, and a wind turbine.

STAND DER TECHNIK STATE OF THE ART

Windenergieanlagen unterliegen einer komplexen Steuerung, die zum Beispiel durch wechselnde Betriebsbedingungen notwendig sein kann. Durch die mit dem Betrieb einer Windkraftanlage verknüpften Bedingungen, zum Beispiel Temperaturschwankungen, Witterung und Wetterverhältnisse, aber auch insbesondere stark wechselnde Windverhältnisse, sowie durch die Vielzahl von gesetzlich vorgeschriebenen Sicherheitsmaßnahmen sind die Überwachung und die für die Überwachung notwendigen Sensoren einer Vielzahl von Randbedingungen unterworfen.  Wind turbines are subject to a complex control, which may be necessary, for example, by changing operating conditions. Due to the conditions associated with the operation of a wind turbine, for example, temperature fluctuations, weather and weather conditions, but also in particular greatly changing wind conditions, as well as the variety of legally required safety measures, the monitoring and necessary for monitoring sensors are subject to a variety of boundary conditions.

Zum Beispiel kann im Betrieb eine Torsionsinstabilität der Rotorblätter auftreten. Hierbei verdreht sich das Rotorblatt um eine sich im Wesentlichen entlang des Radius erstreckenden Torsionsachse, und kann gegebenenfalls zu einer Vibration bzw. Oszillation um die Torsionsachse führen, dem so genannten flattern. Zur Steuerung des Betriebs einer Windkraftanlage ist es wichtig eine Torsionsinstabilität zu erkennen bzw. zu überwachen. Insbesondere beim Flattern können kritische Betriebszustände erreicht werden, wobei entsprechende Gegenmaßnahmen ergriffen werden müssen.  For example, torsional instability of the rotor blades may occur during operation. Here, the rotor blade rotates about a substantially along the radius extending torsion axis, and may optionally lead to a vibration or oscillation about the torsion axis, the so-called flutter. To control the operation of a wind turbine, it is important to detect or monitor a torsional instability. In particular, when flapping critical operating conditions can be achieved, with appropriate countermeasures must be taken.

Weiterhin ist es zur Verbesserung von Windkraftanlagen heutzutage erstrebenswert, eine individuelle Pitchregelung zur Verfügung zu stellen, um entsprechend der äußeren Bedingungen einen optimierten Betrieb zu gewährleisten. Hierzu ist eine verbesserte Erkennung der auf die Windkraftanlage wirkenden Kräfte bzw. des Betriebszustandes erstrebenswert.  Furthermore, it is desirable to improve wind turbines nowadays to provide an individual pitch control in order to ensure optimized operation according to the external conditions. For this purpose, an improved detection of the forces acting on the wind turbine forces and the operating state is desirable.

Auch die Erkennung bzw. Messung des sogenannten Turmfreigangs eines Rotorblatts (der Blade-Clearance), d.h. dem minimalen Abstand eines Rotorblattes zum Turm, ist für den sicheren Betrieb eine wichtige Kenngröße. Auch hierzu ist eine verbesserte Erkennung der auf die Windkraftanlage wirkenden Kräfte bzw. des Betriebszustandes erstrebenswert.  Also, the detection or measurement of the so-called tower clearance of a rotor blade (the blade clearance), i. the minimum distance of a rotor blade to the tower, is an important parameter for safe operation. For this purpose, an improved detection of the forces acting on the wind turbine forces and the operating state is desirable.

Bei der Überwachung von Betriebszuständen von Windenergieanlagen wird eine Mehrzahl von Sensoren verwendet. Zum Beispiel können Dehnungsmessungen zur Messung der Biegung eines Rotorblatts, Beschleunigungsmessungen zur Messung einer Beschleunigung eines Rotorblatts, oder andere Größen gemessen werden. Eine Gruppe von Sensoren, die als Erfolg versprechend für zukünftige Applikationen erscheint, sind faseroptische Sensoren. Es ist daher erstrebenswert, Messungen zur Überwachung einer Windkraftanlage mit faseroptischen Sensoren weiter zu verbessern.  In the monitoring of operating conditions of wind turbines, a plurality of sensors is used. For example, strain measurements for measuring the bending of a rotor blade, acceleration measurements for measuring an acceleration of a rotor blade, or other quantities can be measured. A group of sensors that appear promising for future applications are fiber optic sensors. It is therefore desirable to further improve measurements for monitoring a wind turbine with fiber optic sensors.

Im Allgemeinen ist es somit erstrebenswert Verbesserungen bei der Steuerung und Überwachung, bei den Sensoren für ein Rotorblatt einer Windkraftanlage, bei Rotorblättern für Windkraftanlagen, und Windkraftanlagen selbst zu ermöglichen.  In general, therefore, it is desirable to provide improvements in control and monitoring, in the sensors for a rotor blade of a wind turbine, in rotor blades for wind turbines, and in wind turbines themselves.

ZUSAMMENFASSUNG DER ERFINDUNG SUMMARY OF THE INVENTION

Gemäß einer Ausführungsform wird ein Verfahren zur Überwachung einer Windkraftanlage zur Verfügung gestellt. Das Verfahren beinhaltet ein Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor in einem Rotorblatt der Windkraftanlage, wobei der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält.  According to one embodiment, a method for monitoring a wind turbine is provided. The method includes measuring acceleration with a fiber optic acceleration sensor in a rotor blade of the wind turbine, wherein the acceleration sensor is less than 10 wt% of metal or contains less than 20 grams of metal.

Gemäß einer Ausführungsform wird ein Rotorblatt einer Windkraftanlage zur Verfügung gestellt. Das Rotorblatt beinhaltet einen faseroptischen Beschleunigungssensor, wobei der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält.  According to one embodiment, a rotor blade of a wind turbine is provided. The rotor blade includes a fiber optic acceleration sensor, wherein the acceleration sensor is less than 10% by weight of metal or contains less than 20 g of metal.

Gemäß einer Ausführungsform wird ein faseroptischer Beschleunigungssensor zur Verfügung gestellt. Der faseroptische Beschleunigungssensor beinhaltet einen Lichtleiter mit einer Lichtaustrittsfläche; eine Membran; eine mit der Membran in Verbindung stehende Masse; einen optischen Resonator, der zwischen der Lichtaustrittsfläche und der Membran ausgebildet ist; und einen Spiegel, der im Strahlengang zwischen der Lichtaustrittsfläche und der Membran zur Verfügung gestellt ist, wobei der Spiegel in einem Winkel von 30° bis 60° relativ zu einer optischen Achse des Lichtleiters ausgebildet ist. In one embodiment, a fiber optic acceleration sensor is provided. The fiber optic acceleration sensor includes a light guide having a light exit surface; a membrane; a mass associated with the membrane; an optical resonator formed between the light exit surface and the diaphragm; and a mirror provided in the beam path between the light exit surface and the diaphragm, wherein the Mirror is formed at an angle of 30 ° to 60 ° relative to an optical axis of the light guide.

KURZE BESCHREIBUNG DER ZEICHNUNGEN BRIEF DESCRIPTION OF THE DRAWINGS

Ausführungsbeispiele sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. In den Zeichnungen zeigen:  Embodiments are illustrated in the drawings and explained in more detail in the following description. In the drawings show:

1 zeigt schematisch ein Rotorblatt einer Windkraftanlage mit einem Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen; 1 shows schematically a rotor blade of a wind turbine with an acceleration sensor according to embodiments described herein;

2 zeigt schematisch einen Teil einer Windkraftanlage mit Rotorblättern und Beschleunigungssensoren gemäß hier beschriebenen Ausführungsformen; 2 schematically shows a part of a wind turbine with rotor blades and acceleration sensors according to embodiments described herein;

3 zeigt schematisch einen Lichtleiter mit einem Faser-Bragg-Gitter zur Verwendung in Beschleunigungssensoren gemäß hier beschriebenen Ausführungsformen; 3 schematically shows a light guide with a fiber Bragg grating for use in acceleration sensors according to embodiments described herein;

4 zeigt schematisch eine Ausgestaltung eines Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen; 4 schematically shows an embodiment of an acceleration sensor according to embodiments described herein or for use in embodiments described herein;

5 zeigt schematisch einen Rotor einer Windkraftanlage mit Rotorblättern und Beschleunigungssensoren gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen; 5 schematically shows a rotor of a wind turbine with rotor blades and acceleration sensors according to embodiments described herein or for use in embodiments described herein;

6 zeigt schematisch einen Messaufbau für einen faseroptischen Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. für Verfahren zur Überwachung und/oder Steuerung und/oder Regelung gemäß hier beschriebenen Ausführungsformen; 6 schematically shows a measurement setup for a fiber optic acceleration sensor according to embodiments described herein or for methods of monitoring and / or control and / or regulation according to embodiments described herein;

7 zeigt schematisch einen Messaufbau für einen faseroptischen Beschleunigungssensoren gemäß hier beschriebenen Ausführungsformen bzw. für Verfahren zur Überwachung und/oder Steuerung und/oder Regelung gemäß hier beschriebenen Ausführungsformen; 7 schematically shows a measurement setup for a fiber optic acceleration sensors according to embodiments described herein or for methods of monitoring and / or control and / or regulation according to embodiments described herein;

7A zeigt den Einfluss der Messung mit einem Anti-Aliasing-Filter gemäß hier beschriebenen Ausführungsformen; 7A shows the influence of the measurement with an anti-aliasing filter according to embodiments described herein;

8A und 8B zeigen schematisch Beschleunigungssensoren zur Verwendung in hier beschriebenen Ausführungsformen; 8A and 8B schematically show acceleration sensors for use in embodiments described herein;

9A und 9B zeigen schematisch einen faseroptischen Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen; 9A and 9B schematically show a fiber optic acceleration sensor according to embodiments described herein or for use in embodiments described herein;

10 zeigt schematisch ein Rotorblatt einer Windkraftanlage mit einem Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen; 10 shows schematically a rotor blade of a wind turbine with an acceleration sensor according to embodiments described herein;

11 zeigt schematisch ein Rotorblatt einer Windkraftanlage mit einem Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen, wobei ein Profil für ein Rotorblatt gemäß hier beschriebenen Ausführungsformen zur Verfügung gestellt ist; 11 schematically shows a rotor blade of a wind turbine with an acceleration sensor according to embodiments described herein or for use in embodiments described herein, wherein a profile for a rotor blade according to embodiments described herein is provided;

11A zeigt ein Profil für ein Rotorblatt gemäß Ausführungsformen der vorliegenden Erfindung; 11A shows a profile for a rotor blade according to embodiments of the present invention;

12, 13A und 13B zeigen schematisch einen Teil eines Rotorblatts einer Windkraftanlage mit einem Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen; 12 . 13A and 13B schematically show a part of a rotor blade of a wind turbine with an acceleration sensor according to embodiments described herein or for use in embodiments described herein;

14 zeigt schematisch einen weiteren Teil eines Rotorblatts einer Windkraftanlage mit einer Verbindung eines Beschleunigungssensors gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen; 14 schematically shows another part of a rotor blade of a wind turbine with a connection of an acceleration sensor according to embodiments described herein or for use in embodiments described herein;

15 zeigt schematisch einen Teil eines Rotorblatts einer Windkraftanlage mit einem Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen; und 15 schematically shows a part of a rotor blade of a wind turbine with an acceleration sensor according to embodiments described herein or for use in embodiments described herein; and

16 bis 20 zeigen Ablaufdiagramme von Verfahren zur Überwachung und/oder Steuerung und/oder Regelung von Windkraftanlagen gemäß hier beschriebenen Ausführungsformen. 16 to 20 show flowcharts of methods for monitoring and / or control and / or regulation of wind turbines according to embodiments described herein.

In den Zeichnungen bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Komponenten oder Schritte.  In the drawings, like reference characters designate like or functionally identical components or steps.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNG WAYS FOR CARRYING OUT THE INVENTION

Im Folgenden wird detaillierter Bezug genommen auf verschiedene Ausführungsformen der Erfindung, wobei ein oder mehrere Beispiele in den Zeichnungen veranschaulicht sind.  In the following, more detailed reference will be made to various embodiments of the invention, one or more examples of which are illustrated in the drawings.

1A zeigt ein Rotorblatt 100 einer Windkraftanlage. Das Rotorblatt 100 hat eine Achse 101 entlang seiner Längserstreckung. Die Länge 105 des Rotorblatts reicht von dem Blattflansch 102 zu der Blattspitze 104. Gemäß hier beschriebenen Ausführungsformen befindet sich in einem axialen bzw. radialen Bereich, das heißt einem Bereich entlang der Achse 101, ein Beschleunigungssensor 110, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius eines Rotorblatts der Windkraftanlage zur Verfügung gestellt ist. 1A shows a rotor blade 100 a wind turbine. The rotor blade 100 has an axis 101 along its longitudinal extent. The length 105 of the rotor blade extends from the blade flange 102 to the blade tip 104 , According to embodiments described here is located in an axial or radial region, that is, a region along the axis 101 , an acceleration sensor 110 wherein the acceleration sensor is provided at a radial position in the range of the outer 70% of the radius of a rotor blade of the wind turbine.

Sensoren sind in der Praxis bislang nahe dem Blattflansch 102 angebracht worden. Typischerweise wurden Sensoren in der Praxis bislang in den inneren 20 % des Radius eines Rotorblatts angebracht. Diese Positionierung war bislang eine oft geforderte Voraussetzung, da für Windenergieanlagen bzw. Windkraftanlagen ein Blitzeinschlag eine ernst zu nehmende Gefahr darstellt. Zum einen kann ein Blitzeinschlag unmittelbar in elektronische Komponenten und/oder Kabel bzw. Signalkabel für elektronische Komponenten erfolgen. Zum anderen kann selbst bei einer Ableitung eines Blitzeinschlags über einen Blitzableiter, d.h. bei einer kontrollierten Ableitung zu einem Erdpotenzial, ein Schaden durch die durch Induktion erzeugten Ströme in Kabeln bzw. Signalkabeln entstehen. Bei Blitzeinschlag kann es hierbei zum einen zur Zerstörung von Komponenten einer Windkraftanlage kommen. Zum anderen können Blitzeinschläge zu einer größeren Materialermüdung führen. Dies kann zum Beispiel die Wartungskosten erheblich vergrößern. Zum Beispiel kann mit ein bis vier Blitzeinschlägen pro Jahr in ein Rotorblatt gerechnet werden. Sensors are in practice so far near the blade flange 102 been installed. Typically, sensors have in practice been mounted in the inner 20% of the radius of a rotor blade. This positioning has been an often required prerequisite, since a lightning strike is a serious hazard for wind turbines or wind turbines. On the one hand, a lightning strike can take place directly in electronic components and / or cables or signal cables for electronic components. On the other hand, even with a derivative of a lightning strike via a lightning arrester, ie a controlled derivation to a ground potential, damage caused by the currents generated by induction in cables or signal cables. In lightning strikes, this can lead to the destruction of components of a wind turbine. On the other hand, lightning strikes can lead to greater material fatigue. This can, for example, significantly increase maintenance costs. For example, one to four lightning strikes per year can be expected in a rotor blade.

Diese Positionierung von Sensoren nahe dem Blattflansch ist in der Praxis eine Randbedingung bzw. eine existierende Annahme, der Ausführungsformen der vorliegenden Erfindung entgegentreten. Sensoren, insbesondere Beschleunigungssensoren, können bei einer radialen Positionierung, die entgegen der gängigen Praxis im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt wird, verbesserte Verfahren zur Messung von Betriebszuständen einer Windkraftanlage ermöglichen.  This positioning of sensors near the blade flange is in practice a constraint or assumption that opposes embodiments of the present invention. Sensors, in particular acceleration sensors, can provide improved methods for measuring operating states of a wind turbine in the case of radial positioning, which is provided in the range of the outer 70% of the radius of the rotor blade contrary to common practice.

Gemäß typischen Ausführungsformen, kann hierbei eine Positionierung eines Beschleunigungssensors entlang des Radius eines Rotorblatts wie folgt zur Verfügung gestellt werden. Bei Rotorblättern, die bis ca. 50 % bis 60 % des Radius (der Blattflanschs entspricht hier in etwa 0 % des Radius) begehbar sind, kann zumindest ein Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt werden. Bei Rotorblättern, die einen deutlich geringeren begehbaren Bereich aufweisen, kann der Vorteil einer Montage an einer begehbaren Position alternativ auch aufgegeben werden. In einem solchen Fall kann eine Montage eines Beschleunigungssensors nahe der Blattspitze, zum Beispiel in einem Bereich von 30 % bis 95 % des Radius (0 % entspricht dem Flansch an der Blattwurzel) zur Verfügung gestellt werden.  According to typical embodiments, positioning of an acceleration sensor along the radius of a rotor blade can be provided as follows. In the case of rotor blades which can be walked on up to approximately 50% to 60% of the radius (the blade flange corresponds approximately to 0% of the radius), at least one acceleration sensor can be provided at a radial position in the outer 70% of the radius of the rotor blade become. In rotor blades, which have a much lower walk-in area, the advantage of mounting on a walk-in position can alternatively be given up. In such a case, mounting of an acceleration sensor near the blade tip, for example in a range of 30% to 95% of the radius (0% corresponds to the flange on the blade root) may be provided.

2 zeigt eine Windkraftanlage 200. Die Windkraftanlage 200 beinhaltet einen Turm 40 und eine Gondel 42. An der Gondel 42 ist der Rotor befestigt. Der Rotor beinhaltet eine Nabe 44, an der die Rotorblätter 100 befestigt sind. Gemäß typischen Ausführungsformen hat der Rotor zumindest 2 Rotorblätter insbesondere 3 Rotorblätter. Beim Betrieb der Windenergieanlage bzw. der Windkraftanlage rotiert der Rotor, d.h. die Nabe mit den Rotorblättern um eine Achse. Dabei wird ein Generator zur Stromerzeugung angetrieben. Wie in 2 dargestellt, ist zumindest ein Beschleunigungssensor 110 in einem Rotorblatt 100 zur Verfügung gestellt. Der Beschleunigungssensor ist mit einer Signalleitung mit einer Auswerteeinheit 114 verbunden. Die Auswerteeinheit 114 liefert ein Signal an eine Steuerung und/oder Regelung 50 der Windkraftanlage 200. 2 shows a wind turbine 200 , The wind turbine 200 includes a tower 40 and a gondola 42 , At the gondola 42 the rotor is attached. The rotor includes a hub 44 at the rotor blades 100 are attached. According to typical embodiments, the rotor has at least 2 rotor blades, in particular 3 rotor blades. During operation of the wind power plant or the wind turbine rotates the rotor, ie the hub with the rotor blades about an axis. In this case, a generator is driven to generate electricity. As in 2 is at least one acceleration sensor 110 in a rotor blade 100 made available. The acceleration sensor is connected to a signal line with an evaluation unit 114 connected. The evaluation unit 114 provides a signal to a controller and / or controller 50 the wind turbine 200 ,

Gemäß einigen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, handelt es sich bei dem Beschleunigungssensor 110 um einen faseroptischen Beschleunigungssensor, insbesondere einen faseroptische Beschleunigungssensor. Für faseroptische Beschleunigungssensoren wird ein optisches Signal mittels eines Lichtleiters 112, zum Beispiel einer optischen Faser, an die Auswerteeinheit 114 übertragen. Bei einem faseroptischen Beschleunigungssensor kann das Sensorelement selbst außerhalb einer optischen Faser zur Verfügung gestellt werden. Ein Beispiel ist im Detail in Bezug auf 9A und 9B beschrieben. Alternativ hierzu kann bei einem faseroptischen Beschleunigungssensor das eigentliche Sensorelement innerhalb einer optischen Faser zur Verfügung gestellt, zum Beispiel in Form eines Faser-Bragg-Gitters. Dies ist im Detail in Bezug auf die 3 und 4 beschrieben. According to some embodiments that may be combined with other embodiments, the acceleration sensor is one 110 to a fiber optic acceleration sensor, in particular a fiber optic acceleration sensor. For fiber optic acceleration sensors, an optical signal is transmitted by means of a light guide 112 , For example, an optical fiber, to the evaluation unit 114 transfer. In a fiber optic acceleration sensor, the sensor element itself can be provided outside of an optical fiber. An example is in detail in relation to 9A and 9B described. Alternatively, in a fiber optic acceleration sensor, the actual sensor element may be provided within an optical fiber, for example in the form of a fiber Bragg grating. This is in detail in terms of the 3 and 4 described.

In 2 ist durch die Pfeile 201 eine Torsion eines Rotorblatts 100 illustriert. Diese Torsion kann zum Beispiel entlang eine Achse 101 existieren. Bei einer ungewünschte Oszillationen um die Achse 101 spricht man von flattern des Rotorblatts 110. Das flattern des Rotorblatts 110 kann zu gefährlichen Betriebszuständen führen. Es ist daher erstrebenswert verbesserte Verfahren zur Überwachung einer Torsionsinstabilität eines Rotorblatts Windkraftanlage zur Verfügung zu stellen. Gemäß hier beschriebenen Ausführungsformen wird eine Beschleunigung mit einem Beschleunigungssensor gemessen, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt ist. Das Signal des Beschleunigungssensor, d.h. das Beschleunigungssignal bzw. die Beschleunigung wird ausgewertet, um ein Warnsignal zu generieren. Das Warnsignal kann ein Signal zur Erfassung einer Torsionsinstabilität, insbesondere Flattern, und/oder ein Signal zur Erfassung einer Torsions-Biege-Kopplung sein. In der hier vorliegenden Offenbarung wird der Begriff Torsions-Biege-Kopplung verwendet. Alternativ kann auch der Begriff Biege-Torsions-Kopplung verwendet werden. Die Auswertung des Beschleunigungssignals kann hierbei in der Auswerteeinheit 114 oder in der Steuerung und/oder Regelung 50 erfolgen. In 2 is through the arrows 201 a twist of a rotor blade 100 illustrated. For example, this torsion can be along an axis 101 exist. In case of unwanted oscillations around the axis 101 one speaks of flapping the rotor blade 110 , The flapping of the rotor blade 110 can lead to dangerous operating conditions. It is therefore desirable to provide improved methods for monitoring torsional instability of a wind turbine rotor blade. According to embodiments described herein, acceleration is measured with an acceleration sensor, wherein the acceleration sensor is provided at a radial position in the range of the outer 70% of the radius of the rotor blade. The signal of the acceleration sensor, ie the acceleration signal or the acceleration is evaluated in order to generate a warning signal. The warning signal may be a signal for detecting a torsional instability, in particular, flutter, and / or a signal for detecting a torsion-bending coupling. In the present disclosure, the term torsional bending coupling is used. Alternatively, the term bending-torsion coupling can be used. The evaluation of the acceleration signal can in this case in the evaluation 114 or in the control and / or regulation 50 respectively.

Im Gegensatz zu sogenannten „edgewise vibrations“ bei Rotorblättern, d.h. seitlichen Vibrationen, die zum Beispiel durch dynamische Stall-Effekte entstehen können, sind die Torsionsinstabilitäten bzw. Torsionsschwingungen nicht in der Gondel bzw., der Blattwurzel bzw., dem Blattflansch erfassbar. Bei den „edgewise vibrations“ sind die Rotorblätter in dieser Richtung schlecht gedämpft sind, und es kann eine Anregung durch dynamische Stall-Effekte entstehen. Bei Torsionsinstabilitäten wird eine Messung in der Blattspitze durchgeführt. Zum Beispiel kann die Torsionsinstabilität lokal auftreten. Beispielweise kann nur die Spitze des Rotorblatts schwingen. Jedes Rotorblatt kann separat eine individuelle Torsionsinstabilität aufweisen. Daher wird gemäß manchen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ein Beschleunigungssensor in jedem Rotorblatt zur Verfügung gestellt. Der Sensor wird in der Blattspitze zur Verfügung gestellt, d.h. in den letzten 30 % des Radius des Rotorblatts, da eine Torsionsinstabilität auch nur in der Rotorblattspitze. Gemäß hier beschriebenen Ausführungsformen werden hierfür insbesondere Lösungen für die Reparatur, die Anbringung bzw. den Austausch der Beschleunigungssensoren zur Verfügung gestellt, wobei in dem relevanten Bereich des Rotorblatts für die Montage des Beschleunigungssensors des Rotorblatts nicht begehbar ist.  In contrast to so-called "edgewise vibrations" in rotor blades, i. lateral vibrations, which can arise, for example, by dynamic stall effects, the torsional or torsional vibrations are not detectable in the nacelle or, the leaf root or, the leaf flange. In the "edgewise vibrations", the rotor blades are poorly damped in this direction, and it can cause a stimulation by dynamic stall effects. For torsional instabilities, a measurement is made in the blade tip. For example, the torsional instability may occur locally. For example, only the tip of the rotor blade can swing. Each rotor blade may separately have an individual torsional instability. Therefore, according to some embodiments that may be combined with other embodiments, an acceleration sensor is provided in each rotor blade. The sensor is provided in the blade tip, i. in the last 30% of the radius of the rotor blade, since a torsional instability only in the rotor blade tip. According to embodiments described here, in particular solutions for the repair, attachment or replacement of the acceleration sensors are made available, wherein in the relevant area of the rotor blade for mounting the acceleration sensor of the rotor blade is not accessible.

Während des Designs eines Rotorblatts lässt sich das Problem einer Torsionsinstabilität nur schwer ausschließen, da gegebenenfalls im Test dieses Problem nicht auftritt. Es lassen sich durch hier beschriebene Ausführungsformen demnach Konstruktionsrisiken bei großen Rotorblättern bzw. solchen Rotorblättern mit einer konstruktiv vorgesehenen Torsions-Biege-Kopplung, reduzieren bzw. ausschließen. Gemäß typischen Ausführungsformen werden die Verfahren zur Überwachung einer Torsionsinstabilität auch bei Rotorblättern zur Verfügung gestellt, die zur passiven Leistungsregelung eine Torsions-Biege-kopplung verwenden. Die Torsionsinstabilität ist ein Problem, das insbesondere bei größeren Blättern, zum Beispiel mit einer Länge von ungefähr 40 m oder mehr, auftritt, bzw. bei modernen Rotorblättern, die ein bestimmtes Verhältnis von Torsionssteifigkeit zur Anregungsfrequenzen aufweisen.  During the design of a rotor blade, the problem of torsional instability is difficult to exclude, since this problem may not occur in the test. It can be reduced or excluded by embodiments described here accordingly design risks in large rotor blades or such rotor blades with a structurally provided torsional bending coupling. According to typical embodiments, the methods for monitoring torsional instability are also provided in rotor blades that use torsional bending coupling for passive power control. The torsional instability is a problem that occurs in particular for larger leaves, for example with a length of about 40 m or more, or in modern rotor blades, which have a certain ratio of torsional stiffness to the excitation frequencies.

Gemäß typischen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ist der Beschleunigungssensor in den äußeren 50 % des Radius des Rotorblatts zur Verfügung gestellt. Zusätzlich oder alternativ kann der Beschleunigungssensor ein Abstand von der Torsionsachse von zumindest 10 cm haben. Ferner ist es günstig, wenn der Beschleunigungssensor zumindest eine Beschleunigung mit einer Richtungskomponente senkrecht zur Profilsehne des Rotorblatts bzw. senkrecht zur Blattoberfläche zur Verfügung stellt. Eine gemessene Beschleunigungsrichtung kann somit tangential in Bezug auf die Traktionsachse sein. Durch die Anordnung und Orientierung des Beschleunigungssensors kann eine verbesserte Erkennung einer dynamischen Torsion, zum Beispiel einer Oszillationen um eine Torsionsachse, zur Verfügung gestellt werden.  According to typical embodiments that may be combined with other embodiments, the acceleration sensor is provided in the outer 50% of the radius of the rotor blade. Additionally or alternatively, the acceleration sensor may have a distance from the torsion axis of at least 10 cm. Furthermore, it is favorable if the acceleration sensor provides at least one acceleration with a directional component perpendicular to the chord of the rotor blade or perpendicular to the blade surface. A measured acceleration direction may thus be tangential with respect to the traction axis. By the arrangement and orientation of the acceleration sensor, an improved detection of a dynamic torsion, for example, an oscillation about a torsion axis can be provided.

Die gemäß Ausführungsformen zur Verfügung gestellte radiale Position im Bereich der äußeren 70 % des Radius des Rotorblatts, insbesondere den äußeren 50 % des Radius des Rotorblatts, weiterhin insbesondere den äußeren 70 bis 95 % des Radius des Rotorblatts, generiert hierbei ein verbessertes Signal des Beschleunigungssensor. Dies ermöglicht eine zuverlässigere Erkennung bzw. Überwachung einer Torsionsinstabilität, zum Beispiel flattern.  The radial position provided in accordance with embodiments in the area of the outer 70% of the radius of the rotor blade, in particular the outer 50% of the radius of the rotor blade, in particular the outer 70 to 95% of the radius of the rotor blade, generates an improved signal of the acceleration sensor. This allows a more reliable detection or monitoring of a torsional instability, for example, flutter.

Gemäß einigen hier beschriebenen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ermöglichen faseroptische Beschleunigungssensoren, bei denen ein Signal optisch über einen Lichtleiter 112 übertragen wird, eine bisher in der Praxis als ungünstig angesehene radialen Position, da die Übertragung mittels eines Lichtleiters bzw. einer optischen Faser ein reduziertes Risiko eines Blitzschadens mit sich bringt. Es wird hierbei folglich ein existierendes Vorurteil der Montage von Sensoren in der Nähe des Blattflanschs überwunden. Dies kann insbesondere durch die Verwendung von metallfreien Beschleunigungssensoren bzw. im Wesentlichen metallfreien Beschleunigungssensoren, wie sie in Bezug auf 9A und 9B mehr erläutert werden, ermöglicht werden. Aber auch faseroptische Beschleunigungssensoren können derart zur Verfügung gestellt werden, dass sie eine Montage in einem radial äußeren Bereich eines Rotorblatts erlauben, ohne das Risiko eines Blitzschadens zu ignorieren. According to some embodiments described herein which may be combined with other embodiments, fiber optic acceleration sensors in which a signal is optically transmitted via a light pipe 112 is transmitted, a hitherto considered unfavorable in practice radial position, since the transmission by means of a light guide or an optical fiber brings a reduced risk of lightning damage with it. Consequently, an existing prejudice of the mounting of sensors in the vicinity of the blade flange is thereby overcome. This can be achieved, in particular, by the use of metal-free acceleration sensors or substantially metal-free acceleration sensors, as described in relation to FIGS 9A and 9B be explained more. However, fiber-optic acceleration sensors can also be provided in such a way that they allow mounting in a radially outer region of a rotor blade without ignoring the risk of lightning damage.

3 zeigt einen in einen Lichtwellenleiter integrierten Sensor bzw. einen faseroptischen Sensor 310, welche ein Faser-Bragg-Gitter 306 aufweist. Obwohl in 3 nur ein einziges Faser-Bragg-Gitter 306 gezeigt ist, ist zu verstehen, dass die vorliegende Erfindung nicht auf eine Datenerfassung aus einem einzelnen Faser-Bragg-Gitter 306 beschränkt ist, sondern dass längs eines Lichtleiters 112, einer Übertragungsfaser, einer Sensorfaser bzw. einer optischen Faser eine Vielzahl von Faser-Bragg-Gittern 306 angeordnet sein können. 3 shows a sensor integrated in an optical waveguide or a fiber optic sensor 310 which is a fiber Bragg grating 306 having. Although in 3 only a single fiber Bragg grating 306 1, it is to be understood that the present invention is not limited to data acquisition from a single fiber Bragg grating 306 is limited, but that along a light guide 112 , a transmission fiber, a sensor fiber and an optical fiber, respectively, a plurality of fiber Bragg gratings 306 can be arranged.

3 zeigt somit nur einen Abschnitt eines optischen Wellenleiters, welcher als Sensorfaser, optischer Faser bzw. Lichtleiter 112 ausgebildet ist, wobei diese Sensorfaser empfindlich auf eine Faserdehnung (siehe Pfeil 308) ist. Es sei hier darauf hingewiesen, dass der Ausdruck „optisch“ bzw. „Licht“ auf einen Wellenlängenbereich im elektromagnetischen Spektrum hinweisen soll, welcher sich vom ultravioletten Spektralbereich über den sichtbaren Spektralbereich bis hin zu dem infraroten Spektralbereich erstrecken kann. Eine Mittenwellenlänge des Faser-Bragg-Gitters 306, d.h. eine so genannte Bragg-Wellenlänge λB, wird durch die folgende Gleichung erhalten: λB = 2·nk·Λ. 3 thus shows only a portion of an optical waveguide, which as a sensor fiber, optical fiber or optical fiber 112 is formed, this sensor fiber is sensitive to fiber elongation (see arrow 308 ). It should be noted that the term "optical" or "light" is intended to indicate a wavelength range in the electromagnetic spectrum, which may extend from the ultraviolet spectral range over the visible spectral range to the infrared spectral range. A center wavelength of the fiber Bragg grating 306 , ie a so-called Bragg wavelength λB, is obtained by the following equation: λB = 2 · nk · Λ.

Hierbei ist nk die effektive Brechzahl des Grundmodus des Kerns der optischen Faser und Λ die räumliche Gitterperiode (Modulationsperiode) des Faser-Bragg-Gitters 306. Here, nk is the effective refractive index of the fundamental mode of the core of the optical fiber and Λ the spatial grating period (modulation period) of the fiber Bragg grating 306 ,

Eine spektrale Breite, die durch eine Halbwertsbreite der Reflexionsantwort gegeben ist, hängt von der Ausdehnung des Faser-Bragg-Gitters 306 längs der Sensorfaser ab. Die Lichtausbreitung innerhalb der Sensorfaser bzw. des Lichteiters 112 ist somit durch die Wirkung des Faser-Bragg-Gitters 306 beispielsweise abhängig von Kräften, Momenten und mechanischen Spannungen sowie Temperaturen, mit der die Sensorfaser, d.h. die optische Faser und insbesondere das Faser-Bragg-Gitter 306 innerhalb der Sensorfaser beaufschlagt werden. A spectral width, which is given by a half width of the reflection response, depends on the extent of the fiber Bragg grating 306 along the sensor fiber. The light propagation within the sensor fiber or the light guide 112 is thus due to the effect of the fiber Bragg grating 306 For example, depending on forces, moments and mechanical stresses and temperatures at which the sensor fiber, ie the optical fiber and in particular the fiber Bragg grating 306 be charged within the sensor fiber.

Wie in 3 gezeigt, tritt elektromagnetische Strahlung 14 oder Primärlicht von links in die optische Faser bzw. den Lichtleiter 112 ein, wobei ein Teil die elektromagnetische Strahlung 14 als ein transmittiertes Licht 16 mit einem im Vergleich zur elektromagnetischen Strahlung 14 veränderten Wellenlängenverlauf austritt. Ferner ist es möglich, reflektiertes Licht 15 am Eingangsende der Faser (d.h. an dem Ende, an welchem auch das elektromagnetische Strahlung 14 eingestrahlt wird) zu empfangen, wobei das reflektierte Licht 15 ebenfalls eine modifizierte Wellenlängenverteilung aufweist. Das optische Signal das zur Detektion und Auswertung verwendet wird kann gemäß den hier beschriebenen Ausführungsformen durch das reflektieret Licht, durch das transmittierte Licht, sowie eine Kombination der beiden zur Verfügung gestellt werden. As in 3 shown, electromagnetic radiation occurs 14 or primary light from the left into the optical fiber or the light guide 112 one part being the electromagnetic radiation 14 as a transmitted light 16 with one compared to the electromagnetic radiation 14 changed wavelength course emerges. Further, it is possible to reflect reflected light 15 at the input end of the fiber (ie at the end, at which also the electromagnetic radiation 14 is irradiated), the reflected light 15 also has a modified wavelength distribution. The optical signal used for detection and evaluation can be provided according to the embodiments described herein by the reflected light, by the transmitted light, as well as a combination of the two.

In einem Fall, in dem die elektromagnetische Strahlung 14 bzw. das Primärlicht in einem breiten Spektralbereich eingestrahlt wird, ergibt sich in dem transmittierten Licht 16 an der Stelle der Bragg-Wellenlänge ein Transmissionsminimum. In dem reflektierten Licht ergibt sich an dieser Stelle ein Reflexionsmaximum. Eine Erfassung und Auswertung der Intensitäten des Transmissionsminimums bzw. des Reflexionsmaximums, oder von Intensitäten in entsprechenden Wellenlängenbereichen erzeugt eine Signal, das im Hinblick auf die Längenänderung der optischen Faser bzw. des Lichtleiters 112 ausgewertet werden kann und somit auf Kräfte bzw. Beschleunigungen Aufschluss gibt. In a case where the electromagnetic radiation 14 or the primary light is irradiated in a wide spectral range, results in the transmitted light 16 at the location of the Bragg wavelength, a transmission minimum. In the reflected light arises at this point a reflection maximum. A detection and evaluation of the intensities of the transmission minimum or of the reflection maximum, or of intensities in corresponding wavelength ranges, generates a signal which, with regard to the change in length of the optical fiber or of the light guide 112 can be evaluated and thus provides information on forces or accelerations.

4 zeigt eine Vorrichtung 110 zum Detektieren einer Beschleunigung. Die Vorrichtung beinhaltet eine Masse 402, die an einem Hebelarm 406 befestigt ist. Der Hebelarm 406 hat einen Fixpunkt 422, so dass eine Bewegung des Hebelarms und der Masse, die durch Pfeil 423 dargestellt ist, ermöglicht wird. Weiterhin ist eine optische Faser bzw. ein Lichtleiter 112 mit einem Faser-Bragg-Gitter 306 an dem Hebelarm 406 befestigt. Hierbei ist die Sensorfaser mit einem Befestigungselement 412 am Hebelarm 406 befestigt. Gemäß typischen Ausführungsformen kann das Befestigungselement eine Klebestelle oder eine Klemmvorrichtung sein. Die Masse 402 ist an einer ersten Hebelposition mit dem Hebelarm 406 verbunden und die optische Faser ist an einer zweiten Hebelposition mit dem Hebelarm 406 verbunden. Eine Bewegung der Masse bzw. des Hebelarms, die durch Pfeil 423 dargestellt ist, führt zu einer Längenänderung der optischen Faser bzw. des Lichtleiter 112, die durch Pfeil 308 dargestellt ist, bzw. einer Kraftauswirkung auf die optische Faser. Hierbei erzeugt das Faser-Bragg-Gitter 306 einen von der Dehnung bzw. Längenänderung abhängigen veränderten Wellenlängenverlauf des optischen Signals wie zum Beispiel des reflektierten Lichts 15, dass durch Reflexion des Primärlichts bzw. der elektromagnetischen Strahlung 14 erzeugt wird. 4 shows a device 110 for detecting an acceleration. The device includes a mass 402 attached to a lever arm 406 is attached. The lever arm 406 has a fixed point 422 so that a movement of the lever arm and the mass by arrow 423 is shown is possible. Furthermore, an optical fiber or a light guide 112 with a fiber Bragg grating 306 on the lever arm 406 attached. Here is the sensor fiber with a fastener 412 on the lever arm 406 attached. According to typical embodiments, the fastening element may be a splice or a clamping device. The crowd 402 is at a first lever position with the lever arm 406 connected and the optical fiber is at a second lever position with the lever arm 406 connected. A movement of the mass or lever arm, indicated by arrow 423 is shown, leads to a change in length of the optical fiber or the optical fiber 112 by arrow 308 is shown, or a force impact on the optical fiber. This produces the fiber Bragg grating 306 a dependent on the elongation or change in length changed wavelength characteristic of the optical signal such as the reflected light 15 in that by reflection of the primary light or the electromagnetic radiation 14 is produced.

Bei herkömmlichen Beschleunigungssensoren wird die Masse typischerweise durch einen Federmechanismus an der Auslegung in einer oder mehreren Raumrichtungen eingeschränkt. Im einfachsten Fall kann sich die Masse lediglich in eine Richtung bewegen. In diese Richtung wird eine Sensorfaser an der Masse befestigt, die sich bei einer Beschleunigung der Masse dehnt. Bei einer solchen Anordnung sind die maximale Dehnung und damit die Empfindlichkeit der Faser durch das Gewicht der Masse und die Steifigkeit der Faser gegeben. Hierbei kann, um die Empfindlichkeit eines solchen Sensors zu steigern, lediglich die Masse vergrößert werden. Für empfindliche Sensoren kann dies zu Massen von bis zu mehreren 100 g Gewicht führen. Ein weiterer Nachteil einer solchen Anordnung ist, dass hierbei die Resonanzfrequenz f des Faser-Masse-Systems eine Abhängigkeit f ~ Wurzel(k/m) hat, die folglich mit steigender Masse abnimmt. Hierbei ist k die Federsteifigkeit des Faser-Masse-Systems. Da die minimale Federsteifigkeit durch die Steifigkeit der Faser beschränkt ist, lässt sich somit nur ein eingeschränkter Bereich konfigurieren.  In conventional acceleration sensors, the mass is typically limited by a spring mechanism to the design in one or more spatial directions. In the simplest case, the mass can only move in one direction. In this direction, a sensor fiber is attached to the mass, which expands as the mass accelerates. In such an arrangement, the maximum elongation and thus the sensitivity of the fiber is given by the weight of the mass and the stiffness of the fiber. In this case, in order to increase the sensitivity of such a sensor, only the mass can be increased. For sensitive sensors, this can lead to masses of up to several 100 g in weight. Another disadvantage of such an arrangement is that in this case the resonance frequency f of the fiber-mass system has a dependence f root (k / m), which consequently decreases with increasing mass. Here, k is the spring stiffness of the fiber-mass system. Since the minimum spring stiffness is limited by the stiffness of the fiber, only a limited range can be configured.

Durch die Verwendung eines Hebelarm kann diese Beschränkung des zu konfigurieren Bereichs aufgehoben bzw. verringert werden. Wie bereits in 4 zu erkennen ist, kann durch eine Veränderung der Befestigungsposition der optischen Faser entlang des Hebelarms 406, d.h. einer Veränderung der zweiten Hebelposition, an der die optische Faser bzw. der Lichtleiter 112 befestigt ist, eine Veränderung der Empfindlichkeit der Vorrichtung zum Detektieren einer Beschleunigung bereitgestellt werden. Die Empfindlichkeit kann somit verändert werden ohne hierzu die Masse 402 zu verändern und somit die Resonanzfrequenz zu beeinflussen. By using a lever arm, this limitation of the area to be configured can be canceled or reduced. As already in 4 can be seen, by changing the mounting position of the optical fiber along the lever arm 406 , ie a change in the second lever position at which the optical fiber or the light guide 112 is attached, a change in the sensitivity of the device for detecting an acceleration can be provided. The sensitivity can thus be changed without the mass 402 to change and thus influence the resonance frequency.

Somit erlauben es Ausführungsformen gemäß 4 den Zusammenhang zwischen Steifigkeit der Faser, Empfindlichkeit, sowie Resonanzfrequenz zu brechen. Durch den Einsatz eines mechanischen Hebels wird das Verhältnis aus Auslenkung der Faser und notwendiger Kraft beliebig konfigurierbar. Ferner erlaubt die Verwendung eines Hebelarms eine vergrößerte Kraft an der Faser auch mit einer kleinen Masse bzw. einer konstanten Masse. Thus, embodiments allow according to 4 to break the connection between stiffness of the fiber, sensitivity, as well as resonance frequency. By using a mechanical lever, the ratio of deflection of the fiber and necessary force is arbitrarily configurable. Furthermore, the use of a lever arm allows an increased force on the fiber even with a small mass or a constant mass.

Die durch Pfeil 423 dargestellte Bewegung ist eine Bewegung des Hebelarm 406 bzw. der Masse 402 in der Papierebene von 4. Typischerweise kann der Fixpunkt 422 derart ausgestaltet sein, dass eine Bewegung lediglich in einer Ebene erfolgt. Gemäß weiteren Ausführungsformen kann eine Bewegung jedoch auch in zwei Ebenen oder sogar drei Ebenen erfolgen. Bei einer solchen Ausführungsform mit mehreren Bewegungsebenen können weitere optische Fasern mit jeweils einem Faser-Bragg-Gitter 306 mit dem Hebelarm 406 verbunden sein, so dass eine Detektion einer Beschleunigung in mehreren Raumrichtungen erfolgen kann. Gemäß typischen Ausführungsformen, wird eine Vorrichtung zum mehrdimensionalen Detektieren einer Beschleunigung jedoch wie in Bezug auf 8B beschrieben ausgeführt. The by arrow 423 Movement shown is a movement of the lever arm 406 or the mass 402 in the paper plane of 4 , Typically, the fixed point 422 be designed such that a movement takes place only in one plane. However, according to further embodiments, a movement can also take place in two levels or even three levels. In such an embodiment with a plurality of planes of motion, further optical fibers can each have a fiber Bragg grating 306 with the lever arm 406 be connected, so that detection of acceleration in several directions in space can be done. However, according to typical embodiments, an apparatus for multi-dimensionally detecting acceleration is described with reference to FIG 8B described executed.

5 zeigt einen Rotor 500 einer Windkraftanlage. Der Rotor 500 hat eine Nabe 44 und daran angebrachte Rotorblätter 100. In zumindest einem der Rotorblätter 100 ist ein Beschleunigungssensor 110 zur Verfügung gestellt. Das Signal des Beschleunigungssensors 110 wird über einen Lichtleiter 112 an einen Verteiler 510 geleitet. Der Verteiler 510 kann zum Beispiel ein Feldverteiler sein, an dem mehrere Signale von unterschiedlichen Sensoren zur Verfügung gestellt werden. 5 shows a rotor 500 a wind turbine. The rotor 500 has a hub 44 and attached rotor blades 100 , In at least one of the rotor blades 100 is an acceleration sensor 110 made available. The signal of the acceleration sensor 110 is over a light guide 112 to a distributor 510 directed. The distributor 510 may be, for example, a field distributor to which several signals from different sensors are provided.

Gemäß manchen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann der Verteiler bzw. der Feldverteiler am Blattschott des Rotorblatts angebracht sein. Der Verteiler kann zum An- und Abstecken eines Signalkabels eines Sensors ausgebildet sein. Ferner kann ein Sensorkabel zum An- und Abstecken vom Feldverteiler zum Messgerät bzw. zur Auswerteeinheit zur Verfügung gestellt sein. Gemäß manchen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ist der Verteiler 510 am Blattschott oder in der Blattwurzel zur Verfügung gestellt. According to some embodiments which may be combined with other embodiments, the distributor or field distributor may be attached to the blade bulkhead of the rotor blade. The distributor can be designed for connecting and disconnecting a signal cable of a sensor. Furthermore, a sensor cable can be provided for connection and disconnection from the field distributor to the measuring device or to the evaluation unit. In accordance with some embodiments that may be combined with other embodiments, the distributor is 510 provided on the leaf bulkhead or in the leaf root.

Der Bereich der Blattwurzel ist durch die Trennlinie 502 illustriert. Typischerweise erstreckt sich die Blattwurzel von einem Blattflansch 102, mit dem das Rotorblatt 100 an der Nabe 44 befestigt ist, radial, d.h. entlang der Längserstreckung des Rotorblatts, über eine Länge von 1 m bis 3 m. The area of the leaf root is through the dividing line 502 illustrated. Typically, the blade root extends from a blade flange 102 with which the rotor blade 100 at the hub 44 is fixed, radially, ie along the longitudinal extent of the rotor blade, over a length of 1 m to 3 m.

Wie in 5 dargestellt, kann gemäß manchen Ausführungsformen ein Lichtleiter 512 bzw. eine optische Faser von dem Verteiler 510 zu der Auswerteeinheit 114 geführt werden. Zum Beispiel kann der Lichtleiter 512 entlang einer Feder oder einer Spirale 513 bzw. durch eine Feder oder eine Spirale 513 oder ein entsprechendes mechanisches Element geführt werden, so dass bei einer Rotation des Rotorblatts 100 um seine Längsachse, d.h. beim Pitchen des Rotorblatts, der Lichtleiter nicht beschädigt wird. Die mechanische Führung des Lichtleiters 512 entlang einer Spirale bzw. durch eine Spirale 513 erlaubt eine Torsion des Lichtleiters, so dass beim Pitchen des Rotorblatts der Lichtleiter nicht beschädigt wird As in 5 may be a light guide according to some embodiments 512 or an optical fiber from the distributor 510 to the evaluation unit 114 be guided. For example, the light guide 512 along a spring or a spiral 513 or by a spring or a spiral 513 or a corresponding mechanical element are guided, so that upon rotation of the rotor blade 100 around its longitudinal axis, ie when pitching the rotor blade, the light guide is not damaged. The mechanical guidance of the light guide 512 along a spiral or through a spiral 513 allows a twist of the light guide, so that when pitching the rotor blade of the light guide is not damaged

Eine Mehrzahl der in den Figuren beschriebenen Ausführungsformen zeigt einen Beschleunigungssensor in jeweils einem der Rotorblätter. Gemäß weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann eine Messung der Beschleunigung an mehreren Positionen eines Rotorblatts, insbesondere an mehreren radialen Positionen im Bereich der äußeren 70 % des Radius des Rotorblatts, durchgeführt werden. Hierzu können mehrere Beschleunigungssensoren an den jeweiligen radialen Position zur Verfügung gestellt sein. Durch die Messung an mehreren radialen Positionen kann zum einen die Messgenauigkeit erhöht werden. Zusätzlich oder alternativ können Signale zur Erfassung einer Torsionsinstabilität, insbesondere Flattern, und/oder Signale zur Instabilitätswarnung bei einer Torsions-Biege-Kopplung für unterschiedliche Betriebsbedingungen an unterschiedlichen radialen Positionen leichter und/oder zuverlässiger erkannt werden. Zum Beispiel kann eine Steuerung und/oder Regelung einer Windkraftanlage dadurch ausgelöst werden, dass ein Warnsignal an zumindest einer radialen Position erzeugt wird oder an einer vorbestimmten Anzahl von radialen Positionen erzeugt wird. Gemäß noch weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann ein Beschleunigungssensor oder mehrere Beschleunigungssensoren auch mit zumindest einem weiteren Sensor kombiniert werden. Der zumindest eine weitere Sensor kann ausgewählt sein aus einem oder mehreren Sensoren aus der Gruppe bestehend aus: einem Dehnungssensor, einem Temperatursensor, einem Drucksensor, einem Schallpegelsensor, und einem Inklinometer (zur Messung der Position der Rotation des Rotors). A majority of the embodiments described in the figures show an acceleration sensor in each case one of the rotor blades. According to further embodiments which can be combined with other embodiments, a measurement of the acceleration at a plurality of positions of a rotor blade, in particular at a plurality of radial positions in the region of the outer 70% of the radius of the rotor blade, can be performed. For this purpose, a plurality of acceleration sensors may be provided at the respective radial position. By measuring at several radial positions, on the one hand, the measurement accuracy can be increased. Additionally or alternatively, signals for detecting a torsional instability, in particular flutter, and / or signals for instability warning in a torsional bending coupling for different operating conditions at different radial positions can be detected more easily and / or reliably. For example, control and / or regulation of a wind turbine may be triggered by generating a warning signal at at least one radial position or generating it at a predetermined number of radial positions. According to still further embodiments that may be combined with other embodiments, one or more acceleration sensors may also be combined with at least one other sensor. The at least one further sensor may be selected from one or more sensors from the group consisting of: a Strain sensor, a temperature sensor, a pressure sensor, a sound level sensor, and an inclinometer (to measure the position of the rotation of the rotor).

Insbesondere für die Erzeugung von Signalen zur Flatterwarnung bzw. zur Torsionsinstabilität-Warnung kann ein Sensor zum Messen einer Druckschwankung (zum Beispiel eines Schalldrucks) am Rotorblatt zur Verfügung gestellt werden. Hierdurch können zum Beispiel Geräusche, die beim Flattern eines Rotorblatts typischerweise auftreten können, erkannt werden und für die Erzeugung von Warnsignalen hinzugezogen werden.  In particular, for the generation of signals for flutter warning or torsional instability warning, a sensor for measuring a pressure fluctuation (for example, a sound pressure) can be provided on the rotor blade. In this way, for example, noises that may typically occur when a rotor blade flutters can be detected and used for the generation of warning signals.

Darüber hinaus ist die Messung der Temperatur am Rotorblatt zur Auswertung der Signale des bzw. der Beschleunigungssensoren vorteilhaft, da durch die Temperatur die Blatteigenschaften, wie zum Beispiel die Eigenfrequenz, beeinflusst werden. Eine Korrelation der Blatteigenschaften mit den Signalen des bzw. der Beschleunigungssensoren führt zu einer präziseren Auswertung bei der Erzeugung von Warnsignalen bzw. den Messungen des oder der Beschleunigungssensoren. Zum Beispiel kann die Messung der Temperatur, wie zum Beispiel mit einem Temperatursensor, in einem Beschleunigungssensor oder in einem Lichtleiter bzw. einer optischen Faser erfolgen.  In addition, the measurement of the temperature on the rotor blade for evaluating the signals of the acceleration sensor (s) is advantageous, since the temperature influences the sheet properties, such as the natural frequency. A correlation of the sheet properties with the signals of the acceleration sensor (s) leads to a more precise evaluation in the generation of warning signals or the measurements of the acceleration sensor (s). For example, the measurement of temperature may be made, such as with a temperature sensor, in an acceleration sensor or in an optical fiber.

Gemäß weiteren Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden können, kann ein Dehnungssensoren zum Messen eines statischen Biegemoments, insbesondere eines statischen Torsionsmoment, zur Verfügung gestellt werden. Somit kann bei der Erzeugung eines Signals zur Flatterwarnung und/oder eine Signal zur Instabilitätswarnung bei einer Torsions-Biege-Kopplung ein dynamisches Signal des Beschleunigungssensors mit einem statischen Signal des Dehnungssensors kombiniert werden. Zum Beispiel kann ein Dehnungssensor im Bereich der Blattwurzel zur Verfügung gestellt werden. Für eine kombinierte Messung kann eine Ausrichtung eines Dehnungssensors in einem Bereich von 30° bis 60°, insbesondere 45°, relativ zur Torsionsachse vorteilhaft sein.  According to further embodiments, which may be combined with other embodiments described herein, a strain sensor for measuring a static bending moment, in particular a static torsional moment, may be provided. Thus, in generating a flutter warning signal and / or a signal for instability warning in a torsional-bending coupling, a dynamic signal of the acceleration sensor may be combined with a static signal of the strain sensor. For example, a strain sensor can be provided in the area of the blade root. For a combined measurement, an orientation of a strain sensor in a range of 30 ° to 60 °, in particular 45 °, relative to the torsion axis may be advantageous.

In einer Steuerung und/oder Regelung 50 einer Windkraftanlage 200, wie sie in 2 dargestellt ist, kann das Signal zur Flatterwarnung und/oder das Signal zur Instabilitätswarnung bei einer Torsions-Biege-Kopplung für die Steuerung und/oder Regelung der Windkraftanlage verwendet werden. Die Steuerung und/oder Regelung kann insbesondere aus einer Pitchregelung eines Rotorblatts, einer Anpassung einer Generator Kennlinie der Windkraftanlage, einer Notausschaltung der Windkraftanlage, oder eine Kombination von zwei oder mehreren dieser Maßnahmen bestehen. In a control and / or regulation 50 a wind turbine 200 as they are in 2 is shown, the signal for flutter warning and / or the signal for instability warning in a torsional bending coupling can be used for the control and / or regulation of the wind turbine. The control and / or regulation may in particular consist of a pitch control of a rotor blade, an adaptation of a generator characteristic of the wind turbine, an emergency shutdown of the wind turbine, or a combination of two or more of these measures.

6 zeigt ein typisches Messsystem zur Detektion einer Beschleunigung mit einer Vorrichtung zur Detektion einer Beschleunigung gemäß den hierin beschriebenen Ausführungsformen. Das System enthält einen oder mehrere Beschleunigungssensoren 110. Das System weist eine Quelle 602 für elektromagnetische Strahlung, zum Beispiel eine Primärlichtquelle, auf. Die Quelle dient zur Bereitstellung von optischer Strahlung mit welcher mindestens ein faseroptisches Sensorelement eines Beschleunigungssensors bestrahlt werden kann. Zu diesem Zweck ist eine optische Übertragungsfaser bzw. ein Lichtleiter 603 zwischen der Primärlichtquelle 602 und einem ersten Faserkoppler 604 bereitgestellt. Der Faserkoppler koppelt das Primärlicht in die optische Faser bzw. dem Lichtleiter 112 Die Quelle 602 kann zum Beispiel eine Breitbandlichtquelle, einen Laser, eine LED (light emitting diode), eine SLD (Superlumineszenzdiode), eine ASE-Lichtquelle (Amplified Spontaneous Emission-Lichtquelle) oder ein SOA (Semiconductor Optical Amplifier) sein. Es können für hier beschriebene Ausführungsformen auch mehrere Quellen gleichen oder unterschiedlichen Typs (s.o.) verwendet werden. 6 FIG. 12 shows a typical acceleration detection system with an acceleration detection device according to the embodiments described herein. FIG. The system contains one or more acceleration sensors 110 , The system has a source 602 for electromagnetic radiation, for example a primary light source. The source serves to provide optical radiation with which at least one fiber-optic sensor element of an acceleration sensor can be irradiated. For this purpose, an optical transmission fiber or a light guide 603 between the primary light source 602 and a first fiber coupler 604 provided. The fiber coupler couples the primary light into the optical fiber or the optical fiber 112 The source 602 For example, a broadband light source, a laser, a light emitting diode (LED), an SLD (superluminescent diode), an Amplified Spontaneous Emission (ASE) light source, or a Semiconductor Optical Amplifier (SOA). For embodiments described herein, multiple sources of the same or different types (see above) may also be used.

Das faseroptische Sensorelement, wie zum Beispiel ein Faser-Bragg-Gitter (FBG) oder ein optischer Resonator, ist in eine Sensorfaser integriert bzw. an die Sensorfaser optisch angekoppelt. Das von den faseroptischen Sensorelementen zurückgeworfene Licht wird wiederum über den Faserkoppler 604 geleitet, welcher das Licht über die Übertragungsfaser 605 einen Strahlteiler 606 leitet. Der Strahlteiler 606 teilt das zurückgeworfene Licht zur Detektion mittels eines ersten Detektors 607 und eines zweiten Detektors 608. Hierbei wird das auf dem zweiten Detektor 608 detektierte Signal zunächst mit einem optischen Kantenfilter 609 gefiltert. The fiber optic sensor element, such as a fiber Bragg grating (FBG) or an optical resonator, is integrated into a sensor fiber or optically coupled to the sensor fiber. The light reflected by the fiber optic sensor elements is in turn transmitted via the fiber coupler 604 which passes the light over the transmission fiber 605 a beam splitter 606 passes. The beam splitter 606 divides the reflected light for detection by means of a first detector 607 and a second detector 608 , This is done on the second detector 608 detected signal first with an optical edge filter 609 filtered.

Durch den Kantenfilter 609 kann eine Verschiebung der Braggwellenlänge am FBG bzw. eine Wellenlängenänderung durch den optischen Resonator detektiert werden. Im Allgemeinen kann ein Messsystem, wie es in 6 dargestellt ist, ohne den Strahlteiler 606 bzw. den Detektor 607 zur Verfügung gestellt sein. Der Detektor 607 ermöglicht jedoch eine Normierung des Messsignals des Beschleunigungssensors in Bezug auf anderweitige Intensitätsfluktuationen, wie zum Beispiel Schwankungen der Intensität der Quelle 602, Schwankungen durch Reflexionen an Schnittstellen zwischen einzelnen Lichtleitern, oder andere Intensitätsschwankungen. Diese Normierung verbessert die Messgenauigkeit und reduziert die Abhängigkeit von Messsystemen von der Länge der zwischen der Auswerteeinheit und dem faseroptischen Sensor zur Verfügung gestellten Lichtleiter. Through the edge filter 609 For example, a shift in the Bragg wavelength at the FBG or a wavelength change through the optical resonator can be detected. In general, a measuring system, as in 6 is shown without the beam splitter 606 or the detector 607 be made available. The detector 607 however, allows normalization of the measurement signal of the acceleration sensor with respect to other intensity fluctuations, such as variations in the intensity of the source 602 , Fluctuations due to reflections at interfaces between individual light guides, or other intensity fluctuations. This standardization improves the measuring accuracy and reduces the dependence of measuring systems on the length of the optical fibers provided between the evaluation unit and the fiber-optic sensor.

Insbesondere bei der Verwendung von mehreren FBGs können zusätzliche optische Filtereinrichtungen (nicht dargestellt) für die Filterung des optischen Signales bzw. Sekundärlichts verwendet werden. Eine optische Filtereinrichtung 609 bzw. zusätzliche optische Filtereinrichtungen können einen optischen Filter umfassen, der gewählt ist aus der Gruppe, welche besteht aus einem Dünnschichtfilter, einem Faser-Bragg-Gitter, einem LPG, einem Arrayed-Waveguide-Grating (AWG), einem Echelle-Gitter, einer Gitteranordnung, einem Prisma, einem Interferometer, und jedweder Kombination davon. In particular, when using multiple FBGs, additional optical Filtering devices (not shown) are used for the filtering of the optical signal or secondary light. An optical filter device 609 or additional optical filter means may comprise an optical filter selected from the group consisting of a thin film filter, a fiber Bragg grating, an LPG, an Arrayed Waveguide Grating (AWG), an Echelle grating, a Grid arrangement, a prism, an interferometer, and any combination thereof.

Ein weiterer Aspekt bei der Überwachung von Windkraftanlagen, der mit anderen hier beschriebenen Ausführungsformen und Aspekten kombiniert werden kann, der jedoch auch unabhängig von weiteren Ausführungsformen, Aspekte und Details zur Verfügung gestellt ist, ist ein verbessertes Verfahren zur Überwachung einer Windkraftanlage mit einem faseroptischen Beschleunigungssensor. Gemäß einem solchen Aspekt bzw. einer solchen Ausführungsform wird ein Verfahren zur Überwachung einer Windkraftanlage zur Verfügung gestellt. Das Verfahren zur Überwachung einer Windkraftanlage umfasst das Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius eines Rotorblatts der Windkraftanlage zur Verfügung gestellt ist und das Filtern eines Beschleunigungssignals des faseroptischen Beschleunigungssensors mit einem analogen Tiefpass-Filter bzw. einem analogen anti-aliasing Filter.  Another aspect of wind turbine monitoring that may be combined with other embodiments and aspects described herein, but that is also provided independently of other embodiments, aspects, and details, is an improved method of monitoring a wind turbine with a fiber optic acceleration sensor. According to such aspect or embodiment, a method of monitoring a wind turbine is provided. The method of monitoring a wind turbine includes measuring an acceleration with a fiber optic acceleration sensor, wherein the acceleration sensor is provided at a radial position in the area of the outer 70% of the radius of a rotor blade of the wind turbine and filtering an acceleration signal of the fiber optic acceleration sensor with an analog Low-pass filter or an analog anti-aliasing filter.

7 zeigt eine Auswerteeinheit 114, wobei ein Signal eines Faser-Bragg-Gitters 306 über einen Lichtleiter zur Auswerteeinheit geführt wird. In 7 ist weiterhin eine Lichtquelle 602 dargestellt, die optional in der Auswerteeinheit zur Verfügung gestellt werden kann. Die Lichtquelle 602 kann aber auch unabhängig bzw. außerhalb von der Auswerteeinheit 114 zur Verfügung gestellt sein. Das optische Signal des faseroptischen Beschleunigungssensors 110 wird mit einem Detektor in ein elektrisches Signal gewandelt. Die Wandlung von einem optischen Signal zu einem elektrischen Signal ist durch das Symbol 702 in 7 dargestellt. Das elektrische Signal wird mit einem analogen Anti-Aliasing-Filter 710 gefiltert. Im Anschluss an die analoge Filterung mit einem analogen Anti-Aliasing-Filter bzw. Tiefpassfilter wird das Signal durch einen Analog-Digital-Wandler 704 digitalisiert. 7 shows an evaluation unit 114 wherein a signal of a fiber Bragg grating 306 is guided over an optical fiber to the evaluation. In 7 is still a light source 602 represented, which can optionally be provided in the evaluation unit. The light source 602 but can also be independent or outside of the evaluation unit 114 be made available. The optical signal of the fiber optic acceleration sensor 110 is converted into an electrical signal with a detector. The conversion from an optical signal to an electrical signal is indicated by the symbol 702 in 7 shown. The electrical signal comes with an analogue anti-aliasing filter 710 filtered. Following analogue filtering with an analog anti-aliasing filter or low-pass filter, the signal is passed through an analog-to-digital converter 704 digitized.

Gemäß einigen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann der Anti-Aliasing-Filter eine Grenzfrequenz von 1 kHz oder kleiner insbesondere von 500 Hz oder kleiner, weiterhin insbesondere von 100 Hz oder kleiner aufweisen. Gemäß hier beschriebenen Ausführungsformen, findet eine solche Filterung vor der Digitalisierung statt. Ferner findet für die hier beschriebenen Ausführungsformen keine spektrale Aufspaltung der Signale statt, wobei mit einem Spektrometer und einem Mehrkanaldetektor bereits eine optische Digitalisierung vorgenommen wird.  According to some embodiments, which may be combined with other embodiments, the anti-aliasing filter may have a cut-off frequency of 1 kHz or less, in particular of 500 Hz or less, more particularly of 100 Hz or less. According to embodiments described herein, such filtering takes place prior to digitization. Furthermore, no spectral splitting of the signals takes place for the embodiments described here, an optical digitization already being carried out with a spectrometer and a multichannel detector.

Gemäß hier beschriebenen Ausführungsformen findet eine analoge Tiefpassfilterung vor einer Digitalisierung eines Signals eines faseroptischen Beschleunigungssensors statt. Gemäß hier beschriebenen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann der Tiefpassfilter auch als ein analoger anti-aliasing Filter bezeichnet werden. Hierbei wird im Rahmen eines Abtasttheorems die Nyquist-Frequenz berücksichtigt, und eine Tiefpassfilterung mit Signalanteilen kleiner der Nyquist-Frequenz mittels des analogen Tiefpass-Filters bzw. analogen anti-aliasing Filters zur Verfügung gestellt.  According to embodiments described herein, analog low pass filtering occurs prior to digitizing a signal of a fiber optic acceleration sensor. According to embodiments described herein which may be combined with other embodiments, the low-pass filter may also be referred to as an analog anti-aliasing filter. In this case, the Nyquist frequency is taken into account in the context of a sampling theorem, and a low-pass filtering with signal portions smaller than the Nyquist frequency by means of the analog low-pass filter or analog anti-aliasing filter is made available.

Durch die hier beschriebenen Ausführungsformen mit einem faseroptischen Beschleunigungssensor und einer analogen Tiefpassfilterung kann eine verbesserte Messung einer Beschleunigung zur Überwachung einer Windkraftanlage zur Verfügung gestellt werden.  By the embodiments described herein with a fiber optic acceleration sensor and analog low-pass filtering, an improved measurement of acceleration for monitoring a wind turbine can be provided.

7 zeigt ferner eine digitale Auswerteeinheit 706, die zum Beispiel eine CPU, Speicher, und andere Elemente zur digitalen Datenverarbeitung beinhalten kann. Der Aspekt der verbesserten Messung mit faseroptischen Beschleunigungssensoren an Windkraftanlagen durch die Verwendung eines analogen Anti-Aliasing-Filters kann mit anderen Ausführungsformen, insbesondere in Bezug auf die Positionierung der Beschleunigungssensoren, der Verwendung der Signale zur Flatterwarnung bzw. zur Torsionsinstabilitäts-Warnung, zur Pitch-Regelung; zur Warnung in Bezug auf den Turmfreigangs eines Rotorblatts, die Anbringung von Beschleunigungssensoren bzw. Lichtleitern, faseroptische Beschleunigungssensoren, die für die Verwendung in Windkraftanlagen durch einen reduzierten Metallanteil verbessert sind, kombiniert werden. 7 further shows a digital evaluation unit 706 which may include, for example, a CPU, memory, and other digital computing elements. The aspect of improved measurement with fiber optic acceleration sensors on wind turbines by the use of an analog anti-aliasing filter can be used with other embodiments, in particular with regard to the positioning of the acceleration sensors, the use of the signals for flutter warning or torsional instability warning, for pitch Regulation; for warning in relation to the tower clearance of a rotor blade, the mounting of acceleration sensors or optical fibers, fiber optic acceleration sensors which are improved for use in wind turbines by a reduced metal content.

Gemäß weiteren Ausführungsformen, kann die verbesserte Messung mit faseroptische Beschleunigungssensoren mit einer analogen Tiefpassfilterung vor einer Digitalisierung weiterhin vorteilhaft ausgestaltet werden, um eine digitale Auswertung in der digitalen Auswerteeinheit 706 zur Stochastic Subspace Identification (SSI) vorzunehmen. Hierbei können Eigenwerte des Rotorblatts, wobei die Eigenwerte insbesondere die Dämpfungen und die Frequenzen, d.h. die Eigenfrequenzen, eines Rotorblatts beinhalten können, berechnet werden. Die Eigenwerte können insbesondere zur Detektion von Eisbildung auf einem Rotorblatt verwendet werden. Dies ermöglicht eine zuverlässigere Erkennung von Eisbildung auf einem Rotorblatt. Auch andere Zustände, wie zum Beispiel Materialermüdung, können mittels der Eigenwerte bestimmt werden. Gemäß manchen Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden können, kann die hier beschriebene Detektion von Eisbildung auch bei einer stehenden und/oder trudelnden Windkraftanlage zur Verfügung gestellt werden. Gemäß manchen Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden können, kann ein Detektieren von Eisbildung auf dem Rotorblatt mit Hilfe von Eigenwerten insbesondere durch eine Erkennen einer Veränderung der Eigenwerte zur Verfügung gestellt werden. Insbesondere kann eine Veränderung der Eigenwerte durch eine Eisbildung auf dem Rotorblatt erkannt werden. Ein Verfahren kann zum Beispiel ein Erkennen einer Veränderung der Eigenwerte, insbesondere durch Eisbildung auf dem Rotorblatt beinhalten. According to further embodiments, the improved measurement with fiber-optic acceleration sensors with an analog low-pass filtering prior to digitization can be further advantageously designed to provide a digital evaluation in the digital evaluation unit 706 to the Stochastic Subspace Identification (SSI). In this case, eigenvalues of the rotor blade, wherein the eigenvalues in particular may include the attenuations and the frequencies, ie the natural frequencies, of a rotor blade can be calculated. The eigenvalues can be used in particular for the detection of ice formation on a rotor blade. This allows more reliable detection of ice formation on a rotor blade. Other conditions, such as material fatigue, can by means of Eigenvalues are determined. According to some embodiments that may be combined with other embodiments described herein, the detection of ice formation described herein may also be provided in a standing and / or spinning wind turbine. According to some embodiments which may be combined with other embodiments described herein, detection of ice formation on the rotor blade may be provided by means of eigenvalues, in particular by detecting a change in the eigenvalues. In particular, a change in the eigenvalues can be detected by ice formation on the rotor blade. For example, a method may include detecting a change in the eigenvalues, particularly by ice formation on the rotor blade.

Gemäß hier beschriebenen Ausführungsformen ist eine stehende bzw. trudelnde Windkraftanlage eine Windkraftanlage bei lastfreiem Drehen des Rotors. Zum Beispiel kann die Windkraftanlage ohne Zuschaltung des Generators mit zurückgepitchten Rotorblättern frei drehen. Beispielsweise kann dieser Zustand durch eine Rotationsfrequenz des Rotors von 0,1 Hz oder weniger beschrieben werden.  According to embodiments described herein, a standing or spinning wind turbine is a wind turbine with no load turning of the rotor. For example, the wind turbine can rotate freely without turning on the generator with zurückppitchten rotor blades. For example, this state may be described by a rotation frequency of the rotor of 0.1 Hz or less.

Gemäß weiteren Ausführungsformen, kann die Messung mit einem faseroptischen Beschleunigungssensor mit einer Temperaturmessung kombiniert werden. Die Temperatur beeinflusst die Eigenschaften des Rotorblatts. Somit kann die Temperaturmessung bei der Erkennung von Eisbildung und/oder Auswertung der Eigenwerte hinzugezogen werden. Zum Beispiel haben die Eigenwerte typischerweise eine funktionale Abhängigkeit von der Temperatur. Eine Abweichung bzw. Änderung der Eigenwerte kann somit relativ zu dem zu erwartenden Eigenwert bei einer vorgegebenen Temperatur ermittelt werden. Gemäß noch weiteren Ausführungsformen, die mit hier beschriebenen Ausführungsformen kombiniert werden können, kann eine Berücksichtigung einer Größe ausgewählt aus der Gruppe bestehend aus: Rotorposition, Temperatur, Pitch-Winkel, Yaw-Beschleunigung, und Rotationsrate des Rotors, bei der Auswertung zur Verfügung gestellt werden.  According to further embodiments, the measurement may be combined with a fiber optic acceleration sensor with a temperature measurement. The temperature affects the properties of the rotor blade. Thus, the temperature measurement in the detection of ice formation and / or evaluation of the eigenvalues can be consulted. For example, the eigenvalues typically have a functional dependence on temperature. A deviation or change in the eigenvalues can thus be determined relative to the expected eigenvalue at a predetermined temperature. According to still further embodiments that may be combined with embodiments described herein, consideration of a size selected from the group consisting of rotor position, temperature, pitch angle, yaw acceleration, and rotor rotation rate may be provided in the evaluation ,

Wie in Bezug auf 7 erläutert, kann ein Verfahren zur Überwachung einer Windkraftanlage mittels eines faseroptischen Beschleunigungssensors verbessert werden, indem Ausführungsformen einen analogen Tiefpassfilter bzw. einen analogen Anti-aliasing-filter verwenden. Gemäß entsprechenden Ausführungsformen, kann ein Rotor Windkraftanlage zur Verfügung gestellt werden. Der Rotor beinhaltet zumindest ein Rotorblatt. Ein faseroptischer Beschleunigungssensor ist an einer radialen Position im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt. Ein analoger Tiefpassfilter bzw. Anti-Aliasing-Filter ist ausgebildet zum Filtern des Beschleunigungssignals des faseroptischen Beschleunigungssensors, insbesondere zum analogen Filtern eines elektrischen Signals, das aus dem faseroptischen Beschleunigungssignal generiert wurde. Zum Beispiel beinhaltet der Rotor eine Auswerteeinheit 114, die in einer Nabe 44 zur Verfügung gestellt ist. Die Auswerteeinheit 114 kann einen Wandler zum Wandeln des optischen Signals in ein elektrisches Signal beinhalten. Zum Beispiel kann eine Fotodiode, ein Photomultiplier (PM) oder ein anderer opto-elektronischer Detektor als Wandler verwendet werden. Die Auswerteeinheit beinhaltet ferner einen Anti-Aliasing-Filter 710, der zum Beispiel mit dem Ausgang des Wandlers bzw. des opto-elektronischen Detektors verbunden ist. Die Auswerte Inhalt kann ferner einen Analog-digital-Wandler 704 beinhalten, der mit dem Ausgang des Anti-Aliasing-Filters 710 verbunden ist. Die Auswerteeinheit 114 kann darüber hinaus eine digitale Auswerteeinheit 706 beinhalten, die zur Auswertung der digitalisierten Signale eingerichtet ist. Weitere Ausgestaltungen des Rotors bzw. der Rotorblätter können gemäß der hier beschriebenen Ausführungsformen in Bezug auf die faseroptischen Beschleunigungssensoren, die Positionierung von faser-optischen Beschleunigungssensoren, und/oder die Signalübertragung mit Lichtleiter zur Verfügung gestellt werden. As for 7 1, a method for monitoring a wind turbine by means of a fiber optic acceleration sensor can be improved by using an analog low-pass filter or an analog anti-aliasing filter. According to respective embodiments, a rotor wind turbine can be provided. The rotor includes at least one rotor blade. A fiber optic acceleration sensor is provided at a radial position in the area of the outer 70% of the radius of the rotor blade. An analog low-pass filter or anti-aliasing filter is designed to filter the acceleration signal of the fiber-optic acceleration sensor, in particular for analog filtering of an electrical signal generated from the fiber-optic acceleration signal. For example, the rotor includes an evaluation unit 114 in a hub 44 is provided. The evaluation unit 114 may include a converter for converting the optical signal into an electrical signal. For example, a photodiode, photomultiplier (PM), or other opto-electronic detector may be used as the transducer. The evaluation unit also contains an anti-aliasing filter 710 which is connected, for example, to the output of the converter or the opto-electronic detector. The evaluation content may further include an analog-to-digital converter 704 include that with the output of the anti-aliasing filter 710 connected is. The evaluation unit 114 In addition, a digital evaluation unit 706 included, which is set up to evaluate the digitized signals. Further embodiments of the rotor or of the rotor blades can be provided according to the embodiments described here with respect to the fiber-optic acceleration sensors, the positioning of fiber-optical acceleration sensors, and / or the signal transmission with optical fibers.

7A zeigt unterschiedliche Beschleunigungssignale zur weiteren Erläuterung der hier beschriebenen Ausführungsformen. Dabei zeigt der obere Graph (730) in 7A eine reale Beschleunigung in einem Rotorblatt bzw. ein Referenzsignal, das zu Versuchszwecken mit einem Referenzsensor ermittelt wurde. Es ist die Power-Spectral-Density (PSD) über der Frequenz aufgetragen, um zum Beispiel die hier beschriebenen Eigenwerte zur Ermitteln. Der mittlere Graph (731) zeigt das Beschleunigungssignal eines faseroptischen Beschleunigungssensors, wobei das Beschleunigungssignal dem Referenzsignal entspricht. Der mittlere Graph wurde ohne die Abfolge des opto-elektronisches Wandelns des Beschleunigungssignals des faseroptischen Beschleunigungssensors und einem Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen Anti-aliasing-Filter erzeugt. Der untere Graph in 7A zeigt das Beschleunigungssignal eines faseroptischen Beschleunigungssensors, wobei das Beschleunigungssignal dem Referenzsignal entspricht. Der untere Graph wurde mit der Abfolge des opto-elektronisches Wandelns des Beschleunigungssignals des faseroptischen Beschleunigungssensors und einem Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen Anti-aliasing-Filter erzeugt. Es ist deutlich zu erkennen, dass für den unteren Graph (732) eine verbesserte Erkennung von Eigenwerten insbesondere in einem Frequenzbereich von 0,3 Hz bis 20 Hz im Vergleich zum mittleren Graph (731) existiert. Gemäß hier beschriebenen Ausführungsformen kann folglich eine verbesserte Messung von optischen Beschleunigungssignalen erzielt werden. Gemäß weiteren Ausführungsformen, die mit hier beschriebenen Ausführungsformen kombiniert werden können kann das Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen Anti-aliasing-Filter eine Grenzfrequenz von 10 Hz bis 40 Hz hat, insbesondere von 15 Hz bis 25 Hz haben. 7A shows different acceleration signals for further explanation of the embodiments described here. The upper graph ( 730 ) in 7A a real acceleration in a rotor blade or a reference signal, which was determined for experimental purposes with a reference sensor. The Power Spectral Density (PSD) is plotted against the frequency to, for example, find the eigenvalues described here. The middle graph ( 731 ) shows the acceleration signal of a fiber optic acceleration sensor, wherein the acceleration signal corresponds to the reference signal. The middle graph was generated without the sequence of opto-electronic conversion of the acceleration signal of the fiber optic acceleration sensor and filtering of the opto-electronically converted acceleration signal with an analog anti-aliasing filter. The lower graph in 7A shows the acceleration signal of a fiber optic acceleration sensor, wherein the acceleration signal corresponds to the reference signal. The lower graph was generated with the sequence of opto-electronic conversion of the acceleration signal of the fiber optic acceleration sensor and filtering of the opto-electronically converted acceleration signal with an analog anti-aliasing filter. It can be clearly seen that for the lower graph ( 732 ) an improved detection of eigenvalues especially in a frequency range of 0.3 Hz to 20 Hz compared to the middle graph ( 731 ) exists. According to here As a result, an improved measurement of optical acceleration signals can be achieved. According to further embodiments that may be combined with embodiments described herein, filtering the opto-electronically-converted acceleration signal with an analog anti-aliasing filter may have a cutoff frequency of 10 Hz to 40 Hz, more preferably 15 Hz to 25 Hz.

Gemäß hier beschriebenen Ausführungsformen kann in einem Rotorblatt eine Beschleunigung optisch gemessen werden. Hierbei wird eine Anti-Aliasing-Filterung durchgeführt, insbesondere eine analoge Anti-Aliasingfilterung. Im Gegensatz zu anderen üblichen Mitteln der optischen Signalerkennung mittels Spektrometer oder dem auslesen mittels eines Scanning-Lasers, kann gemäß hier beschriebenen Ausführungsformen eine Beschleunigung in einem Rotorblatt optisch gemessen werden. Es wird ein Aliasing-Effekt verhindert, im Gegensatz zu einer Glättung der Messwerte, wobei bei der Glättung der Messwerte lediglich ein besseres Regelsignal erzeugt wird. Die Anti-Aliasing-Filterung wird in den hier beschriebenen Ausführungen analog durchgeführt, d.h. es wird zum Beispiel eine Umsetzung des optischen Beschleunigungssignals in ein analoges elektrisches Messsignal verwendet, bevor eine analoge Anti-Aliasing-Filterung zur Verfügung gestellt wird. Das analoge elektrische Messsignal wird analog Tiefpass-gefiltert, wobei mindestens die halbe Nyquist Frequenz als Grenzwert verwendet wird.  According to embodiments described herein, acceleration can be optically measured in a rotor blade. Here, an anti-aliasing filtering is performed, in particular an analog anti-aliasing filter. In contrast to other conventional means of optical signal detection by means of spectrometer or reading by means of a scanning laser, an acceleration in a rotor blade can be optically measured according to embodiments described here. An aliasing effect is prevented, in contrast to a smoothing of the measured values, whereby the smoothing of the measured values merely produces a better control signal. Anti-aliasing filtering is performed analogously in the embodiments described herein, i. For example, a conversion of the optical acceleration signal into an analog electrical measurement signal is used before analogue anti-aliasing filtering is provided. The analog electrical measurement signal is analogue low-pass filtered, with at least half the Nyquist frequency is used as a limit.

Gemäß weiteren hier beschriebenen Ausführungsformen, wird das mit einem analogen Anti-Aliasing-Filter gefilterte Signal mittels SSI (Stochastic Subspace Identification, Statistische Zeitbereichs-Systemidentifikationsverfahren) ausgewertet. Hiermit können Eisansatz und/oder sonstige frequenzabhängige Eigenschaften von Rotorblättern, zum Beispiel Alterung, Schädigung, etc., erkannt werden.  According to other embodiments described herein, the signal filtered with an analog anti-aliasing filter is evaluated by SSI (Stochastic Subspace Identification). Hereby, ice accumulation and / or other frequency-dependent properties of rotor blades, for example aging, damage, etc., can be detected.

Gemäß weiteren hier beschriebenen Ausführungsformen kann ein Verfahren zur Eiserkennung zur Verfügung gestellt werden. Das Verfahren beinhaltet das Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, opto-elektronisches Wandeln eines Beschleunigungssignals des optischen Beschleunigungssensors, filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen anti-aliasing-Filter, Auswerten des gefilterten Beschleunigungssignals mit Hilfe von Stochastic Subspace Identification zur Berechnung von Eigenwerten des Rotorblatts, und Detektieren von Eisbildung auf dem Rotorblatt mit Hilfe der Eigenwerte. Zum Beispiel können hierbei ein oder mehrere Eigenwerte mit zumindest einer gemessen Größe aus der Gruppe bestehend aus: einer Temperatur an einem Rotorblatt der Windkraftanlage, einer Windgeschwindigkeit, einer Leistung der Windkraftanlage, einer Rotationsrate eines Rotors der Windkraftanlage, und einem Pitchwinkel eines Rotorblatts, kompensiert werden. Eine Kompensation kann zum Beispiel anhand der folgenden Verfahren zur Kalibrierung durchgeführt werden.  According to other embodiments described herein, a method of ice detection may be provided. The method includes measuring an acceleration with a fiber optic acceleration sensor, opto-electronically converting an acceleration signal of the optical acceleration sensor, filtering the opto-electronically converted acceleration signal with an analog anti-aliasing filter, evaluating the filtered acceleration signal using Stochastic Subspace Identification for calculation of eigenvalues of the rotor blade, and detecting ice formation on the rotor blade using the eigenvalues. For example, one or more eigenvalues may be compensated for with at least one measured quantity from the group consisting of: a temperature at a rotor blade of the wind turbine, a wind speed, a power of the wind turbine, a rotation rate of a rotor of the wind turbine, and a pitch angle of a rotor blade , Compensation may be performed, for example, by the following calibration procedures.

Eine Beschleunigung in einem Rotorblatt wird zum Beispiel mit einem hier beschriebenen faseroptischen Beschleunigungssensor gemessen. Dies kann in einem ersten Zeitintervall, zum Beispiel einem kurzen Zeitintervall von z.B. 5–30 Minuten erfolgen. Ferner können einer oder mehrere der zu kompensierenden Parameter gemessen werden. Diese Parameter können sein: eine Rotorblatttemperatur, ein Pitchwinkel, eine Windgeschwindigkeit, eine Leistung der Windkraftanlage (z.B. die erzeugte oder die ans Netz abgegebene Leistung), und/oder eine Rotationsrate des Rotors. Insbesondere kann die Temperatur des Rotorblatts als Einflussgröße auf die Eigenwerte des Rotorblatts gemessen werden. Die Eigenwerte des Rotorblatts können aus den Beschleunigungsdaten mittels SSI in dem ersten Zeitintervall ermittelt werden. Die Eigenwerte mit zugehörigem Parametersatz aus einem oder mehreren der zu kompensierenden Parameter können abgespeichert werden. Die oben beschriebene Messung mit der Bestimmung der Eigenwerte kann mehrfach wiederholt werden bis ein Datensatz erhalten ist, der einen Teil oder einen Großteil des Parameterraums beim Betrieb der jeweiligen Windkraftanlage repräsentiert. Dieser zweite Zeitraum kann sich zum Beispiel über mehrere Wochen erstrecken. Nach Ermittlung von Werten in einem Teil des Parameterraums kann das Verhaltens der Eigenwerte über dem Parameterraum bestimmt werden, zum Beispiel durch anfitten eines geeigneten Modells (Lineares Modell, Taylor Approximation, Lookup Tabelle). Die Koeffizienten des Kompensationsmodells bzw. die Lookup-Tabelle können in einer Recheneinheit auf der Windenergieanlage gespeichert werden. Es kann somit eine Kalibrierung der Eigenwerte in Abhängigkeit von einem oder mehreren Parametern erfolgen.  For example, acceleration in a rotor blade is measured with a fiber optic acceleration sensor described herein. This can be done in a first time interval, for example a short time interval of e.g. 5-30 minutes. Furthermore, one or more of the parameters to be compensated can be measured. These parameters may be: a blade temperature, a pitch angle, a wind speed, a wind turbine power (e.g., the power delivered or delivered to the grid), and / or a rotation rate of the rotor. In particular, the temperature of the rotor blade can be measured as an influencing variable on the eigenvalues of the rotor blade. The eigenvalues of the rotor blade can be determined from the acceleration data by means of SSI in the first time interval. The eigenvalues with associated parameter set from one or more of the parameters to be compensated can be stored. The above-described measurement with the determination of the eigenvalues can be repeated several times until a data set is obtained which represents part or all of the parameter space during operation of the respective wind turbine. This second period may, for example, extend over several weeks. After determining values in a part of the parameter space, the behavior of the eigenvalues above the parameter space can be determined, for example by applying a suitable model (linear model, Taylor approximation, lookup table). The coefficients of the compensation model or the lookup table can be stored in a computing unit on the wind turbine. It is thus possible to calibrate the eigenvalues as a function of one or more parameters.

Gemäß weiteren Ausführungsformen kann nach der Kalibrierung eine Messung mit kompensierten bzw. kalibrierten Parametern durchgeführt werden. Es können die Eigenwerte eines Rotorblatts mithilfe einer Beschleunigungsmessung, zum Beispiel mit einem faseroptischen Beschleunigungssensor, ermittelt werden. Diese können mithilfe des Kalibrierungsmodells umgerechnet werden bzw. die Parameter, die während der Beschleunigungsmessung ermittelt werden, können für eine Kompensation der Eigenwerte herangezogen werden. Basierend auf den kompensierten Eigenwerten kann eine Abweichung der kompensierten Eigenwerte bestimmt werden. Zum Beispiel kann mittels einem oder mehrerer Schwellwerte die Ausgabe eines Warnsignals zur Verfügung gestellt werden. Alternativ können auch mehrere Schwellenwerte innerhalb des Parameterraums zur Verfügung gestellt werden, sodass die Ausgabe eines Warnsignals anhand der Eigenwerte im Parameterraum erfolgt, d.h. ohne vorherige Umrechnung der Eigenwerte. According to further embodiments, after the calibration, a measurement can be carried out with compensated or calibrated parameters. The eigenvalues of a rotor blade can be determined by means of an acceleration measurement, for example with a fiber optic acceleration sensor. These can be converted with the help of the calibration model or the parameters, which are determined during the acceleration measurement, can be used for a compensation of the eigenvalues. Based on the compensated eigenvalues, a deviation of the compensated eigenvalues can be determined. For example, the output of a warning signal can be made available by means of one or more threshold values. Alternatively, multiple thresholds within the Parameter space are provided so that the output of a warning signal based on the eigenvalues in the parameter space is done, ie without prior conversion of the eigenvalues.

Ein weiterer Aspekt bzw. eine weitere Ausführungsform, die unabhängig von anderen Ausführungsformen aber ebenso in Kombination mit anderen Ausführungsformen zur Verfügung gestellt ist, ist eine Überwachung einer Windkraftanlage mit einem faseroptischen Dehnungssensor. Das Verfahren zur Überwachung einer Windkraftanlage umfasst das messen einer Dehnung mit einem faseroptischen Dehnungssensor. Ein digitalisiertes Signal des Dehnungssensors wird zum Beispiel einer digitalen Auswertung in einer digitalen Auswerteeinheit unterzogen, wobei eine Auswertung mittels Stochastic Subspace Identification (SSI) verwendet wird. Auch hierbei können Eigenwerte des Rotorblatts, wobei die Eigenwerte insbesondere die Dämpfungen und die Frequenzen, d.h. die Eigenfrequenzen, eines Rotorblatts beinhalten können, berechnet werden. Die Eigenwerte können insbesondere zur Detektion von Eisbildung auf einem Rotorblatt verwendet werden. Auch dies ermöglicht eine zuverlässigere Erkennung von Eisbildung auf einem Rotorblatt. Auch andere Zustände, wie zum Beispiel Materialermüdung können mittels der Eigenwerte bestimmt werden.  Another aspect or embodiment, independently of other embodiments but also provided in combination with other embodiments, is monitoring of a wind turbine with a fiber optic strain sensor. The method of monitoring a wind turbine includes measuring strain with a fiber optic strain sensor. A digitized signal of the strain sensor is subjected, for example, to a digital evaluation in a digital evaluation unit, using an evaluation by means of Stochastic Subspace Identification (SSI). Here, too, eigenvalues of the rotor blade, the eigenvalues in particular the attenuations and the frequencies, i. the natural frequencies of a rotor blade can be calculated. The eigenvalues can be used in particular for the detection of ice formation on a rotor blade. This also allows a more reliable detection of ice formation on a rotor blade. Other states, such as material fatigue, can also be determined by means of the eigenvalues.

Die so berechneten Eigenwerte können gegebenenfalls auch mit den Eigenwerten aus einem faseroptische Beschleunigungssensoren kombiniert werden bzw. mit diesen verglichen werden, um eine Redundanz in Bezug auf die Information der Eisbildung zu erhalten. Gemäß weiteren Ausführungsformen, kann die Messung mit einem faseroptischen Dehnungssensor mit einer Temperaturmessung kombiniert werden. Die Temperatur beeinflusst die Eigenschaften des Rotorblatts. Somit kann die Temperaturmessung bei der Erkennung von Eisbildung und/oder zur Auswertung der Eigenwerte hinzugezogen werden. Dies kann zum Beispiel durch eine hier beschriebene Kalibrierung geschehen. Gemäß noch weiteren Ausführungsformen, die mit hier beschriebenen Ausführungsformen kombiniert werden können, kann eine Berücksichtigung einer Größe ausgewählt aus der Gruppe bestehend aus: Rotorposition, Temperatur, Pitch-Winkel, Yaw-Beschleunigung, und Rotationsrate des Rotors, bei der Auswertung zur Verfügung gestellt werden.  If appropriate, the eigenvalues thus calculated may also be combined with or compared with the eigenvalues from a fiber-optic acceleration sensor in order to obtain redundancy with regard to the information of ice formation. According to further embodiments, the measurement may be combined with a fiber optic strain sensor with a temperature measurement. The temperature affects the properties of the rotor blade. Thus, the temperature measurement in the detection of ice formation and / or for the evaluation of the eigenvalues can be consulted. This can be done for example by a calibration described here. According to still further embodiments that may be combined with embodiments described herein, consideration of a size selected from the group consisting of rotor position, temperature, pitch angle, yaw acceleration, and rotor rotation rate may be provided in the evaluation ,

Der Beschleunigungssensor 110, der in den 8A und 8B näher erläutert wird, beinhaltet eine Testmasse, deren Beschleunigung im Sensor gemessen wird. Gemäß typischen Ausführungsformen können verwendete Dehnungssensoren und/oder verwendete Beschleunigungssensoren faseroptische Sensoren sein. Hierbei wird die Dehnung bzw. die Beschleunigung der Testmasse durch Faser-Bragg-Gitter in einer Faser optisch gemessen. Durch die Verwendung dieser Sensoren kann die oben beschriebene Mess-genauigkeit zur Verfügung gestellt werden. Ferner bieten diese Sensoren vorteilhafte Eigenschaften zur Verwendung in Windkraftanlagen. The acceleration sensor 110 in the 8A and 8B is explained in more detail, includes a test mass whose acceleration is measured in the sensor. According to typical embodiments, strain sensors used and / or acceleration sensors used may be fiber optic sensors. Here, the strain or the acceleration of the test mass is optically measured by fiber Bragg gratings in a fiber. By using these sensors, the measurement accuracy described above can be provided. Furthermore, these sensors offer advantageous properties for use in wind turbines.

Die in den hier beschriebenen Anordnung und Verfahren verwendeten Beschleunigungssensoren 110 werden nun in Bezug auf 8A und 8B beschrieben. 8A zeigt einen Beschleunigungssensor 110 wobei eine Testmasse 812 an einer optischen Faser 822 angebracht ist. Ein Gehäuse 802 ist derart ausgestaltet, dass bei einer Beschleunigung der Masse 812 eine Dehnung, d.h. eine relative Längenänderung (Verlängerung oder Verkürzung) der optischen Faser 822 eintritt. Durch die Dehnung der Faser 822 wird das Faser-Bragg-Gitter 824 verändert. Dies führt zu einer veränderten Reflexion bzw. Transmission des Faser-Bragg-Gitters in Bezug auf die reflektierten bzw. transportierten Wellenlängen. Diese Änderung kann als Maß für die Dehnung der Faser und somit indirekt als Maß für die Beschleunigung der Testmasse 812 verwendet werden. In 8B ist ein Beschleunigungssensor 110 dargestellt. Diese Anordnung kombiniert 3 der in 8A gezeigten Sensoren, wobei die Rotation der Sensoren in Illustration eine dreidimensionale Anordnung darstellen soll, so dass 3 Beschleunigungswerte in einem Koordinatensystem, wie zum Beispiel einem kartesischen Koordinatensystem, gemessen werden. The acceleration sensors used in the arrangement and method described herein 110 will be regarding now 8A and 8B described. 8A shows an acceleration sensor 110 being a test mass 812 on an optical fiber 822 is appropriate. A housing 802 is designed such that when accelerating the mass 812 an elongation, ie a relative change in length (extension or shortening) of the optical fiber 822 entry. By stretching the fiber 822 becomes the fiber Bragg grating 824 changed. This leads to an altered reflection or transmission of the fiber Bragg grating with respect to the reflected or transported wavelengths. This change can be used as a measure of the elongation of the fiber and thus indirectly as a measure of the acceleration of the test mass 812 be used. In 8B is an acceleration sensor 110 shown. This arrangement combines 3 of the in 8A 3, wherein the rotation of the sensors in illustration is to represent a three-dimensional arrangement, so that 3 acceleration values are measured in a coordinate system, such as a Cartesian coordinate system.

Die Verwendung der Sensoren 110 bzw. deren Anordnung zueinander und das Zusammenspiel der Auswerteeinheit 114 zur Überwachung eines Zustandes eines Rotorblatts werden unter Bezugnahme auf die 2 und 5 näher erläutert. 2 zeigt einen Teil einer Windkraftanlage 200. Auf einem Turm 40 ist eine Gondel 42 angeordnet. An einer Rotornabe 44 sind Rotorblätter 100 angeordnet, so dass der Rotor (mit der Rotornabe und den Rotorblättern) in einer durch die Linie 852 dargestellten Ebene rotiert. Typischerweise ist diese Ebene relativ zu der Senkrechten geneigt. 5 zeigt eine Vorderansicht der Rotorblätter 100 und der Rotornabe 44 in Richtung der Rotationsachse, wobei Koordinaten x und y im blattfesten Koordinationssystem, die Gravitationskraft bzw. Gravitationsbeschleunigung g, sowie der Sensor 110 dargestellt sind. The use of the sensors 110 or their arrangement to each other and the interaction of the evaluation 114 for monitoring a condition of a rotor blade will be described with reference to FIGS 2 and 5 explained in more detail. 2 shows a part of a wind turbine 200 , On a tower 40 is a gondola 42 arranged. At a rotor hub 44 are rotor blades 100 arranged so that the rotor (with the rotor hub and the rotor blades) in one through the line 852 rotated level shown. Typically, this plane is inclined relative to the vertical. 5 shows a front view of the rotor blades 100 and the rotor hub 44 in the direction of the axis of rotation, where coordinates x and y in the sheet-fixed coordination system, the gravitational force or gravitational acceleration g, and the sensor 110 are shown.

Bei einer Rotation des Rotors der Windenergieanlage misst der Beschleunigungssensor 110 unter anderem die Gravitationsbeschleunigung. Diese Gravitationsbeschleunigung wird im Koordinatensystem gemäß 5 in y-Richtung und in x-Richtung gemessen. Durch die Neigung des Rotors, die in 2 dargestellt ist, wird im Koordinatensystem in 5 auch in z-Richtung die Gravitationsbeschleunigung zu einem gewissen Maß einem Signal überlagert sein. Das Messsignal, welches typischerweise in der in 5 eingezeichneten y-Richtung gemessen wird, ist dem Gravitationssignal überlagert. Durch Bereinigung des Messsignals vom Gravitationssignal erhält man ein bereinigtes Signal. During a rotation of the rotor of the wind turbine, the acceleration sensor measures 110 Among other things, the gravitational acceleration. This gravitational acceleration is in the coordinate system according to 5 Measured in the y direction and in the x direction. Due to the inclination of the rotor, the in 2 is shown in the coordinate system in 5 also in the z-direction, the gravitational acceleration to a certain extent be superimposed on a signal. The measurement signal, which is typically in the in 5 marked y-direction is measured, is superimposed on the gravitational signal. By cleaning up the measurement signal from the gravitational signal, a cleaned signal is obtained.

Die Steuerungen und/oder Regelungen moderner Windkraftanlagen beinhalten typischerweise eine sogenannte Pitch-Regelung, wobei das Rotorblatt um eine Längsachse des Rotorblatts gedreht wird. Demzufolge ändert sich in einem blattfesten Koordinationssystem die in 5 dargestellte y-Richtung während einer Rotation des Rotorblatts 100 um die Längsachse des Rotorblatts. Bei der Betrachtung der von einem Beschleunigungssensor 110 gemessenen Beschleunigung, die den Einfluss der Gravitationsbeschleunigung auf eine Testmasse beinhaltet, bedarf es zur verbesserten Bewertung der Signale einer Betrachtung der verschiedenen Koordinatensysteme. Zum einen existiert ein blattfestes Koordinatensystem. Bei einer Rotation des Rotorblatts um die Längsachse des Rotorblatts rotieren das Koordinatensystem sowie der Sensor 110. Darüber hinaus existiert ein Koordinatensystem welches fest in Bezug auf die Rotornabe 44 ist. Dabei handelt es sich um ein rotierendes Koordinatensystem, welches unabhängig von einer Pitch-Regelung verwendet werden kann. Ferner existiert ein ortsfestes Koordinatensystem, welches fest in Bezug auf die Windenergieanlage 200 und somit fest in Bezug auf die Gravitationskraft bzw. Gravitationsbeschleunigung ist. The controls and / or controls of modern wind turbines typically include a so-called pitch control, wherein the rotor blade is rotated about a longitudinal axis of the rotor blade. As a result, in a leaf-fixed coordination system, the in 5 illustrated y-direction during rotation of the rotor blade 100 around the longitudinal axis of the rotor blade. When looking at the from an accelerometer 110 measured acceleration, which includes the influence of gravitational acceleration on a test mass, it is necessary for improved evaluation of the signals of a consideration of the various coordinate systems. First, there is a sheet-fixed coordinate system. When the rotor blade rotates about the longitudinal axis of the rotor blade, the coordinate system and the sensor rotate 110 , In addition, there exists a coordinate system fixed with respect to the rotor hub 44 is. It is a rotating coordinate system that can be used independently of a pitch control. Furthermore, there is a fixed coordinate system fixed with respect to the wind turbine 200 and thus is fixed in relation to the gravitational force or gravitational acceleration.

Gemäß typischen Ausführungsformen wird zur Korrektur des oder der Signale des Beschleunigungssensors und/oder der Dehnungssensoren, d.h. eines Signals in x-, y- und z-Richtung im blattfesten Koordinatensystem, eine Transformation in das ortsfeste Koordinatensystem durchgeführt, wobei die Rotation des Rotors, der Pitch-Winkel des Rotorblatts sowie die Neigung des Rotors, berücksichtigt werden. Im ortsfesten Koordinatensystem kann das Signal von der Gravitationsbeschleunigung bereinigt werden. Anschließend kann eine Rücktransformation in das Koordinatensystem, welches fest in Bezug auf die Rotornabe ist, durchgeführt werden. In diesem Koordinatensystem, welches fest in Bezug auf die Rotornabe ist, wird typischerweise eine Beschleunigung im Wesentlichen parallel zur Windrichtung oder im Wesentlichen parallel zur Rotationsachse des Rotors ermittelt.  According to typical embodiments, to correct the signal (s) of the acceleration sensor and / or the strain sensors, i. a signal in the x-, y- and z-direction in the sheet-fixed coordinate system, a transformation carried out in the stationary coordinate system, taking into account the rotation of the rotor, the pitch angle of the rotor blade and the inclination of the rotor. In the fixed coordinate system, the signal can be corrected for gravitational acceleration. Subsequently, a back transformation into the coordinate system, which is fixed with respect to the rotor hub, can be performed. In this coordinate system, which is fixed with respect to the rotor hub, typically an acceleration is determined substantially parallel to the wind direction or substantially parallel to the axis of rotation of the rotor.

Gemäß einigen hier beschriebenen Ausführungsformen, wird ein Beschleunigungssensor in den äußeren 70 % des Radius eines Rotorblatts insbesondere in einem Bereich von 60 bis 90 % des Radius des Rotorblatts zur Verfügung gestellt. Dabei kann zum Beispiel durch die Verwendung eines faseroptischen Beschleunigungssensors, wie zum Beispiel eines faseroptischen Beschleunigungssensors, eine optische Signalübertragung erfolgen. Die optische Signalübertragung reduziert das Risiko eines Blitzschadens. Durch die optische Signalübertragung kann eine bisher in der Praxis existierende Limitierung, Sensoren möglichst nahe an dem Blattflansch zur Verfügung zu stellen überwunden werden.  According to some embodiments described herein, an acceleration sensor is provided in the outer 70% of the radius of a rotor blade, in particular in a range of 60 to 90% of the radius of the rotor blade. In this case, for example, by the use of a fiber-optic acceleration sensor, such as a fiber-optic acceleration sensor, carried an optical signal transmission. The optical signal transmission reduces the risk of lightning damage. By the optical signal transmission, a previously existing in practice limitation, sensors as close to the blade flange to be made available.

Die Verringerung des Risikos eines Blitzeinschlags bzw. eines Blitzschadens kann weiter dadurch reduziert werden, einen metallfreien bzw. einen im Wesentlichen metallfreien Beschleunigungssensor zur Verfügung zu stellen. Gemäß einer Ausführungsform, wird ein Verfahren zur Überwachung einer Windkraftanlage zur Verfügung gestellt. Das Verfahren beinhaltet das messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, wobei der Beschleunigungssensoren einer radialen Position im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt ist, wobei der Beschleunigungssensoren zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält.  The reduction in the risk of lightning or lightning damage can be further reduced by providing a metal-free or substantially metal-free acceleration sensor. According to one embodiment, a method for monitoring a wind turbine is provided. The method includes measuring an acceleration with a fiber optic acceleration sensor, wherein the acceleration sensors are provided at a radial position in the outer 70% radius of the rotor blade, the acceleration sensors being less than 10% by weight of metal or less than Contains 20 g of metal.

Gemäß einer weiteren Ausführungsform wird ein Rotorblatt einer Windkraftanlage zur Verfügung gestellt. Das Rotorblatt beinhaltet einen faseroptischen Beschleunigungssensoren, wobei der faseroptische Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist, und wobei der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält. Zum Beispiel kann ein Lichtleiter von dem faseroptischen Beschleunigungssensor bis zu einer radialen Rotorblattposition geführt ist, an der das Rotorblatt begehbar ist. Gemäß noch weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann der faseroptische Beschleunigungssensoren eine maximale Ausdehnung von 10 mm in einem Querschnitt senkrecht zu einer Erstreckung des Lichtleiter haben.  According to another embodiment, a rotor blade of a wind turbine is provided. The rotor blade includes a fiber optic acceleration sensor, wherein the fiber optic acceleration sensor is provided at a radial position in the range of the outer 70% of the radius of the rotor blade, and wherein the acceleration sensor is less than 10 wt .-% of metal or less than 20 g Contains metal. For example, an optical fiber may be routed from the fiber optic acceleration sensor to a radial rotor blade position where the rotor blade is passable. According to still further embodiments that may be combined with other embodiments, the fiber optic acceleration sensors may have a maximum extension of 10 mm in a cross section perpendicular to an extension of the light pipe.

Gemäß hier beschriebenen Ausführungsformen können Beschleunigungssensoren mit ausreichen wenig Metall oder metallfreien Beschleunigungssensoren zur Verfügung gestellt werden. Somit können zusätzlich zu existierenden Ideen einer kabellosen Signalübertragung, d.h. einer Signalübertragung ohne elektrische Kabel in einem Rotorblatt, metallfreie Beschleunigungssensoren zur Verfügung gestellt werden, die ein reduziertes Risiko eines Blitzschadens oder Blitzeinschlags zur Verfügung stellen. Durch ein blitzsicheres Design bzw. ein Design mit reduziertem Risiko eines Blitzschadens kann die erforderliche hohe Zuverlässigkeits- und Lebensdaueranforderung an Windkraftanlagen erfüllt werden.  According to embodiments described herein, acceleration sensors may be provided with sufficient metal or metal-free acceleration sensors. Thus, in addition to existing ideas of wireless signal transmission, i. a signal transmission without electrical cables in a rotor blade, metal-free acceleration sensors are provided, which provide a reduced risk of lightning or lightning strike. A lightning-proof design or design with a reduced risk of lightning damage can meet the high reliability and service life requirements of wind turbines.

Zum Beispiel können für eine vorteilhafte Anbringung in der Blattspitze geringe Abmessungen und/oder Massen des Sensors vorteilhaft sein. Für die faseroptische Messung mittels Faser-Bragg-Gitter sind aber relative große Massen notwendig, da die Faser relativ steif ist. Hierbei kann ein Membransensor mittels Fabry Perot Interferometer zu noch weiteren Verbesserungen führen. For example, for an advantageous attachment in the blade tip small dimensions and / or masses of the sensor may be advantageous. For the fiber optic measurement by means of fiber Bragg gratings but relatively large masses are necessary because the fiber is relatively stiff. This can be a Membrane sensor using Fabry Perot interferometer lead to even further improvements.

Neben faseroptischen Beschleunigungssensoren, die ebenfalls im wesentlichen metallfrei zur Verfügung gestellt werden können, da die eigentliche Sensorik durch ein Faser-Bragg-Gitter zur Verfügung gestellt ist, kann gemäß einer Ausführungsform ein faseroptischer Beschleunigungssensoren wie folgt zur Verfügung gestellt werden. Der faseroptische Beschleunigungssensor beinhaltet einen Lichtleiter bzw. eine optische Faser mit einer Lichtaustrittsfläche. Ferner beinhaltet der faseroptische Beschleunigungssensor eine Membran und eine mit der Membran in Verbindung stehende Masse. Hierbei kann die Masse entweder zusätzlich zur Masse der Membran zur Verfügung gestellt werden oder die Membran kann mit einer geeigneten ausreichend großen Masse ausgestaltet sein. Der faseroptische Beschleunigungssensor beinhaltet einen optischen Resonator, der zwischen der Lichtaustrittsfläche und der Membran ausgebildet ist. Zum Beispiel kann der Resonator ein Fabry-Perot-Resonator sein. Ferner beinhaltet der faseroptische Beschleunigungssensoren einen Spiegel, der im Strahlengang zwischen der Lichtaustrittsfläche und der Membran zur Verfügung gestellt ist, wobei der Spiegel in einem Winkel von 30° bis 60° relativ zu einer optischen Achse des Lichtleiter bzw. der optischen Faser ausgebildet ist. Zum Beispiel kann der Spiegel in einem Winkel von 45° ausgebildet sein.  In addition to fiber-optic acceleration sensors, which can also be provided essentially metal-free, since the actual sensor system is provided by a fiber Bragg grating, according to one embodiment a fiber-optic acceleration sensor can be provided as follows. The fiber optic acceleration sensor includes a light guide or optical fiber having a light exit surface. Further, the fiber optic acceleration sensor includes a diaphragm and a mass in communication with the diaphragm. Here, the mass can be provided either in addition to the mass of the membrane available or the membrane can be designed with a suitable sufficiently large mass. The fiber optic acceleration sensor includes an optical resonator formed between the light exit surface and the diaphragm. For example, the resonator may be a Fabry-Perot resonator. Further, the fiber optic acceleration sensor includes a mirror provided in the beam path between the light exit surface and the diaphragm, the mirror being formed at an angle of 30 ° to 60 ° relative to an optical axis of the optical fiber. For example, the mirror may be formed at an angle of 45 °.

Die 9A und 9B zeigen einen faseroptischen Beschleunigungssensor 910. Ein primäres optisches Signal wird über einen Lichtleiter 112 dem Beschleunigungssensor 910 zugeführt. Zum Beispiel kann der Lichtleiter mit einem Substrat 912 verbunden werden. Das Substrat 912 kann aus einem Nicht-metallischen Material bestehen. Auf dem Substrat 912 bzw. an dem Substrat 912 ist eine Membran 914 ausgebildet. Das aus dem Lichtleiter 112 austretende primäre optische Signal wird über einen Spiegel 916 in Richtung der Membran 912 gelenkt. Gemäß typischen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann der Spiegel 916 als eine im Substrat ausgeformte Fläche zur Verfügung gestellt werden. Zum Beispiel kann das Substrat aus einem Material bestehen, dass in einem vorgegebenen Wellenlängenbereich, typischerweise dem Wellenlängenbereich des primären optischen Signals, reflektiert. Der Spiegel kann relativ zur Achse des Lichtleiters einen Winkel im Bereich von 30° bis 60°, zum Beispiel einen Winkel von 45°, haben. The 9A and 9B show a fiber optic accelerometer 910 , A primary optical signal is transmitted via a light guide 112 the acceleration sensor 910 fed. For example, the optical fiber may be connected to a substrate 912 get connected. The substrate 912 may consist of a non-metallic material. On the substrate 912 or on the substrate 912 is a membrane 914 educated. That from the light guide 112 Exiting primary optical signal is transmitted through a mirror 916 in the direction of the membrane 912 directed. According to typical embodiments that may be combined with other embodiments, the mirror 916 be provided as a surface formed in the substrate. For example, the substrate may be made of a material that reflects in a predetermined wavelength range, typically the wavelength range of the primary optical signal. The mirror may have an angle in the range of 30 ° to 60 °, for example an angle of 45 °, relative to the axis of the light guide.

Das primäre optische Signal wird wie durch den Pfeil 901 angedeutet durch den Spiegel 916 umgelenkt und auf die Membran gerichtet. An der Membran findet eine Reflexion des primären optischen Signals statt. Das reflektierte Licht wird wie durch den Pfeil 903 dargestellt zurück in die optische Faser bzw. den Lichtleiter 112 gekoppelt. Somit wird zwischen der Lichtaustrittsfläche für den Austritt des primären optischen Signals und der Membran ein optischer Resonator 930 ausgebildet. Hierbei ist zu berücksichtigen, dass im Allgemeinen die Lichtaustrittsfläche des primären optischen Signals gleich der Lichteintrittsfläche für das reflektierte sekundäre Signal ist. Der optische Resonator kann somit als Fabry-Perot-Resonator ausgebildet sein. Für einen faseroptischen Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen kann eine Masse 922 an der Membran 914 zur Verfügung gestellt sein. Alternativ kann die Masse der Membran selbst als Masse für die Detektion einer Beschleunigung dienen. Bei einer Beschleunigung wird die Membran 914 durch die Trägheit der Masse 922 ausgelenkt. Dies führt zu einem optisch messbaren Signal in dem optischen Resonator 930. Gemäß hier beschriebenen Ausführungsformen, ist der faseroptische Beschleunigungssensor ausgestaltet, um eine Beschleunigung mit einer Richtungskomponente zum Messen, die eine Richtungskomponente senkrecht zur Achse der Faser bzw. des Lichtleiter 112 ist. Durch die Richtungskomponente senkrecht zur Achse des Lichtleiter 112, kann der faseroptische Beschleunigungssensoren 912 für Verfahren zur Überwachung von Rotorblättern eingesetzt werden, bzw. in Rotorblätter von Windkraftanlagen bzw. Windkraftanlagen eingebaut werden, um eine Überwachung zu ermöglichen. The primary optical signal is as indicated by the arrow 901 indicated by the mirror 916 deflected and directed to the membrane. At the diaphragm a reflection of the primary optical signal takes place. The reflected light is like the arrow 903 represented back into the optical fiber or the optical fiber 112 coupled. Thus, between the light exit surface for the exit of the primary optical signal and the diaphragm becomes an optical resonator 930 educated. It should be noted that in general the light exit surface of the primary optical signal is equal to the light entrance surface for the reflected secondary signal. The optical resonator can thus be designed as a Fabry-Perot resonator. For a fiber optic acceleration sensor according to embodiments described herein, a mass 922 on the membrane 914 be made available. Alternatively, the mass of the membrane itself may serve as ground for the detection of acceleration. At an acceleration, the membrane 914 through the inertia of the mass 922 deflected. This leads to an optically measurable signal in the optical resonator 930 , According to embodiments described herein, the fiber optic acceleration sensor is configured to provide acceleration with a directional component for measuring which is a direction component perpendicular to the axis of the fiber or optical fiber 112 is. Due to the directional component perpendicular to the axis of the light guide 112 , can the fiber optic acceleration sensors 912 be used for methods for monitoring rotor blades, or be installed in rotor blades of wind turbines or wind turbines, to allow monitoring.

Gemäß hier beschriebenen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ist ein faseroptischer Beschleunigungssensor, d.h. zum Beispiel ein extrinsischer faseroptischer Beschleunigungssensor mit einem mittels der Faser oder angrenzend an die Faser zur Verfügung gestellten optischen Sensor, zum Beispiel mit einem optischen Resonator, oder ein intrinsischer faseroptische Beschleunigungssensor mit einem innerhalb der Faser zur Verfügung gestellten Sensor, an einer radialen Position der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt. Dies entspricht in manchen Fällen einem radialen Bereich des Rotorblatts, an dem es nicht möglich ist das Rotorblatt im fertigen Zustand zu begehen. Somit kann gemäß weiteren Ausführungsformen, die hier beschriebene radiale Position der Beschleunigungssensoren auch durch eine radiale Position, an der das Rotorblatt im fertigen Zustand nicht begehbar ist, beschrieben werden. Insbesondere kann der Beschleunigungssensoren in den äußeren 50 % des Radius des Rotorblatts bzw. den äußeren 60 bis 90 % des Radius des Rotorblatts zur Verfügung gestellt werden. Durch die im Wesentlichen metallfreie Ausgestaltung des faseroptischen Beschleunigungssensors kann die Gefahr eines Blitzanschlages ausreichend reduziert werden, um einen Beschleunigungssensor an einer solchen radialen Position auch in der Praxis zu verwenden. Durch die nach außen verlagerte radiale Position des Beschleunigungssensors kann eine Empfindlichkeit des Beschleunigungssensors erzielt werden, die eine Vielzahl von Überwachungen, Zustandsbestimmungen, und Steuerungsmöglichkeiten und/oder Regelungsmöglichkeiten erlaubt. Embodiments described herein which may be combined with other embodiments include a fiber optic acceleration sensor, eg, an extrinsic fiber optic acceleration sensor having an optical sensor provided by or adjacent the fiber, for example, an optical resonator intrinsic fiber optic accelerometer with a sensor provided within the fiber, provided at a radial position of the outer 70% of the radius of the rotor blade. This corresponds in some cases to a radial region of the rotor blade on which it is not possible to commit the rotor blade in the finished state. Thus, according to further embodiments, the radial position of the acceleration sensors described here can also be described by a radial position, at which the rotor blade in the finished state is not accessible. In particular, the acceleration sensors in the outer 50% of the radius of the rotor blade or the outer 60 to 90% of the radius of the rotor blade can be provided. Due to the substantially metal-free design of the fiber-optic acceleration sensor, the risk of lightning strike can be reduced sufficiently to use an acceleration sensor at such a radial position in practice. By the outside displaced radial position of the acceleration sensor, a sensitivity of the acceleration sensor can be achieved, which allows a variety of monitoring, state determinations, and control options and / or control options.

Die in den 9A und 9B dargestellten Komponenten des extrinsischen faseroptischen Beschleunigungssensors können gemäß beispielhaften Ausführungsformen aus folgenden Materialien bestehen. Der Lichtleiter 112, kann zum Beispiel eine Glasfaser, eine optische Faser oder ein Lichtwellenleiter sein, wobei Materialien wie optische Polymere, Polymethylmethacrylat, Polycarbonat, Quarzglas, Ethylen-Tetrafluorethylen verwendet werden können, die gegebenenfalls dotiert sind. Das Substrat 912 bzw. der darin ausgestaltete Spiegel 916 kann zum Beispiel aus Silizium bestehen. Die Membran kann aus einem Kunststoff oder einem Halbleiter zur Verfügung gestellt werden, der geeignet ist, als dünne Membran ausgebildet zu werden. Die Masse 922 kann aus jedem nichtmetallischen Material zur Verfügung gestellt werden, wobei insbesondere Materialien mit einer hohen Dichte geeignet sind. Durch eine hohe Dichte kann die Abmessung der Masse reduziert werden. The in the 9A and 9B The components of the extrinsic fiber-optic acceleration sensor shown can consist of the following materials according to exemplary embodiments. The light guide 112 For example, a glass fiber, an optical fiber, or an optical fiber may be used, and materials such as optical polymers, polymethyl methacrylate, polycarbonate, quartz glass, ethylene tetrafluoroethylene, which may be doped, may be used. The substrate 912 or the mirror configured therein 916 can be made of silicon, for example. The membrane can be made of a plastic or a semiconductor which is suitable to be formed as a thin membrane. The crowd 922 can be provided from any non-metallic material, in particular materials with a high density are suitable. Due to a high density, the dimension of the mass can be reduced.

Um einen faseroptischen Beschleunigungssensor, wie er zum Beispiel in den 9A und 9B dargestellt ist, besonders einfach an einem Rotorblatt, insbesondere in einem äußeren radialen Bereich, zur Verfügung zu stellen, ist es von Vorteil, wenn der faseroptische Beschleunigungssensoren in einem Querschnitt senkrecht zum Lichtleiter 112 in 9A bzw. 9B eine geringe Abmessungen aufweist. Zum Beispiel kann eine maximale Abmessung in einem Querschnitt senkrecht zur Achse des Lichtleiter 112 10 mm oder weniger betragen. Durch die Ausgestaltung, wie Sie in Bezug auf die 9A und 9B dargestellt ist, kann eine solche Dimensionierung einfach realisiert werden. To a fiber optic acceleration sensor, such as in the 9A and 9B is shown particularly simple to provide on a rotor blade, in particular in an outer radial region, it is advantageous if the fiber-optic acceleration sensors in a cross section perpendicular to the light guide 112 in 9A respectively. 9B has a small dimensions. For example, a maximum dimension in a cross section perpendicular to the axis of the optical fiber 112 10 mm or less. By the design, how you in relation to the 9A and 9B is shown, such dimensioning can be easily realized.

Der in den 9A und 9B beschriebene faseroptische Beschleunigungssensor 910 kann durch eine weitere Modifikation zu einem unabhängigen weiteren Aspekt ausgebildet werden, der insbesondere in Verfahren zur Überwachung von Rotorblättern von Windkraftanlagen und in Rotorblättern von Windkraftanlagen angewendet werden kann. Bei einer Verringerung bzw. einem Entfallen der Masse 922 kann die Membran 914 sowohl zur Messung eines statischen Drucks verwendet werden als auch zur Messung eines Schalldruckpegel. Für die Messung eines statischen Drucks ist der Bereich des optischen Resonators 930 vom Umgebungsdruck getrennt, so dass bei einer Änderung des Umgebungsdrucks, eine Bewegung der Membran stattfindet. Für die Messung eines Schalldruckpegel, ist die Membran ausgestaltet um bei einem entsprechenden Schalldruck eine Bewegung, insbesondere eine oszillierende Bewegung auszuführen, die über den optischen Resonator in ein optisches Signal übertragen wird. Hierbei ist es für die Verwendung in Rotorblättern von Windkraftanlagen bzw. für die Verfahren zur Überwachung von Windkraftanlagen besonders günstig, das der Schalldruck in einer Richtung senkrecht zur Längserstreckung des Lichtleiters 112 gemessen wird. The in the 9A and 9B described fiber optic acceleration sensor 910 can be formed by a further modification to an independent further aspect, which can be applied in particular in methods for monitoring rotor blades of wind turbines and in rotor blades of wind turbines. At a decrease or a loss of mass 922 can the membrane 914 Both are used for measuring a static pressure as well as for measuring a sound pressure level. For the measurement of a static pressure is the range of the optical resonator 930 separated from the ambient pressure, so that when the ambient pressure changes, a movement of the membrane takes place. For the measurement of a sound pressure level, the membrane is designed to perform at a corresponding sound pressure, a movement, in particular an oscillating movement, which is transmitted via the optical resonator in an optical signal. Here, it is particularly favorable for use in rotor blades of wind turbines or for the methods for monitoring wind turbines, which is the sound pressure in a direction perpendicular to the longitudinal extent of the light guide 112 is measured.

Gemäß hier beschriebenen Ausführungsformen, werden unterschiedliche Verfahren zur Überwachung und/oder Steuerung (bzw. Regelung) von Windkraftanlagen zur Verfügung gestellt. Ferner werden gemäß hier beschriebenen Ausführungsformen verbesserte Beschleunigungssensoren, insbesondere intrinsische oder extrinsische faseroptische Beschleunigungssensoren, zur Verfügung gestellt. Hierbei sind intrinsische faseroptische Beschleunigungssensoren, Sensoren mit einer innerhalb der Faser zur Verfügung gestellten Sensoreinheit, wie zum Beispiel einem Faser-Bragg-Gitter. Extrinsische faseroptische Beschleunigungssensoren, haben eine mittels der Faser oder an der Faser zur Verfügung gestellten optischen Sensor. Somit können auch extrinsische faseroptische Beschleunigungssensoren mittels einer optischen Faser und einem optischen Sensor, d.h. einem nicht elektrischen Sensor, einen Beschleunigung ohne elektrische Komponenten messen. Hierbei können Beschleunigungssensoren zum Beispiel an einer radialen Position im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt werden, insbesondere im Bereich der äußeren 50 % des Radius des Rotorblatts, wie zum Beispiel im Bereich von 60 % bis 95 % des Radius, wobei 0 % dem Flansch an der Blattwurzel entspricht. Weitere Ausgestaltungen zur Anbringung, Positionierung und zur Führung der Beschleunigungssignale vom Beschleunigungssensor zur Blattwurzel werden im Folgenden beschrieben. Diese Ausgestaltungen zur Anbringung, Positionierung und zur Führung der Beschleunigungssignale vom Beschleunigungssensor zur Blattwurzel können für alle hier beschriebenen Ausführungsformen vorteilhaft verwendet werden. According to embodiments described herein, different methods of monitoring and / or controlling wind turbines are provided. Furthermore, according to embodiments described here, improved acceleration sensors, in particular intrinsic or extrinsic fiber-optic acceleration sensors, are provided. Here are intrinsic fiber optic acceleration sensors, sensors with a provided within the fiber sensor unit, such as a fiber Bragg grating. Extrinsic fiber optic acceleration sensors have an optical sensor provided by the fiber or on the fiber. Thus, extrinsic fiber optic acceleration sensors can also be detected by means of an optical fiber and an optical sensor, i. a non-electrical sensor, measure acceleration without electrical components. In this case, acceleration sensors can be provided, for example, at a radial position in the area of the outer 70% of the radius of the rotor blade, in particular in the area of the outer 50% of the radius of the rotor blade, for example in the range of 60% to 95% of the radius, where 0% corresponds to the flange on the blade root. Further embodiments for mounting, positioning and guiding the acceleration signals from the acceleration sensor to the blade root are described below. These embodiments for mounting, positioning and guiding the acceleration signals from the acceleration sensor to the blade root can be used advantageously for all embodiments described here.

10 zeigt ein Rotorblatt 100. Das Rotorblatt erstreckt sich entlang seiner Länge 105, die dem Radius des Rotorblatts entspricht, von dem Blattflansch 102 zu der Blattspitze. Ein Beschleunigungssensor 110 ist an einer radialen Position im Bereich 107 zur Verfügung gestellt. Der Beschleunigungssensor kann zum Beispiel ein faseroptischer Beschleunigungssensor 110 sein. Eine Signalleitung von dem Beschleunigungssensor 110 zu der Blattwurzel wird entlang der Hinterkante des Rotorblatts geführt. Zum Beispiel kann die Signalleitung ein Lichtleiter 112 sein. Gemäß hier beschriebenen Ausführungsformen kann die Signalleitung innerhalb des Rotorblatts entlang der Hinterkante, zum Beispiel bei einem neu produzierten Rotorblatt, oder außerhalb des Rotorblatts entlang der Hinterkante, zum Beispiel in einem an der Hinterkante angebrachten Profil, zur Verfügung gestellt werden. 10 shows a rotor blade 100 , The rotor blade extends along its length 105 , which corresponds to the radius of the rotor blade, from the blade flange 102 to the blade tip. An acceleration sensor 110 is at a radial position in the area 107 made available. The acceleration sensor may be, for example, a fiber optic acceleration sensor 110 be. A signal line from the acceleration sensor 110 to the blade root is guided along the trailing edge of the rotor blade. For example, the signal line may be an optical fiber 112 be. According to embodiments described herein, the signal line may be within of the rotor blade along the trailing edge, for example in a newly produced rotor blade, or outside the rotor blade along the trailing edge, for example in a profile attached to the trailing edge.

Ausführungsformen der vorliegenden Erfindung erlauben es, Beschleunigungssensoren, insbesondere faseroptische Beschleunigungssensoren bzw. faseroptische Beschleunigungssensoren, nahe der Blattspitze, d.h. in hier beschriebenen radial äußeren Bereichen, in denen ein Rotorblatt nicht begehbar ist, einzusetzen, nachzurüsten und/oder im Reparaturfall entsprechende Wartungsmaßnahmen ergreifen zu können. Somit ergibt sich gemäß der hier vorliegenden Offenbarung eine detaillierte technische Lehre zur Ausführung und/oder zur Verfahrensweise für eine Messung der Beschleunigung in den hier beschriebenen radial außenliegenden Bereichen eines Rotorblatts. Diese technische Lehre bezieht sich zum einen auf die Montage, die Führung von Lichtleitern, redundante Verwendung von Komponente, und/oder eine Nachrüstung entsprechender Sensoren, zum anderen – alternative oder zusätzlich – zum anderen auf eine Messwerterfassung mittels eines analogen Anti-Aliasing-Filters bzw. einer SSI Auswertung der hier beschriebenen Beschleunigungssensoren. Somit wird über die rein theoretische Verwendung solcher Sensoren in radial außen liegenden Bereichen eines Rotorblatts hinaus, eine technische Lehre zur Verfügung gestellt, die einen praktischen Einsatz von faseroptischen Beschleunigungssensoren in einem radialen Bereich eines Rotorblatts, an dem das Rotorblatt nicht begehbar ist (zum Beispiel die äußeren 70%, insbesondere die äußeren 50%, weiterhin insbesondere die äußeren 30% des Radius), ermöglichen. Somit erlauben hier beschrieben Ausführungsformen durch die beschriebenen Anti-Aliasing-Filter eine gute Verwendung von Messsignalen. Darüber hinaus können alternativ oder zusätzlich die entsprechenden Komponenten technisch auch derart zur Verfügung gestellt werden, dass die verbesserten Regelungsstrategien bzw. Messstrategien auch über einen ausreichend lange Lebensdauer von zum Beispiel mehr als 20 Jahren zur Verfügung gestellt werden können. Ausführungsformen erlauben zum Beispiel Reparatur- und Austauschmöglichkeiten, ohne die ein Einsatz von Beschleunigungssensoren nicht praktikabel ist. Embodiments of the present invention make it possible to use, retrofit and retrofit acceleration sensors, in particular fiber-optic acceleration sensors or fiber-optical acceleration sensors, near the blade tip, ie in radially outer regions described here in which a rotor blade is not accessible, and / or to take appropriate maintenance measures in the event of repair , Thus, in accordance with the present disclosure, a detailed technical teaching of the design and / or the method for measuring the acceleration in the radially outer regions of a rotor blade described here results. This technical teaching relates on the one hand to the assembly, the guidance of optical fibers, redundant use of components, and / or retrofitting of corresponding sensors, on the other - alternatively or additionally - on the other hand to a data acquisition by means of an analog anti-aliasing filter or an SSI evaluation of the acceleration sensors described here. Thus, in addition to the purely theoretical use of such sensors in radially outer regions of a rotor blade, a technical teaching is made available which allows a practical use of fiber optic acceleration sensors in a radial region of a rotor blade on which the rotor blade is not accessible (for example outer 70%, especially the outer 50%, continue to allow in particular the outer 30% of the radius). Thus, embodiments described herein allow for good use of measurement signals through the described anti-aliasing filters. In addition, alternatively or additionally, the corresponding components can also be technically made available in such a way that the improved control strategies or measurement strategies also have a sufficiently long service life of, for example, more than 20 Years can be made available. Embodiments allow, for example, repair and replacement possibilities, without which the use of acceleration sensors is impractical.

Im Bereich der Blattwurzel ist durch die gepunktete Linie illustriert, dass gemäß hier beschriebenen Ausführungsformen bei einer Kabelverlegung an der Hinterkante des Rotorblatts ein Durchstich in das Innere des Rotorblatts an einer radialen Position zur Verfügung gestellt wird, an der das Rotorblatt begehbar ist. Dies kann in der Nähe der Blattwurzel bzw. an der Blattwurzel sein. Es kann aber auch in einem anderen radialen Bereich des Rotorblatts sein, an dem das Rotorblatt begehbar ist. In the area of the blade root is illustrated by the dotted line that according to embodiments described here in a cable laying on the trailing edge of the rotor blade, a puncture is provided in the interior of the rotor blade at a radial position at which the rotor blade is accessible. This may be near the leaf root or at the leaf root. However, it can also be in another radial region of the rotor blade, on which the rotor blade can be walked on.

Bei der Herstellung von neuen Rotorblättern kann im Rahmen der Fertigung eine Verlegung des Signalkabels, wie zum Beispiel des Lichtleiters 112, im Inneren des Rotorblatts, insbesondere im Hinterkasten des Rotorblatts vorgenommen werden. Weiterhin kann der Sensor ebenfalls im Inneren des Rotorblatts montiert werden. Insbesondere kann der Sensor in einer abgetrennten Kammer zur Verfügung gestellt werden. Dies ermöglicht einen Schutz gegen lose Klebstoffreste und andere Verunreinigungen. Ein Signalkabel wie zum Beispiel ein Lichtleiter kann jedoch auch entlang der Hinterkante geführt werden, wobei ein Durchstich ins Innere des Rotorblatts bevorzugterweise in einem begehbaren Bereich des Rotorblatts erfolgt. Diese Position des Durchstichs erlaubt vereinfachte Wartungsmaßnahmen. Zum Beispiel kann in einem Reparaturfall eines Beschleunigungssensors, die Signalleitung bzw. der Lichtleiter an einem Stecker, der nahe am Durchstich zur Verfügung gestellt sein kann, getrennt werden. Eine als Ersatz zur Verfügung gestellte Signalleitung, zum Beispiel ein Ersatz-Lichtleiter, bzw. ein als Ersatz zur Verfügung gestellter Beschleunigungssensor können in einem solchen Fall außen verlegt werden. Die ursprüngliche Signalleitung bzw. der ursprüngliche Sensor können hierbei aufgegeben werden. In the production of new rotor blades may be within the production of a laying of the signal cable, such as the light guide 112 , be made inside the rotor blade, in particular in the rear of the rotor blade. Furthermore, the sensor can also be mounted inside the rotor blade. In particular, the sensor can be provided in a separate chamber. This allows protection against loose glue residue and other contaminants. However, a signal cable such as a light guide can also be guided along the trailing edge, wherein a puncture into the interior of the rotor blade preferably takes place in a walk-on area of the rotor blade. This position of the puncture allows simplified maintenance. For example, in a repair case of an acceleration sensor, the signal line or the optical fiber may be disconnected from a connector that may be provided near the puncture. A signal line provided as a substitute, for example a replacement optical fiber, or an acceleration sensor provided as a substitute can be laid outside in such a case. The original signal line or the original sensor can be abandoned here.

Gemäß weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können ist bei einer Nachrüstung eines Sensors, zum Beispiel zur Eiserkennung, der Lichtleiter 112 ebenfalls außen verlegt. Für ein Nachrüsten eines Sensors und/oder für eine nachträgliche Anbringung eines Lichtleiters, kann gemäß hier beschriebener Ausführungsformen ein separates Profil zur Verfügung gestellt werden. 11 zeigt ein weiteres Rotorblatt 100. Hierbei ist an der Hinterkante des Rotorblatts ein Profil 150 zur Verfügung gestellt, so dass der Lichtleiter 112 in dem Profil geführt werden kann. Gemäß hier beschriebenen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, hat das Profil eine Befestigungsvorrichtung für den Lichtleiter 112 bzw. ein entsprechendes Signalkabel, insbesondere ein optisches Signalkabel. According to further embodiments that can be combined with other embodiments, when retrofitting a sensor, for example for ice detection, the light guide 112 also outside laid. For a retrofitting of a sensor and / or for a subsequent attachment of a light guide, a separate profile can be provided according to embodiments described herein. 11 shows another rotor blade 100 , Here is a profile at the trailing edge of the rotor blade 150 provided so that the light guide 112 can be guided in the profile. According to embodiments described herein which can be combined with other embodiments, the profile has a fixing device for the light guide 112 or a corresponding signal cable, in particular an optical signal cable.

Das Profil 150 kann zum Beispiel ein pultrudiertes Profil sein. Das Profil kann weiterhin an die Hinterkante eines Rotorblatts angepasst sein. Es hat zum Beispiel eine Längserstreckung, die zumindest 10 % oder zumindest 30 % des Radius des Rotorblatts entspricht. Weiterhin kann das Profil durch segmentierte Elemente zur Verfügung gestellt werden. Zum Beispiel können sich mehrere segmentierte Elemente entlang zumindest 10% oder zumindest 30 % des Radius des Rotorblatts erstrecken. Gemäß manchen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann das Profil entlang seiner Länge eine gleichbleibende Geometrie aufweisen. Es kann ebenfalls eine Geometrie haben, die für verschiedene Hinterkantendicken ausgebildet ist. Weiterhin kann das Profil optional derart ausgestaltet sein, um eine aerodynamische Verbesserungen des Rotorblatts zu bewirken. The profile 150 may be, for example, a pultruded profile. The profile may be further adapted to the trailing edge of a rotor blade. It has, for example, a longitudinal extent which corresponds to at least 10% or at least 30% of the radius of the rotor blade. Furthermore, the profile can be provided by segmented elements. For example, multiple segmented elements may extend along at least 10% or at least 30% of the radius of the rotor blade. According to some embodiments that may be combined with other embodiments, the profile may have a constant geometry along its length. It can also be one Geometry, which is designed for different rear edge thicknesses. Furthermore, the profile may optionally be configured to effect aerodynamic improvements of the rotor blade.

Wie in 11A gezeigt, kann das Profil 150 an der Hinterkante 109 des Rotorblatts zur Verfügung gestellt werden. Zum Beispiel kann das Profil mit einem Befestigungselement 151 an der Hinterkante angebracht werden. Das Profil kann mittels eines Klebers 152 an der Hinterkante zur Verfügung gestellt werden. Gemäß einigen Ausführungsformen kann der Lichtleiter 112 in dem Kleber zur Verfügung gestellt werden, zum Beispiel eingebettet sein. Der Lichtleiter 112 verläuft entlang der Hinterkante 109 des Rotorblatts in dem Profil 150. As in 11A shown, the profile can 150 at the rear edge 109 the rotor blade are provided. For example, the profile with a fastener 151 be attached to the trailing edge. The profile can by means of an adhesive 152 be provided at the trailing edge. According to some embodiments, the light guide 112 be provided in the adhesive, for example embedded. The light guide 112 runs along the trailing edge 109 of the rotor blade in the profile 150 ,

Gemäß weiteren Ausführungsformen kann das Profil einen Leerkanal 153 aufweisen, um im Rahmen einer Wartung oder Reparatur einen Ersatzlichtleiter zur Verfügung zu stellen. Gemäß noch weiteren alternativen oder zusätzlichen Ausgestaltungen kann das Profil 150 eine Struktur 157 zur aerodynamischen Strömungsbeeinflussung beinhalten. Diese kann zum Beispiel eine Gurney-Flap sein. Die Struktur 157 ist in 11A gestrichelt dargestellt. According to further embodiments, the profile may be an empty channel 153 in order to provide a replacement light guide during maintenance or repair. According to yet further alternative or additional embodiments, the profile 150 a structure 157 for aerodynamic flow control. This can be a gurney flap, for example. The structure 157 is in 11A shown in dashed lines.

12 zeigt eine weitere optionale Ausgestaltung, die mit anderen Ausführungsformen kombiniert werden kann. Hierbei hat das Profil 150, das an der Hinterkante des Rotorblatts 100 zur Verfügung gestellt werden kann, eine weitere Befestigungsvorrichtung für einen Beschleunigungssensor 110. Der Beschleunigungssensor 110 kann in dem Profil 150 zur Verfügung gestellt sein. Dies erlaubt ein besonders einfaches Nachrüsten eines Beschleunigungssensors und der entsprechenden optischen Signalübertragung in dem nachrüstbaren Profil an der Hinterkante des Rotorblatts. 12 shows a further optional embodiment that can be combined with other embodiments. Here has the profile 150 at the trailing edge of the rotor blade 100 can be provided, another fastening device for an acceleration sensor 110 , The acceleration sensor 110 can in the profile 150 be made available. This allows a particularly simple retrofitting of an acceleration sensor and the corresponding optical signal transmission in the retrofittable profile at the trailing edge of the rotor blade.

Gemäß einem hier beschriebenen Aspekt wird ein Profil für die Hinterkante eines Rotorblatts einer Windkraftanlage zur Verfügung gestellt. Das Profil beinhaltet zumindest eine Befestigungsvorrichtung für einen Lichtleiter. Typischerweise ist das Profil ausgestaltet, um sich entlang zumindest 10% oder zumindest 30 % des Radius des Rotorblatts erstrecken. Gemäß weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann die zumindest eine Befestigungsvorrichtung eine oder mehrere Klebestellen sein. Zum Beispiel kann ein Lichtleiter in das Profil eingeklebt werden. Gemäß weiteren Ausführungsformen, kann als Befestigungsvorrichtung eine Klemmvorrichtung für einen Lichtleiter oder ein Leerkanal zur Verfügung gestellt sein, durch den ein Lichtleiter hindurchgeführt werden kann. According to one aspect described herein, a profile for the trailing edge of a rotor blade of a wind turbine is provided. The profile includes at least one fastening device for a light guide. Typically, the profile is configured to extend along at least 10% or at least 30% of the radius of the rotor blade. According to further embodiments, which may be combined with other embodiments, the at least one fastening device may be one or more splices. For example, a light guide can be glued into the profile. According to further embodiments, a clamping device for a light guide or an empty channel can be provided as fastening device, through which a light guide can be passed.

Gemäß noch weiteren Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden können, kann das Profil eine weitere Befestigungsvorrichtung für eine Beschleunigungssensor beinhalten. Die weitere Befestigungsvorrichtung kann als Klemmvorrichtung, Gewinde oder Schraube, und/oder durch ein oder mehrere Klebestellen zur Verfügung gestellt sein. Insbesondere Klemmvorrichtungen, Gewinde bzw. Schrauben sind bevorzugt aus einem nicht-metallische Material ausgebildet. Durch ein Profil gemäß hier beschriebenen Ausführungsformen, kann ein Nachrüsten für ein Rotorblatt mit einem Beschleunigungssensor und einer entsprechenden optischen Signalübertragung besonders einfach zur Verfügung gestellt werden. Weiterhin kann durch die Verwendung von nicht-metallischen Materialien das Risiko eines Blitzschadens bzw. eines Blitzeinschlags reduziert werden. According to yet further embodiments, which may be combined with other embodiments described herein, the profile may include a further attachment device for an acceleration sensor. The further fastening device can be provided as a clamping device, thread or screw, and / or by one or more splices. In particular, clamping devices, threads or screws are preferably formed from a non-metallic material. By a profile according to embodiments described here, retrofitting for a rotor blade with an acceleration sensor and a corresponding optical signal transmission can be made particularly easy. Furthermore, the use of non-metallic materials can reduce the risk of lightning or lightning strikes.

13A zeigt eine weitere Ausführungsform, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden kann. Der Beschleunigungssensor 110 ist in einer Kammer 162 zur Verfügung gestellt. Der Lichtleiter 112 wird an der Hinterkante aus dem Rotorblatt 100 geführt. Der Lichtleiter 112 wird in dem Profil 150 entlang der Hinterkante in Richtung der Blattwurzel bzw. des Blattflanschs geführt. Als weitere zusätzliche Option, wie Sie in 13B dargestellt ist, kann in einem Bereich des Übergangs zwischen dem Rotorblatt 100 und dem Profil 150 eine Steckverbindung 172 zur Verfügung gestellt werden. Dies erlaubt einen einfachen Austausch des Lichtleiters 112, falls dieser im Rahmen von Wartungsarbeiten gewechselt werden sollte. 13A shows another embodiment that may be combined with other embodiments described herein. The acceleration sensor 110 is in a chamber 162 made available. The light guide 112 is at the trailing edge of the rotor blade 100 guided. The light guide 112 will be in the profile 150 guided along the trailing edge in the direction of the blade root and the blade flange. As another additional option as you in 13B can be shown in an area of transition between the rotor blade 100 and the profile 150 a plug connection 172 to provide. This allows easy replacement of the light guide 112 if it should be changed during maintenance.

In Bezug auf das Nachrüsten, die Wartung bzw. den Austausch von Komponenten sei vermerkt, dass faseroptische Beschleunigungssensoren, insbesondere faseroptische Beschleunigungssensoren einen relativ geringen Wartungsaufwand haben bzw. relativ robust sind. Für die Verwendung an Windkraftanlagen sollte jedoch berücksichtigt werden, dass die Betriebsbedingungen durch große Temperaturschwankungen und/oder große Beschleunigungen, die auf die Komponenten einwirken, insbesondere auch möglicherweise existierende Vibrationen, extremen sind. Somit ist bei der Verwendung in Windkraftanlagen eine Redundanz von Komponenten bzw. die vereinfachte Möglichkeit zum Austausch von Komponenten, insbesondere vorteilhaft. With regard to retrofitting, maintenance or replacement of components, it should be noted that fiber-optic acceleration sensors, in particular fiber-optic acceleration sensors, have relatively low maintenance requirements or are relatively robust. For use on wind turbines, however, it should be considered that the operating conditions are extreme due to large temperature fluctuations and / or large accelerations acting on the components, in particular also possibly existing vibrations. Thus, when used in wind turbines, a redundancy of components or the simplified possibility for the exchange of components, in particular advantageous.

14 illustriert die Kabelverlegung, zum Beispiel die Verlegung des Lichtleiters 112, in einem der Blattwurzel zugewandten radialen Bereich des Rotorblatts. Dies Details, Ausgestaltungen, und Ausführungsformen der Kabelverlegung können mit anderen Ausführungsformen kombiniert werden. Der Lichtleiter 112 ist entlang der Hinterkante des Rotorblatts 100 geführt. Dies kann zum Beispiel wie oben beschrieben in einem Profil ermöglicht werden. Es wird ein Durchstich in das Innere des Rotorblatts zur Verfügung gestellt. Insbesondere kann die radiale Position des Durchstichs derart festgelegt sein, dass das Rotorblatt an der radialen Position des Durchstichs begehbar ist. Gemäß weiteren optionalen Ausgestaltungen, kann im Bereich des Durchstichs, zum Beispiel direkt am Durchstich bzw. nahe des Durchstichs im Inneren des Rotorblatts, eine weitere Steckverbindung 174 zur Verfügung gestellt werden. Ein Lichtleiter bzw. eine optische Faser führt von der Steckverbindung 174 zu einem Stecker 176 an einem Verteiler 510, zum Beispiel einem Feldverteiler. Ein weiterer Lichtleiter 512 führt von dem Verteiler 510 zu der Auswerteeinheit 114. Zum Beispiel kann die Auswerteeinheit 114 in der Nabe des Rotors zur Verfügung gestellt werden. Gemäß typischen Ausführungsformen, wie Sie mit anderen Ausführungsformen kombiniert werden können, kann der Lichtleiter 512 derart entlang einer Spirale (Feder) oder durch eine Spirale 513 geführt werden, das eine Rotation des Rotorblatts 100 um seine Längsachse, zum Beispiel beim Pitchen, nicht zu einer Beschädigung des Lichtleiter 512 führt. Zur besseren Übersicht ist der Lichtleiter 512 in 14 gestrichelt durch die Feder bzw. Spirale gekennzeichnet. Eine verbesserte Entlastung des Lichtleiters kann dadurch gegeben werden, dass gemäß Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, der Lichtleiter parallel zur Spirale 513 geführt wird (durch die gestrichelte Linie symbolisiert bzw. nicht explizit dargestellt). 14 illustrates the laying of cables, for example the laying of the light guide 112 in a radial region of the rotor blade facing the blade root. These details, configurations, and embodiments of cable routing may be combined with other embodiments. The light guide 112 is along the trailing edge of the rotor blade 100 guided. This can be made possible for example in a profile as described above. A puncture into the interior of the rotor blade is provided. In particular, the radial Position of the puncture be set so that the rotor blade is accessible at the radial position of the puncture. According to further optional embodiments, in the region of the puncture, for example, directly at the puncture or near the puncture in the interior of the rotor blade, another plug connection 174 to provide. A light guide or an optical fiber leads from the connector 174 to a plug 176 at a distributor 510 , for example, a field distributor. Another light guide 512 leads from the distributor 510 to the evaluation unit 114 , For example, the evaluation unit 114 be provided in the hub of the rotor. According to typical embodiments, as may be combined with other embodiments, the light guide may 512 so along a spiral (spring) or by a spiral 513 be guided, which is a rotation of the rotor blade 100 around its longitudinal axis, for example when pitching, not to damage the light guide 512 leads. For a better overview, the light guide 512 in 14 Dashed lines marked by the spring or spiral. An improved discharge of the light guide can be given by the fact that, according to embodiments that can be combined with other embodiments, the light guide parallel to the spiral 513 is guided (symbolized by the dashed line or not explicitly shown).

15 zeigt exemplarisch eine weitere Ausgestaltung für die Verwendung von einem Beschleunigungssensor 110 in einem Rotorblatt 100. Der Beschleunigungssensor 110 ist in einem Bereich nahe der Blattspitze 104 zur Verfügung gestellt. Weiterhin sind im Inneren des Rotorblatts 100 zwei Lichtleiter in Richtung der Blattwurzel bzw. in Richtung des Blattflanschs geführt. In einer weiteren Kammer 164, die im Rahmen von Wartungsarbeiten geöffnet werden kann, existiert eine erste Steckverbindung 178 und ein weiterer Stecker 179. Durch die Verwendung von zwei Lichtleitern kann eine Redundanz zur Verfügung gestellt werden. Beim Ausfall eines Lichtleiter kann die Kammer 164 geöffnet werden und die Steckverbindung 178 des Beschleunigungssensor 110 gelöst werden, um im Anschluss den Beschleunigungssensor 110 an den Stecker 179 zu stecken. Wie durch den alternativ oder zusätzlich zur Verfügung gestellten zweiten Beschleunigungssensor 110 (gestrichelt dargestellt) illustriert, kann eine zusätzliche oder alternative Redundanz auch in Bezug auf den Beschleunigungssensor zur Verfügung gestellt werden. Es kann zusätzlich oder alternativ der Ausfall eines Beschleunigungssensors durch ein Umstecken behoben werden. 15 shows by way of example a further embodiment for the use of an acceleration sensor 110 in a rotor blade 100 , The acceleration sensor 110 is in an area near the blade tip 104 made available. Furthermore, inside the rotor blade 100 two light guides led in the direction of the blade root or in the direction of the blade flange. In another chamber 164 , which can be opened during maintenance work, there is a first plug connection 178 and another plug 179 , By using two optical fibers a redundancy can be provided. In case of failure of a light guide, the chamber 164 to be opened and the plug connection 178 the acceleration sensor 110 be solved in order to subsequently the acceleration sensor 110 to the plug 179 to stick. As by the alternatively or additionally provided second acceleration sensor 110 (shown in phantom), additional or alternative redundancy may also be provided with respect to the acceleration sensor. In addition or as an alternative, the failure of an acceleration sensor can be remedied by changing over.

Gemäß noch weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann für eine Reparatur eines Lichtleiter ein im Inneren verlegter Lichtleiter aufgegeben werden und durch einen in einem Profil zur Verfügung gestellten Lichtleiter ersetzt werden. Weiterhin ist es möglich ein in einem Profil zur Verfügung gestellten Lichtleiter im Rahmen einer Reparatur aufzugeben und einen weiteren Lichtleiter mit einem weiteren Profil auf das erste Profil zu montieren. Gemäß noch weiteren Ausführungsformen, kann sowohl innerhalb eines Rotorblatts und/oder innerhalb eines Profils ein Leerkanal zur Verfügung gestellt sein. In einem Leerkanal kann ein Lichtleiter nachträglich eingeführt werden. Dies kann insbesondere vorteilhaft mit einer Steckverbindung 174, wie Sie in 14 dargestellt ist, kombiniert werden. According to still further embodiments, which can be combined with other embodiments, for a repair of a light guide, a light guide laid inside can be abandoned and replaced by a light guide provided in a profile. Furthermore, it is possible to abandon a light guide provided in a profile as part of a repair and to mount another light guide with a further profile on the first profile. According to still further embodiments, an empty channel may be provided both within a rotor blade and / or within a profile. In an empty channel, a light guide can be introduced later. This can be particularly advantageous with a plug connection 174 as you in 14 is shown combined.

Die Verwendung eines Leerkanals in einem Profil bzw. auch im Inneren eines Rotorblatts kann ferner mit Ausführungsformen von Beschleunigungssensoren, die wie oben beschrieben eine geringe maximale Abmessung in einem Querschnitt senkrecht zur Lichtleiter-Achse vorteilhaft sein. Für faseroptische Beschleunigungssensoren mit kleinen Abmessungen im Querschnitt senkrecht zum Lichtleiter-Achse kann ein Ersatz-Lichtleiter gegebenenfalls auch mit einem Ersatz-Beschleunigungssensor in den Leerkanal eingebracht werden. The use of an empty channel in a profile or in the interior of a rotor blade may also be advantageous with embodiments of acceleration sensors which, as described above, have a small maximum dimension in a cross section perpendicular to the optical fiber axis. For fiber-optic acceleration sensors with small dimensions in cross-section perpendicular to the optical fiber axis, a replacement optical fiber may optionally be introduced into the empty channel with a replacement acceleration sensor.

Gemäß hier beschriebenen Ausführungsformen ist eine Mehrzahl an Verwendungsmöglichkeiten von Beschleunigungssensoren, insbesondere faseroptischen Beschleunigungssensoren, wie zum Beispiel faseroptische Beschleunigungssensoren, in Windkraftanlagen beschrieben, wobei Ausgestaltungen durch die radiale Positionierung, den Aufbau von faseroptischen Beschleunigungssensoren, sowie die Anbringung von Beschleunigungssensoren und/oder Anbringung von Lichtleitern zur Verfügung gestellt sind. According to embodiments described herein, a plurality of uses of acceleration sensors, in particular fiber optic acceleration sensors, such as fiber optic acceleration sensors, described in wind turbines, embodiments by the radial positioning, the structure of fiber optic acceleration sensors, as well as the attachment of acceleration sensors and / or attachment of optical fibers are provided.

Gemäß einer Ausführungsform ist ein Verfahren zur Überwachung einer Torsionsinstabilität eines Rotorblatts einer Windkraftanlage zur Verfügung gestellt. Ein entsprechendes Ablaufdiagramm ist in 16 dargestellt. Eine Beschleunigung wird mit einem Beschleunigungssensor gemessen (siehe Bezugszeichen 962), wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist. Ferner wird die Beschleunigung zur Erzeugung eines Signals zur Flatterwarnung und/oder eines Signals zur Instabilitätswarnung bei einer Torsions-Biege-Kopplung ausgewertet (siehe Bezugszeichen 964). Es wird die Existenz einer Torsionsinstabilität erfasst bzw. überwacht, um entsprechende Maßnahmen bei der Regelung der Windkraftanlage vornehmen zu können. According to one embodiment, a method for monitoring a torsional instability of a rotor blade of a wind turbine is provided. A corresponding flow chart is in 16 shown. An acceleration is measured with an acceleration sensor (see reference numeral 962 ), wherein the acceleration sensor is provided at a radial position in the range of the outer 70% of the radius of the rotor blade. Furthermore, the acceleration for generating a signal for flutter warning and / or a signal for instability warning in a torsional bending coupling is evaluated (see reference numeral 964 ). The existence of a torsional instability is recorded or monitored in order to be able to undertake appropriate measures in the regulation of the wind power plant.

Gemäß einer weiteren Ausführungsform ist ein Verfahren zur Überwachung einer Windkraftanlage zur Verfügung gestellt. Ein entsprechendes Ablaufdiagramm ist in 17 dargestellt. Eine Beschleunigung wird mit einem faseroptischen Beschleunigungssensor gemessen (siehe Bezugszeichen 972), wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius eines Rotorblatts der Windkraftanlage zur Verfügung gestellt ist. Ferner wird das Beschleunigungssignals des faseroptischen Beschleunigungssensors mit einem analogen anti-aliasing-Filter gefiltert (siehe Bezugszeichen 974). According to another embodiment, a method for monitoring a wind turbine is provided. A corresponding flow chart is in 17 shown. A Acceleration is measured with a fiber optic acceleration sensor (see reference numeral 972 ), wherein the acceleration sensor is provided at a radial position in the range of the outer 70% of the radius of a rotor blade of the wind turbine. Further, the acceleration signal of the fiber optic acceleration sensor is filtered with an analog anti-aliasing filter (see reference numeral 974 ).

Gemäß einer noch weiteren Ausführungsform ist ein Verfahren zur Überwachung einer Windkraftanlage zur Verfügung gestellt. Ein entsprechendes Ablaufdiagramm ist in 18 dargestellt. Eine Beschleunigung wird mit einem faseroptischen Beschleunigungssensor gemessen (siehe Bezugszeichen 982), wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist, wobei der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält. According to yet another embodiment, a method for monitoring a wind turbine is provided. A corresponding flow chart is in 18 shown. An acceleration is measured with a fiber optic acceleration sensor (see reference numeral 982 ), wherein the acceleration sensor is provided at a radial position in the range of the outer 70% of the radius of the rotor blade, wherein the acceleration sensor is less than 10 wt .-% of metal or contains less than 20 g of metal.

Gemäß einer noch weiteren Ausführungsform ist ein Verfahren zur individuellen Pitchregelung von Rotorblättern einer Windkraftanlage zur Verfügung gestellt. Ein entsprechendes Ablaufdiagramm ist in 19 dargestellt. Das Verfahren beinhaltet messen (siehe Bezugszeichen 992) einer Beschleunigung mit einem Beschleunigungssensor, wobei der Beschleunigungssensor in einem ersten Rotorblatt zur Verfügung gestellt ist, zum Beispiel an einer Position im Bereich der äußeren 70% des Radius. Ferner beinhaltet das Verfahren ein Pitchen (siehe Bezugszeichen 994) des ersten Rotorblatts der Windkraftanlage mittels der gemessenen Beschleunigung, wobei das Pitchen im Rahmen einer individuellen Pitchregelung erfolgt. Das Verfahren beinhaltet ferner ein Hochpassfiltern eines Signals des Beschleunigungssensors zur Ermittlung einer zeitveränderlichen Größe, wobei das Pitchen des ersten Rotorblatts der Windkraftanlage mittels der zeitveränderlichen Größe erfolgt. According to yet another embodiment, a method for individual pitch control of rotor blades of a wind turbine is provided. A corresponding flow chart is in 19 shown. The method involves measuring (see reference numeral 992 ) acceleration with an acceleration sensor, wherein the acceleration sensor is provided in a first rotor blade, for example at a position in the region of the outer 70% of the radius. Furthermore, the method includes a pitching (see reference numeral 994 ) of the first rotor blade of the wind turbine by means of the measured acceleration, wherein the pitching takes place in the context of an individual pitch control. The method further includes a high-pass filtering of a signal of the acceleration sensor for determining a time-variable variable, wherein the pitching of the first rotor blade of the wind turbine takes place by means of the time-variable variable.

Gemäß den hier beschriebenen Ausführungsformen wird aus dem Beschleunigungssignal eine zeitveränderliche, hochpassgefilterte Größe ermittelt, die unmittelbar für die individuelle Pitchregelung verwendet wird. Komplizierte Auswerteverfahren bzw. komplizierte Messmethoden einer Mehrzahl unterschiedlicher Größen können hierdurch entfallen. Für einen Regler werden nur zeitveränderliche, hochpassgefilterte Größen verwendet. Diese können gemäß hier beschriebenen Ausführungsformen besonders einfach aus den Beschleunigungssignalen direkt bestimmt werden. Diese zeitveränderlichen Größen haben den Vorteil, dass sie auch bei Verwendung von faseroptischen Beschleunigungssignalen, die ans sich einen Drift unterliegen können, stabiler sind, keine Kalibrierung benötigen bzw. die Sensoren für die Messung technisch einfach sind. Hierbei kann unter anderem auf komplizierte Integrationsschritte, etc. verzichtet werden. Gemäß manchen Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden können, kann das Hochpassfiltern durch Bildung einer zeitlichen Ableitung, durch Hochpassfilterung, und/oder mittels einer Fouriertransformation durchgeführt werden. Es ist hierbei anzumerken, dass eine zeitliche Ableitung, insbesondere bei der Wahl geeigneter Koeffizienten einer Hochpassfilterung bzw. einer Unterdrückung von Änderungen mit geringen Frequenzen relativ zu Signaländerungen mit hohen Frequenzen entspricht. Ein Hochpass kann signaltechnisch folglich als Differenzierglied betrachtet werden bzw. eine zeitliche Differenzierung kann als Hochpass betrachtet werden. Somit Zum Beispiel kann das Hochpassfiltern eine Grenzfrequenz für Signalanteile mit Frequenzen größer der Rotationsfrequenz des Rotors haben. Die Grenzfrequenz kann von 0,3 bis 0,5 Hz sein, insbesondere wobei das Hochpassfiltern eine Unterdrückung eines Signals von 0,2 Hz relativ zu einem Signal von 0,6 von mindestens einem Faktor 5 hat. According to the embodiments described here, a time-variable, high-pass filtered variable is determined from the acceleration signal, which variable is used directly for the individual pitch control. Complex evaluation methods or complicated measuring methods of a plurality of different sizes can be omitted hereby. For a controller, only time-varying, high-pass-filtered quantities are used. These can be determined particularly easily from the acceleration signals in accordance with embodiments described here. These time-variable sizes have the advantage that they are more stable even when using fiber-optic acceleration signals, which may be subject to drift, need calibration or the sensors for the measurement are technically simple. Among other things, complicated integration steps, etc. can be dispensed with here. According to some embodiments that may be combined with other embodiments described herein, the high pass filtering may be performed by forming a time derivative, by high pass filtering, and / or by a Fourier transform. It should be noted here that a time derivative, in particular when selecting suitable coefficients, corresponds to a high-pass filtering or a suppression of changes with low frequencies relative to signal changes with high frequencies. A high-pass signal can thus be regarded as a differentiator, or a time differentiation can be regarded as a high-pass. Thus, for example, the high pass filtering may have a cutoff frequency for signal portions having frequencies greater than the rotational frequency of the rotor. The cut-off frequency may be from 0.3 to 0.5 Hz, in particular wherein the high-pass filtering has a suppression of a signal of 0.2 Hz relative to a signal of 0.6 of at least a factor of 5.

Insbesondere bei einer Kombination mit einem faseroptischen Beschleunigungssensor kann das Verfahren weiterhin ein opto-elektronisches Wandeln des Signals des faseroptischen Beschleunigungssensors und ein Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen Anti-aliasing-Filter beinhalten. Somit wird für die individuelle Pitchregelung eine Signal verwendet, das zum einen hochpassgefiltert ist und darüber hinaus einer analogen Anti-aliasing-Filterung unterzogen wurde. Weitere zeitveränderliche Größen werden somit für eine individuelle Pitchregelung nicht benötigt, auch wenn diese optional einer Regelgröße hinzugefügt werden könnten. Gemäß typischen Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden können, kann das Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit dem analogen Anti-aliasing-Filter eine Grenzfrequenz von 10 Hz bis 40 Hz hat, insbesondere von 15 Hz bis 25 Hz haben. In particular, when combined with a fiber optic acceleration sensor, the method may further include opto-electronically converting the signal of the fiber optic acceleration sensor and filtering the opto-electronically converted acceleration signal with an analog anti-aliasing filter. Thus, a signal is used for the individual pitch control, which is on the one hand high-pass filtered and has also been subjected to analog anti-aliasing filtering. Further time-variable quantities are thus not required for an individual pitch control, even if these could optionally be added to a controlled variable. According to typical embodiments that may be combined with other embodiments described herein, filtering the opto-electronically-converted acceleration signal with the analog anti-aliasing filter may have a cutoff frequency of 10 Hz to 40 Hz, more preferably 15 Hz to 25 Hz.

Verfahren zur individuellen Pitchregelung sind basierend auf einer Mehrzahl unterschiedlicher Steuer- oder Messgrößen bekannt. Durch die Verwendung von Beschleunigungssensoren in einem Rotorblatt, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70 % des Radius zur Verfügung gestellt ist, kann mit einem Beschleunigungssensor ein für eine individuelle Pitchregelung bestens geeignetes Signal verwendet werden. Bei der Verwendung des Signals eines Beschleunigungssensors, der in einem radial äußeren Bereich des Rotorblatts zur Verfügung gestellt ist, kann durch die Empfindlichkeit der Beschleunigungssensoren in diesem radialen Bereich eine verbesserte Pitchregelung erzielt werden. Hierbei kann durch die Messung einer Beschleunigung in jeweils einem Rotorblatt, für jedes Rotorblatt eine individuelle Pitchregelung erfolgen. Methods for individual pitch control are known based on a plurality of different control or measured variables. By using acceleration sensors in a rotor blade, wherein the acceleration sensor is provided at a radial position in the area of the outer 70% of the radius, an acceleration sensor can be used with a signal which is most suitable for individual pitch control. When using the signal of an acceleration sensor, which is provided in a radially outer region of the rotor blade, the sensitivity of the acceleration sensors in this radial region, a improved pitch control can be achieved. In this case, by measuring an acceleration in each case one rotor blade, an individual pitch control can be carried out for each rotor blade.

Gemäß hier beschriebenen Ausführungsformen wird unter einer individuellen Pitchregelung eine Regelung verstanden, bei der jedes Rotorblatt einen eigenen Antrieb zur Pitchregelung hat. Zum Beispiel zeigt 5 jeweils einen Antrieb 570, der mit einer Steuerung 50 der Windkraftanlage verbunden ist, so dass jeweils ein Antrieb 570 das Rotorblatt um eine Achse 501 drehen kann, um den Anstellwinkel des Rotorblatts zu variieren, d.h. das Rotorblatt zu pitchen. Bei der individuellen Pitchregelung kann jeder Antrieb 570 ein eigenes Signal für die Pitchregelung erhalten, das nicht notwendigerweise identisch zu den Signalen der anderen Antriebe für die anderen Rotorblätter sein muss. Es ist offensichtlich, dass auch bei einer individuellen Pitchregelung alle Rotorblätter mit einem identischen Pitch-Signal angesteuert werden können. Eine individuelle Pitchregelung zeichnet sich jedoch dadurch aus, dass sie Abweichungen zwischen Rotorblättern bei der Pitchregelung ermöglicht. According to embodiments described here, an individual pitch control is understood to mean a control in which each rotor blade has its own drive for pitch control. For example, shows 5 one drive each 570 that with a control 50 the wind turbine is connected, so that each one drive 570 the rotor blade about an axis 501 can rotate to vary the angle of attack of the rotor blade, ie to pitch the rotor blade. With the individual pitch control every drive can 570 get its own signal for the pitch control, which need not necessarily be identical to the signals of the other drives for the other rotor blades. It is obvious that even with an individual pitch control all rotor blades can be controlled with an identical pitch signal. An individual pitch control, however, is characterized by the fact that it allows deviations between rotor blades in the pitch control.

Eine individuelle Pitchregelung kann insbesondere bei Ausführungsformen zur Verfügung gestellt werden, bei denen sich ein Beschleunigungssensor in den äußeren 50 % des Radius des Rotorblatts, weiterhin insbesondere in einem Bereich von 60 % bis 90 % des Radius Rotorblatts befindet. Wie in 5 dargestellt ist in einem Rotorblatt 101 Beschleunigungssensor 110 zur Verfügung gestellt. Zum Beispiel kann der Beschleunigungssensor ein faseroptischer Beschleunigungssensor oder ein faseroptische Beschleunigungssensor sein. Das optische Signal wird über eine Lichtleiter 112 zu einer Auswerteeinheit 114 geführt. Zum Beispiel kann das optische Signal über einen Verteiler 510 zu der Auswerteeinheit 114 geführt werden. Die Auswerteeinheit 114 ist mit der Steuerung 50 der Windkraftanlage verbunden. Basierend auf den Signalen der Beschleunigungssensoren 110 kann eine individuelle Ansteuerung der Antriebe 570 für jedes der Rotorblätter 100 zur Verfügung gestellt werden. Es wird eine zeitveränderliche Größe, die direkt aus dem Beschleunigungssignal bestimmt wird, verwendet. Eine Bestimmung der zeitveränderlichen Größe direkt aus dem Beschleunigungssignal ist als Verzicht auf Integrationsschritte etc. bzw. als eine Reduktion von Integrationsschritten etc. zu verstehen. An individual pitch control can be provided in particular in embodiments in which an acceleration sensor is located in the outer 50% of the radius of the rotor blade, more particularly in a range of 60% to 90% of the radius rotor blade. As in 5 is shown in a rotor blade 101 accelerometer 110 made available. For example, the acceleration sensor may be a fiber optic acceleration sensor or a fiber optic acceleration sensor. The optical signal is transmitted via a light guide 112 to an evaluation unit 114 guided. For example, the optical signal can be sent via a distributor 510 to the evaluation unit 114 be guided. The evaluation unit 114 is with the controller 50 connected to the wind turbine. Based on the signals of the acceleration sensors 110 can be an individual control of the drives 570 for each of the rotor blades 100 to provide. A time-varying quantity determined directly from the acceleration signal is used. A determination of the time-variable quantity directly from the acceleration signal is to be understood as a waiver of integration steps etc. or as a reduction of integration steps, etc.

Gemäß weiteren Ausführungsformen, können insbesondere mehrere Beschleunigungssensoren an einem Rotorblatt an mehreren radialen Positionen verwendet werden. According to further embodiments, in particular a plurality of acceleration sensors can be used on a rotor blade at a plurality of radial positions.

Im Hinblick auf die individuelle Pitchregelung mit Beschleunigungssensoren, ist gemäß einer Ausführungsform einer Windkraftanlage zur Verfügung gestellt. Die Windkraftanlage beinhaltet ein erstes Rotorblatt, das an einer Nabe montiert ist, einen ersten Antrieb zu Rotation des ersten Rotorblatts für eine Pitchregelung des ersten Rotorblatts, zumindest ein zweites Rotorblatt das an der Nabe montiert ist, zumindest einen zweiten Antrieb zu Rotation des zweiten Rotorblatts für eine Pitchregelung des zweiten Rotorblatts, wobei der zweite Antrieb unabhängig vom ersten Antrieb an steuerbar ist, und eine Steuerung zum Ansteuern von zumindest dem ersten Antrieb. Die Windkraftanlage beinhaltet ferner einen Beschleunigungssensor wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70 % des Radius des ersten Rotorblatts zur Verfügung gestellt ist, und eine Messsignalleitung zum Führen des Messsignals des Beschleunigungssensor zu der Steuerung und/oder Regelung, wobei die Steuerung und/oder Regelung konfiguriert ist ein Pitchen des ersten Rotorblatts mittels einer ermittelten zeitveränderlichen Größe zu steuern. With regard to the individual pitch control with acceleration sensors, according to one embodiment of a wind turbine is provided. The wind turbine includes a first rotor blade mounted on a hub, a first drive for rotating the first rotor blade for pitch control of the first rotor blade, at least one second rotor blade mounted on the hub, at least one second driver for rotation of the second rotor blade for a pitch control of the second rotor blade, wherein the second drive is controllable independently of the first drive, and a controller for driving at least the first drive. The wind turbine further includes an acceleration sensor, wherein the acceleration sensor is provided at a radial position in the area of the outer 70% of the radius of the first rotor blade, and a measurement signal line for guiding the measurement signal of the acceleration sensor to the controller, wherein the controller and is configured to control a pitching of the first rotor blade by means of a determined time-variable variable.

In solchen Ausführungsformen von Windkraftanlagen kann der Beschleunigungssensor insbesondere in den äußeren 50 % des Radius des Rotorblatts, weiterhin insbesondere in einem Bereich von 60 % bis 90 % des Radius des Rotorblatts zur Verfügung gestellt sein. Hierbei ist es insbesondere vorteilhaft, wenn der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält. Ein solcher Beschleunigungssensor kann insbesondere der faseroptische Beschleunigungssensor gemäß einer der Ausführungsformen sein, wie sie in Bezug auf die 9A und 9B beschrieben sind. Weiterhin kann der Beschleunigungssensor bzw. ein Lichtleiter zur Signalübertragung des Signals des Beschleunigungssensors gemäß einer der Ausführungsformen zur Verfügung gestellt werden, wie sie im Hinblick auf die 10 bis 15 beschrieben sind. In such embodiments of wind power plants, the acceleration sensor may be provided in particular in the outer 50% of the radius of the rotor blade, and in particular in a range of 60% to 90% of the radius of the rotor blade. In this case, it is particularly advantageous if the acceleration sensor consists of less than 10% by weight of metal or contains less than 20 g of metal. Such an acceleration sensor may in particular be the fiber-optic acceleration sensor according to one of the embodiments described in relation to FIGS 9A and 9B are described. Furthermore, the acceleration sensor or a light guide for signal transmission of the signal of the acceleration sensor according to one of the embodiments can be provided, as they are with regard to 10 to 15 are described.

Gemäß einer noch weiteren Ausführungsform, ist ein Verfahren zur Steuerung und/oder Regelung einer Windkraftanlage zur Verfügung gestellt. Ein entsprechendes Ablaufdiagramm ist in 20 dargestellt. Eine Beschleunigung wird mit einem Beschleunigungssensor gemessen (siehe Bezugszeichen 997), wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist. Ferner wird die Beschleunigung zur Erzeugung eines Signals zur Blade-Clearance-Warnung, d.h. einer Wahrnehmung bei mangelndem Turmfreigang eines Rotorblatts, ausgewertet (siehe Bezugszeichen 999). According to yet another embodiment, a method for controlling and / or regulating a wind turbine is provided. A corresponding flow chart is in 20 shown. An acceleration is measured with an acceleration sensor (see reference numeral 997 ), wherein the acceleration sensor is provided at a radial position in the range of the outer 70% of the radius of the rotor blade. Furthermore, the acceleration becomes Generation of a signal for blade clearance warning, ie a perception in case of lack of tower clearance of a rotor blade, evaluated (see reference numeral 999 ).

Ein weiterer Aspekt von den hier beschriebenen Beschleunigungssensoren an einer radialen Position im Bereich der äußeren 70 % des Radius eines Rotorblatts einer Windkraftanlage betrifft die Erzeugung eines Signals zur Blade-Clearance-Warnung bzw. zur Turmfreigangs-Warnung. Zur Erläuterung des Turmfreigangs kann auf 2 Bezug genommen werden. Bei der Rotation des Rotors bewegen sich die Rotorblätter 100 in einer im Wesentlichen senkrecht nach unten gerichteten Stellung am Turm 40 vorbei. Der minimale Abstand zwischen dem Rotorblatt, insbesondere der Rotorblatt Spitze 104, und dem Turm 40 wird als Blade-Clearance oder Turmfreigang bezeichnet. Bei der Unterschreitung eines kritischen Werts ist es erforderlich bzw. vorteilhaft ein Warnsignal zur Verfügung zu stellen, da eine Kollision des Rotorblatts mit dem Turm zu einer Zerstörung der Windkraftanlage und/oder schweren Unfällen führen kann. Another aspect of the acceleration sensors described herein at a radial position in the range of the outer 70% of the radius of a rotor blade of a wind turbine relates to the generation of a signal for blade clearance warning or tower release warning. To explain the Turmfreigangs can on 2 Be referred. During the rotation of the rotor, the rotor blades move 100 in a substantially vertically downwardly directed position on the tower 40 past. The minimum distance between the rotor blade, in particular the rotor blade tip 104 , and the tower 40 is called a blade clearance or tower clearance. When falling below a critical value, it is necessary or advantageous to provide a warning signal, since a collision of the rotor blade with the tower can lead to destruction of the wind turbine and / or serious accidents.

Gemäß hier beschriebenen Ausführungsformen kann zur Erzeugung eines Signals zur Turmfreigangs-Warnung ein Beschleunigungssensor verwendet werden, insbesondere wenn dieser in den äußeren 50 % des Radius des Rotorblatts, weiterhin insbesondere in einem Bereich von 60 bis 90 % des Radius des Rotorblatts zur Verfügung gestellt ist. Bei Verfahren zur Steuerung und/oder Regelung einer Windkraftanlage gemäß diesen Ausführungsformen wird das Signal der Beschleunigung ausgewertet zu Erzeugung eines Signals zur Blade-Clearance-Warnung bzw. Turmfreigangs-Warnung. Hierbei kann das Signal des Beschleunigungssensors insbesondere über die Zeit integriert werden, zum Beispiel zweifach über die Zeit integriert werden. Darüber hinaus kann mittels einer Koordinatentransformation wie sie in Bezug auf die 8A und 8B beschrieben ist, wodurch Gravitationsbeschleunigungen und andere Effekte herausgerechnet werden können, eine dynamische Belastung bzw. eine dynamische Position des Rotorblatts, zum Beispiel der Rotorblattspitze, berechnet werden. Hierbei ist es besonders vorteilhaft, wenn Beschleunigungssensoren an mehreren radialen Positionen in einem Rotorblatt zur Verfügung gestellt werden. According to embodiments described herein, an acceleration sensor may be used to generate a tower release warning signal, particularly when it is provided in the outer 50% of the radius of the rotor blade, more particularly in a range of 60 to 90% of the radius of the rotor blade. In methods for controlling and / or regulating a wind power plant according to these embodiments, the signal of the acceleration is evaluated to generate a signal for blade clearance warning or tower clearance warning. In this case, the signal of the acceleration sensor can in particular be integrated over time, for example integrated twice over time. In addition, by means of a coordinate transformation as in relation to the 8A and 8B is described, whereby gravitational accelerations and other effects can be calculated out, a dynamic load or a dynamic position of the rotor blade, for example, the rotor blade tip, are calculated. It is particularly advantageous if acceleration sensors are provided at a plurality of radial positions in a rotor blade.

Gemäß weiteren Ausführungsformen, die mit den hier beschriebenen Ausführungsformen kombiniert werden können, kann die mit zumindest einem Beschleunigungssensor bestimmte dynamische Belastung bzw. die mit zumindest einem Beschleunigungssensor basierend auf dem dynamischen Verhalten des Rotorblatts errechnete Position mit einer statischen Belastung bzw. eines statischen Biegemoments kombiniert werden. Hierzu kann ein Signal eines Dehnungssensors, der zum Beispiel in der Blattwurzel zur Verfügung gestellt ist, verwendet werden. Zum Beispiel kann ein Dehnungssensor, zum Beispiel ein faseroptischer Dehnungssensor, eine Dehnung in zumindest einer Richtung entlang des Radius des Rotorblatts messen. Durch die Kombination einer dynamischen Belastung und einer statischen Belastung kann ein verbessertes Signal zur Warnung bei nicht ausreichendem Turmfreigang eines Rotorblatts zur Verfügung gestellt werden. According to further embodiments, which can be combined with the embodiments described here, the dynamic load determined with at least one acceleration sensor or the position calculated with at least one acceleration sensor based on the dynamic behavior of the rotor blade can be combined with a static load or a static bending moment , For this purpose, a signal of a strain sensor, which is provided for example in the blade root, can be used. For example, a strain sensor, for example a fiber optic strain sensor, may measure strain in at least one direction along the radius of the rotor blade. By combining a dynamic load and a static load, an improved signal can be provided for warning in case of insufficient tower clearance of a rotor blade.

Gemäß weiteren Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden können, kann das Signal zur Warnung bei nicht ausreichendem Turmfreigang eines Rotorblatts zu einer Regelung der Windkraftanlage verwendet werden. Hierbei kann insbesondere die Regelung in einer Pitchregelung zumindest eines Rotorblatts, einer Anpassung einer Generator Trennlinie der Windkraftanlage und/oder einer Notausschaltung einer Windkraftanlage bestehen. According to further embodiments, which may be combined with other embodiments described herein, the signal may be used to alert if there is insufficient tower clearance of a rotor blade to control the wind turbine. In this case, in particular, the regulation may consist in a pitch regulation of at least one rotor blade, an adaptation of a generator dividing line of the wind turbine and / or an emergency shutdown of a wind turbine.

In Bezug auf die hier beschriebenen Beispiele und Ausführungsformen können eine Mehrzahl von Ausführungsformen beschrieben werden. Eine erste Ausführungsform beinhaltet ein Verfahren zur Erfassung einer Torsionsinstabilität eines Rotorblatts einer Windkraftanlage. Das Verfahren beinhaltet ein Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist; und Auswerten der Beschleunigung zur Erzeugung eines Signals zur Erfassung einer Torsionsinstabilität, insbesondere Flattern, und/oder eines Signals zur Erfassung einer Torsions-Biege-Kopplung. Gemäß einer zweiten Ausführungsform wird ein Verfahren gemäß der ersten Ausführungsform zur Verfügung gestellt, wobei das Signal mit einem Lichtleiter zur Blattwurzel des Rotorblatts geführt wird, insbesondere wobei das Signal mit einem Lichtleiter, der sich entlang der Hinterkante des Rotorblatts erstreckt, geführt wird. Gemäß einer dritten Ausführungsform wird ein Verfahren zur Erfassung einer Torsionsinstabilität eines Rotorblatts einer Windkraftanlage zur Verfügung gestellt. Das Verfahren beinhaltet ein Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist, und wobei das Signal mit einem Lichtleiter zur Blattwurzel des Rotorblatts, der sich insbesondere entlang einer Hinterkante des Rotorblatts erstreckt, geführt wird; und Auswerten der Beschleunigung zur Erzeugung eines Signals zur Erfassung einer Torsionsinstabilität, insbesondere Flattern, und/oder eines Signals zur Erfassung einer Torsions-Biege-Kopplung. Gemäß einer vierten Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 2 bis 3 zur Verfügung gestellt, wobei der Lichtleiter im Bereich der Blattwurzel über eine Spirale geführt wird, die eine Torsion des Lichtleiters erlaubt. Gemäß einer fünften Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 2 bis 4 zur Verfügung gestellt, wobei der Lichtleiter an einem an einer Hinterkante des Rotorblatts zur Verfügung gestellten Profil zur Verfügung gestellt ist. Gemäß einer sechsten Ausführungsform wird ein Verfahren gemäß Ausführungsform 5 zur Verfügung gestellt, wobei das Profil ein pultrudiertes Profil ist und/oder wobei das Profil eine aerodynamische Beeinflussung des Rotorblatts bewirkt. Gemäß einer siebten Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 2 bis 6 zur Verfügung gestellt, wobei der Lichtleiter an einer radialen Position, an der das Rotorblatt begehbar ist, von außen in das Innere des Rotorblatts geführt wird. Gemäß einer achten Ausführungsform wird ein Verfahren gemäß Ausführungsform 7 zur Verfügung gestellt, wobei der Lichtleiter beim Führen von außen in das Innere oder im Inneren im Wesentlichen an der radialen Position mit einer Steckverbindung verbunden ist. Gemäß einer neunten Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 5 bis 8 zur Verfügung gestellt, wobei sich das Profil entlang zumindest 10 % oder zumindest 30% des Radius des Rotorblatts erstreckt, insbesondere wobei sich ein oder mehrere Segmente des Profils entlang zumindest 10 % oder zumindest 30 % des Radius des Rotorblatts erstrecken. Gemäß einer zehnten Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 5 bis 9 zur Verfügung gestellt, wobei der Beschleunigungssensor innerhalb des Profils oder an der Hinterkante zur Verfügung gestellt wird. Gemäß einer elften Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 1 bis 10 zur Verfügung gestellt, wobei der Beschleunigungssensor in den äußeren 50% des Radius des Rotorblatts zur Verfügung gestellt ist und/oder wobei der Beschleunigungssensor einen Abstand von einer Torsionsachse von 10 cm oder mehr hat. Gemäß einer zwölften Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 1 bis 11 zur Verfügung gestellt, wobei die gemessene Beschleunigung eine Richtungskomponente senkrecht zur Profilsehne des Rotorblatts hat. Gemäß einer 13. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 1 bis 12, zur Verfügung gestellt das weiterhin ein Messen eines Schalldruckpegels am Rotorblatt beinhaltet. Gemäß einer 14. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 1 bis 13, das weiterhin Messen einer Temperatur, insbesondere im Beschleunigungssensor und/oder in dem Lichtleiter beinhaltet. Gemäß einer 15. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 1 bis 14, das weiterhin zumindest einen Dehnungssensor zur Messung eines statischen Biegemoments, insbesondere eines statischen Torsionsmoments, beinhaltet, wobei die Dehnung in zumindest einer Richtung tangential zu der Torsionsachse gemessen wird. Gemäß einer 16. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 1 bis 15 zur Verfügung gestellt, wobei das Signals zur Flatterwarnung und/oder eines Signals zur Instabilitätswarnung bei einer Torsions-Biege-Kopplung zu einer Regelung der Windkraftanlage verwendet wird, insbesondere wobei die Regelung in einer Pitchregelung des Rotorblatts, in einer Anpassung einer Generatorkennlinie, und/oder einer Ausschaltung der Windkraftanalage besteht. Gemäß einer 17. Ausführungsform wird ein Verfahren nach einer Ausführungsformen 1 bis 16 zur Verfügung gestellt, wobei das Rotorblatt Mittel für eine passive Last- oder Leistungsregelung, beinhaltet, die von dem ermittelten Torsionssignal überwacht wird. Gemäß einer 18. Ausführungsform wird ein Profil für die Hinterkante eines Rotorblatts einer Windkraftanlage zur Verfügung gestellt. Das Profil beinhaltet zumindest eine erste Befestigungsvorrichtung für einen Lichtleiter, insbesondere wobei das Profil ausgestaltet ist, um sich entlang zumindest 10 % oder zumindest 30% des Radius des Rotorblatts zu erstrecken, weiterhin insbesondere wobei sich ein oder mehrere Segmente des Profils entlang zumindest 10 % oder zumindest 30 % des Radius des Rotorblatts erstrecken. Gemäß einer 19. Ausführungsform wird das Profil gemäß Ausführungsform 18 zur Verfügung gestellt, wobei die Befestigungsvorrichtung eine oder mehrere Klebestellen und/oder eine oder mehrere Klemmvorrichtungen umfasst. Gemäß 21. Ausführungsform wird das Profil gemäß einer der Ausführungsformen 18 bis 19 zur Verfügung gestellt, wobei das Profil weiterhin eine weitere Befestigungsvorrichtung für einen Beschleunigungssensor beinhaltet. Gemäß einer 21. Ausführungsform wird das Profil gemäß einer der Ausführungsformen 18 bis 20 zur Verfügung gestellt, wobei das Profil weiterhin eine zweite Befestigungsvorrichtung für einen weiteren Lichtleiter, insbesondere wobei die weitere Befestigungsvorrichtung ein Leerkanal ist, beinhaltet. With respect to the examples and embodiments described herein, a plurality of embodiments may be described. A first embodiment includes a method for detecting a torsional instability of a rotor blade of a wind turbine. The method includes measuring acceleration with a fiber optic acceleration sensor, wherein the acceleration sensor is provided at a radial position in the range of the outer 70% of the radius of the rotor blade; and evaluating the acceleration to generate a signal for detecting a torsional instability, in particular flutter, and / or a signal for detecting a torsional-bending coupling. According to a second embodiment, a method according to the first embodiment is provided, wherein the signal is guided with an optical fiber to the blade root of the rotor blade, in particular wherein the signal with a light guide, which extends along the trailing edge of the rotor blade is guided. According to a third embodiment, a method for detecting torsional instability of a rotor blade of a wind turbine is provided. The method includes measuring acceleration with a fiber optic acceleration sensor, wherein the acceleration sensor is provided at a radial position in the range of the outer 70% of the radius of the rotor blade, and wherein the signal with an optical fiber to the blade root of the rotor blade, in particular along a trailing edge of the rotor blade extends, is guided; and evaluating the acceleration to generate a signal for detecting a torsional instability, in particular flutter, and / or a signal for detecting a torsional-bending coupling. According to a fourth embodiment, a method according to one of the embodiments 2 to 3 is provided, wherein the light guide is guided in the region of the blade root via a spiral which allows a torsion of the light guide. According to a fifth embodiment, a method according to any one of embodiments 2 to 4 is provided, wherein the light guide is provided on a profile provided at a trailing edge of the rotor blade. According to a sixth Embodiment, a method according to Embodiment 5 is provided, wherein the profile is a pultruded profile and / or wherein the profile causes aerodynamic influence of the rotor blade. According to a seventh embodiment, a method according to one of the embodiments 2 to 6 is provided, wherein the optical fiber is guided from outside into the interior of the rotor blade at a radial position at which the rotor blade is accessible. According to an eighth embodiment, there is provided a method according to Embodiment 7, wherein the optical fiber is connected to a male connector when guided from outside to inside or inside substantially at the radial position. According to a ninth embodiment, a method according to any one of embodiments 5 to 8 is provided, wherein the profile extends along at least 10% or at least 30% of the radius of the rotor blade, in particular wherein one or more segments of the profile along at least 10% or extend at least 30% of the radius of the rotor blade. According to a tenth embodiment, there is provided a method according to any one of Embodiments 5 to 9, wherein the acceleration sensor is provided within the profile or at the trailing edge. According to an eleventh embodiment, there is provided a method according to any one of Embodiments 1 to 10, wherein the acceleration sensor is provided in the outer 50% of the radius of the rotor blade and / or wherein the acceleration sensor is spaced from a torsion axis of 10 cm or more Has. According to a twelfth embodiment, a method according to any of embodiments 1 to 11 is provided, wherein the measured acceleration has a directional component perpendicular to the chord of the rotor blade. According to a 13th embodiment, there is provided a method according to any one of Embodiments 1 to 12, further comprising measuring a sound pressure level on the rotor blade. According to a 14th embodiment, a method according to one of the embodiments 1 to 13, further comprising measuring a temperature, in particular in the acceleration sensor and / or in the light guide is included. According to a 15th embodiment, a method according to one of the embodiments 1 to 14, further comprising at least one strain sensor for measuring a static bending moment, in particular a static torsion, wherein the strain is measured in at least one direction tangential to the torsion axis. According to a 16th embodiment, a method according to any one of embodiments 1 to 15 is provided, wherein the signal for flutter warning and / or a signal for instability warning is used in a torsional bending coupling to a control of the wind turbine, in particular wherein the control in a pitch control of the rotor blade, in an adjustment of a generator characteristic, and / or a shutdown of the wind turbine. According to a 17th embodiment, there is provided a method according to embodiments 1 to 16, wherein the rotor blade includes means for passive load or power control monitored by the detected torsion signal. According to an 18th embodiment, a profile for the trailing edge of a rotor blade of a wind turbine is provided. The profile includes at least a first attachment device for a light pipe, in particular wherein the profile is configured to extend along at least 10% or at least 30% of the radius of the rotor blade, more particularly wherein one or more segments of the profile along at least 10% or extend at least 30% of the radius of the rotor blade. According to a 19th embodiment, the profile according to embodiment 18 is provided, wherein the fastening device comprises one or more splices and / or one or more clamping devices. According to the 21st embodiment, the profile according to one of the embodiments 18 to 19 is provided, the profile further including a further attachment device for an acceleration sensor. According to a 21st embodiment, the profile is provided according to one of the embodiments 18 to 20, wherein the profile further includes a second fastening device for a further optical fiber, in particular wherein the further fastening device is an empty channel includes.

Gemäß einer zweiten 20. Ausführungsform wird ein Verfahren zur Überwachung einer Windkraftanlage zur Verfügung gestellt. Das Verfahren beinhaltet ein Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor in einem Rotorblatt der Windkraftanlage; ein opto-elektronisches Wandeln eines Beschleunigungssignals des faseroptischen Beschleunigungssensors; und ein Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen Anti-aliasing-Filter. Gemäß einer 21. Ausführungsform wird ein Verfahren gemäß Ausführungsform 20 zur Verfügung gestellt, wobei der faseroptische Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts, insbesondere im Bereich der äußeren 50% des Radius des Rotorblatts, zur Verfügung gestellt ist. Gemäß einer 22. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 20 bis 21 zur Verfügung gestellt, wobei ein Signal des faseroptischen Beschleunigungssensors mit einem Lichtleiter zur Nabe geführt wird, insbesondere wobei der Lichtleiter im Bereich der Blattwurzel über eine Spirale geführt wird, die eine Torsion des Lichtleiters erlaubt. Gemäß einer 23. Ausführungsform wird ein Verfahren gemäß Ausführungsform 22 zur Verfügung gestellt, wobei ein Verteiler, insbesondere ein an einem Blattschott zur Verfügung gestellten Verteiler, eine Steckverbindung mit dem Lichtleiter zur Verfügung stellt. Gemäß einer 24. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 22 bis 23 zur Verfügung gestellt, wobei der Lichtleiter an der Hinterkante des Rotorblatts zur Verfügung gestellt ist, insbesondere wobei der Lichtleiter an einem an einer Hinterkante des Rotorblatts zur Verfügung gestellten Profil zur Verfügung gestellt ist. Gemäß einer 25. Ausführungsform wird ein Verfahren gemäß Ausführungsform 24 zur Verfügung gestellt, wobei das Profil ein pultrudiertes Profil ist und/oder wobei das Profil eine aerodynamische Beeinflussung des Rotorblatts bewirkt. Gemäß einer 26. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 24 bis 25, wobei sich das Profil entlang zumindest 10% oder zumindest 30% des Radius des Rotorblatts erstreckt, insbesondere wobei sich ein oder mehrere Segmente des Profils entlang zumindest 10% oder zumindest 30 % des Radius des Rotorblatts erstrecken. Gemäß einer 27. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 24 bis 26 zur Verfügung gestellt, wobei der Beschleunigungssensor innerhalb des Profils zur Verfügung gestellt wird. Gemäß einer 28. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 22 bis 27 zur Verfügung gestellt, wobei der Lichtleiter an einer radialen Position, an der das Rotorblatt begehbar ist, von außen in das Innere des Rotorblatts geführt wird. Gemäß einer 29. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 20 bis 28, wobei das Verfahren weiterhin ein Auswerten des Beschleunigungssignals mit Hilfe von Stochastic Subspace Identification zur Berechnung von Eigenwerten des Rotorblatts beinhaltet. Gemäß 30. Ausführungsform wird ein Verfahren gemäß Ausführungsform 29 zur Verfügung gestellt, wobei das Verfahren weiterhin ein Detektieren von Eisbildung auf dem Rotorblatt mit Hilfe der Eigenwerte beinhaltet. Gemäß einer 31. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 20 bis 30 zur Verfügung gestellt, wobei das Verfahren weiterhin ein Messen eines Schalldruckpegels am Rotorblatt beinhaltet. Gemäß einer 32. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 1 bis 31 zur Verfügung gestellt, wobei das Messen der Beschleunigung bei einer stehenden oder lastfrei drehenden Windkraftanlage erfolgt. Gemäß einer 33. Ausführungsform wird ein Verfahren zur Eiserkennung an einer Windkraftanlage zur Verfügung gestellt, wobei das Verfahren beinhaltet: ein Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor in einem Rotorblatt der Windkraftanlage; ein opto-elektronisches Wandeln eines Beschleunigungssignals des faseroptischen Beschleunigungssensors; ein Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen Anti-aliasing-Filter; ein Auswerten des gefilterten Beschleunigungssignals mit Hilfe von Stochastic Subspace Identification zur Berechnung von Eigenwerten des Rotorblatts; und ein Detektieren von Eisbildung auf dem Rotorblatt mit Hilfe der Eigenwerte. Gemäß einer 34. Ausführungsform wird ein Verfahren nach Ausführungsform 33 zur Verfügung gestellt, wobei das Verfahren weiterhin beinhaltet: eine Kompensation der Eigenwerte mit zumindest einer gemessen Größe aus der Gruppe bestehend aus: einer Temperatur an dem Rotorblatt der Windkraftanlage, einer Windgeschwindigkeit, einer Leistung der Windkraftanlage, einer Rotationsrate eines Rotors der Windkraftanlage, und einem Pitchwinkel des Rotorblatts. Gemäß einer 35. Ausführungsform wird ein Rotor einer Windkraftanlage zur Verfügung gestellt. Der Rotor beinhaltet einen faseroptischen Beschleunigungssensor in einem Rotorblatt der Windkraftanlage; einen opto-elektronischer Wandler zum Wandel eines Beschleunigungssignals des faseroptischen Beschleunigungssensors; und einen analoger Anti-aliasing-Filter konfiguriert zum Filtern des opto-elektronisch gewandelten Beschleunigungssignals. Gemäß einer 36. Ausführungsform wird ein Rotor gemäß Ausführungsform 35 zur Verfügung gestellt, wobei der faseroptische Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts, insbesondere im Bereich der äußeren 50% des Radius des Rotorblatts, zur Verfügung gestellt ist, und wobei ein Lichtleiter vom faseroptischen Beschleunigungssensor bis zu einer radialen Rotorblattposition geführt ist, an der das Rotorblatt begehbar ist. Gemäß einer 37. Ausführungsform wird ein Rotor gemäß einer der Ausführungsformen 35 bis 36 zur Verfügung gestellt, wobei der Beschleunigungssensor eine maximale Ausdehnung von 10 mm in einem Querschnitt senkrecht zu einer Achse des Lichtleiters hat. According to a second 20th embodiment, a method for monitoring a wind turbine is provided. The method includes measuring acceleration with a fiber optic acceleration sensor in a rotor blade of the wind turbine; opto-electronic conversion of an acceleration signal of the fiber optic acceleration sensor; and filtering the opto-electronically-converted acceleration signal with an analog anti-aliasing filter. According to a 21st embodiment, a method according to embodiment 20 is provided, wherein the fiber optic acceleration sensor is provided at a radial position in the area of the outer 70% of the radius of the rotor blade, in particular in the area of the outer 50% of the radius of the rotor blade , According to a 22nd embodiment, a method is provided according to one of the embodiments 20 to 21, wherein a signal of the fiber optic acceleration sensor is guided with a light guide to the hub, in particular wherein the light guide is guided in the region of the blade root via a spiral which causes a torsion of the light guide allowed. According to a 23rd embodiment, a method according to embodiment 22 is provided, wherein a Distributor, in particular provided on a blade bulkhead distributor, a plug connection with the light guide provides. According to a twenty-fourth embodiment, there is provided a method according to any of embodiments 22 to 23, wherein the light guide is provided at the trailing edge of the rotor blade, in particular wherein the light guide is provided at a profile provided at a trailing edge of the rotor blade is. According to a 25th embodiment, a method according to embodiment 24 is provided, wherein the profile is a pultruded profile and / or wherein the profile causes aerodynamic manipulation of the rotor blade. According to a 26th embodiment, a method according to one of embodiments 24 to 25, wherein the profile extends along at least 10% or at least 30% of the radius of the rotor blade, in particular wherein one or more segments of the profile along at least 10% or at least 30th % of the radius of the rotor blade. According to a 27th embodiment, a method according to any one of Embodiments 24 to 26 is provided, wherein the acceleration sensor is provided within the profile. According to a 28th embodiment, a method according to one of the embodiments 22 to 27 is provided, wherein the optical waveguide is guided from the outside into the interior of the rotor blade at a radial position at which the rotor blade can be walked on. According to a 29th embodiment, a method according to one of the embodiments 20 to 28, wherein the method further comprises evaluating the acceleration signal using Stochastic Subspace Identification for calculating eigenvalues of the rotor blade. According to the 30th embodiment, a method according to Embodiment 29 is provided, the method further comprising detecting ice formation on the rotor blade by means of the eigenvalues. According to a 31st embodiment, a method according to any one of Embodiments 20 to 30 is provided, the method further comprising measuring a sound pressure level on the rotor blade. According to a thirty-second embodiment, there is provided a method according to any one of Embodiments 1 to 31, wherein the acceleration is measured in a stationary or non-rotating wind turbine. According to a 33rd embodiment, there is provided a method of ice detection on a wind turbine, the method comprising: measuring acceleration with a fiber optic acceleration sensor in a rotor blade of the wind turbine; opto-electronic conversion of an acceleration signal of the fiber optic acceleration sensor; filtering the opto-electronically-converted acceleration signal with an analog anti-aliasing filter; evaluating the filtered acceleration signal using Stochastic Subspace Identification to compute rotor blade eigenvalues; and detecting ice formation on the rotor blade using the eigenvalues. According to a 34th embodiment, a method according to embodiment 33 is provided, the method further comprising: compensating the eigenvalues with at least one measured quantity from the group consisting of: a temperature at the rotor blade of the wind turbine, a wind speed, a power of the Wind turbine, a rotation rate of a rotor of the wind turbine, and a pitch angle of the rotor blade. According to a 35th embodiment, a rotor of a wind turbine is provided. The rotor includes a fiber optic acceleration sensor in a rotor blade of the wind turbine; an opto-electronic converter for changing an acceleration signal of the fiber optic acceleration sensor; and an analog anti-aliasing filter configured to filter the opto-electronically-converted acceleration signal. According to a 36th embodiment, a rotor according to embodiment 35 is provided, wherein the fiber optic acceleration sensor is provided at a radial position in the region of the outer 70% of the radius of the rotor blade, in particular in the region of the outer 50% of the radius of the rotor blade , and wherein a light guide is guided by the fiber optic acceleration sensor to a radial rotor blade position at which the rotor blade is accessible. According to a 37th embodiment, a rotor according to any one of Embodiments 35 to 36 is provided, wherein the acceleration sensor has a maximum extension of 10 mm in a cross section perpendicular to an axis of the optical fiber.

Gemäß einer 38. Ausführungsform wird ein Verfahren zur individuellen Pitchregelung von Rotorblättern einer Windkraftanlage zur Verfügung gestellt. Das Verfahren beinhaltet ein Messen einer Beschleunigung mit einem Beschleunigungssensor in einem Rotorblatt der Windkraftanlage; ein Hochpassfiltern eines Signals des Beschleunigungssensors zur Ermittlung einer zeitveränderlichen Größe, und ein Pitchen des ersten Rotorblatts der Windkraftanlage mittels der zeitveränderlichen Größe, wobei das Pitchen im Rahmen einer individuellen Pitchregelung erfolgt. Gemäß einer 39. Ausführungsform wird ein Verfahren gemäß Ausführungsform 38 zur Verfügung gestellt, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius eines ersten Rotorblatts zur Verfügung gestellt ist, insbesondere wobei der Beschleunigungssensor in den äußeren 50% des Radius des Rotorblatts, weiterhin insbesondere in einem Bereich von 60% bis 90% des Radius des Rotorblatts zur Verfügung gestellt ist. Gemäß einer 40. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 38 bis 39 zur Verfügung gestellt, wobei das Hochpassfiltern durch Bildung einer zeitlichen Ableitung, durch Hochpassfilterung, und/oder mittels einer Fouriertransformation durchgeführt wird. Gemäß einer 41. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 38 bis 40, wobei das Hochpassfiltern eine Grenzfrequenz von 0,3 bis 0,5 Hz hat, insbesondere wobei das Hochpassfiltern eine Unterdrückung eines Signals von 0,2 Hz relativ zu einem Signal von 0,6 von mindestens einem Faktor 5 hat. Gemäß einer 42. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 38 bis 41 zur Verfügung gestellt, wobei der Beschleunigungssensor ein faseroptischer Beschleunigungssensor ist; und wobei das Verfahren weiterhin beinhaltet: ein opto-elektronisches Wandeln des Signals des faseroptischen Beschleunigungssensors; und Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen Anti-aliasing-Filter. Gemäß einer 43. Ausführungsform wird ein Verfahren gemäß Ausführungsform 42 zur Verfügung gestellt, wobei das Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit dem analogen Anti-aliasing-Filter eine Grenzfrequenz von 10 Hz bis 40 Hz hat, insbesondere von 15 Hz bis 25 Hz hat. Gemäß einer 44. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 42 bis 43 zur Verfügung gestellt, wobei das Signal mit einem Lichtleiter zur Nabe geführt wird, insbesondere wobei der Lichtleiter Im Bereich der Blattwurzel über eine Spirale geführt wird, die eine Torsion des Lichtleiters erlaubt. Gemäß einer 45. Ausführungsform wird ein Verfahren gemäß Ausführungsform 44 zur Verfügung gestellt, wobei der Lichtleiter an der Hinterkante des Rotorblatts zur Verfügung gestellt ist, insbesondere wobei der Lichtleiter an einem an einer Hinterkante des Rotorblatts zur Verfügung gestellten Profil zur Verfügung gestellt ist. Gemäß einer 46. Ausführungsform wird ein Verfahren gemäß Ausführungsform 45 zur Verfügung gestellt, wobei das Profil ein pultrudiertes Profil ist und/oder wobei das Profil eine aerodynamische Beeinflussung des Rotorblatts bewirkt. Gemäß einer 47. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 45 bis 46 zur Verfügung gestellt, wobei sich das Profil entlang zumindest 30% des Radius des Rotorblatts erstreckt, insbesondere wobei sich ein oder mehrere Segmente des Profils entlang zumindest 30 % des Radius des Rotorblatts erstrecken. Gemäß einer 48. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 45 bis 47 zur Verfügung gestellt, wobei der Beschleunigungssensor innerhalb des Profils zur Verfügung gestellt wird. Gemäß einer 49. Ausführungsform wird ein Verfahren gemäß einer der Ausführungsformen 44 bis 48 zur Verfügung gestellt, wobei der Lichtleiter an einer radialen Position, an der das Rotorblatt begehbar ist, von außen in das Innere des Rotorblatts geführt wird. Gemäß einer 50. Ausführungsform wird eine Windkraftanlage zur Verfügung gestellt. Die Windkraftanlage beinhaltet ein erstes Rotorblatt, das an einer Nabe montiert ist; ein erster Antrieb zur Rotation des ersten Rotorblatts für eine Pitchregelung des ersten Rotorblatts; zumindest ein zweites Rotorblatt, das an der Nabe montiert ist; zumindest ein zweiter Antrieb zur Rotation des zweiten Rotorblatts für eine Pitchregelung des zweiten Rotorblatts, wobei der zweite Antrieb unabhängig vom ersten Antrieb ansteuerbar ist; eine Steuerung zum Ansteuern von zumindest dem ersten Antrieb; einen erster Beschleunigungssensor in dem ersten Rotorblatt der Windkraftanlage; Mittel zum Hochpassfiltern eines Signals des ersten Beschleunigungssensors zur Ermittlung einer zeitveränderlichen Größe; und eine Steuerung, wobei die Steuerung konfiguriert ist ein Pitchen des ersten Rotorblatts mittels der zeitveränderlichen Größe zu steuern. Gemäß einer 51. Ausführungsform wird eine Windkraftanlage gemäß Ausführungsform 50 zur Verfügung gestellt, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius eines ersten Rotorblatts zur Verfügung gestellt ist, insbesondere wobei der erste Beschleunigungssensor in den äußeren 50% des Radius des Rotorblatts, weiterhin insbesondere in einem Bereich von 60% bis 90% des Radius des Rotorblatts zur Verfügung gestellt ist. Gemäß einer 52. Ausführungsform wird die Windkraftanlage gemäß einer der Ausführungsformen 50 bis 51, wobei der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält. Gemäß einer 53. Ausführungsform wird die Windkraftanlage gemäß einer der Ausführungsformen 50 bis 52 zur Verfügung gestellt, wobei die Windkraftanlage weiterhin beinhaltet: einen Lichtleiter, wobei der Beschleunigungssensor ein faseroptischer Beschleunigungssensor ist und der Lichtleiter vom Beschleunigungssensor bis zu einer radialen Rotorblattposition geführt ist, an der das Rotorblatt begehbar ist. Gemäß einer 54. Ausführungsform wird eine Windkraftanlage gemäß Ausführungsform 53 zur Verfügung gestellt, wobei der Beschleunigungssensor eine maximale Ausdehnung von 10 mm in einem Querschnitt senkrecht zu einer Achse des Lichtleiters hat. Gemäß einer 55. Ausführungsform wird eine Windkraftanlage gemäß einer der Ausführungsformen 53 bis 54 zur Verfügung gestellt, wobei der Lichtleiter an der Hinterkante des Rotorblatts zur Verfügung gestellt ist, insbesondere wobei der Lichtleiter an einem an einer Hinterkante des Rotorblatts zur Verfügung gestellten Profil zur Verfügung gestellt ist. Gemäß einer 56. Ausführungsform wird eine Windkraftanlage gemäß Ausführungsform 55 zur Verfügung gestellt, wobei das Profil ein pultrudiertes Profil ist und/oder wobei das Profil konfiguriert ist, eine aerodynamische Beeinflussung des Rotorblatts zu bewirken. Gemäß einer 57. Ausführungsform wird eine Windkraftanlage gemäß Ausführungsformen 55 bis 56 zur Verfügung gestellt, wobei sich das Profil entlang zumindest 30% des Radius des Rotorblatts erstreckt, insbesondere wobei sich ein oder mehrere Segmente des Profils entlang zumindest 30 % des Radius des Rotorblatts erstrecken. Gemäß einer 58. Ausführungsform wird eine Windkraftanlage gemäß einer der Ausführungsformen 55 bis 57 zur Verfügung gestellt, wobei der erste Beschleunigungssensor innerhalb des Profils zur Verfügung gestellt ist. According to a 38th embodiment, a method for individual pitch control of rotor blades of a wind turbine is provided. The method includes measuring acceleration with an acceleration sensor in a rotor blade of the wind turbine; a high-pass filtering of a signal of the acceleration sensor for determining a time-variable variable, and pitching of the first rotor blade of the wind turbine by means of the time-variable variable, wherein the pitching takes place in the context of an individual pitch control. According to a 39th embodiment, a method according to embodiment 38 is provided, wherein the acceleration sensor is provided at a radial position in the area of the outer 70% of the radius of a first rotor blade, in particular wherein the acceleration sensor in the outer 50% of the radius of the Rotor blade, further provided in particular in a range of 60% to 90% of the radius of the rotor blade. According to a 40th embodiment, a method according to any one of embodiments 38 to 39 is provided, wherein the High pass filtering is performed by forming a time derivative, by high-pass filtering, and / or by means of a Fourier transform. According to a 41st embodiment, a method according to any of embodiments 38 to 40, wherein the high-pass filtering has a cut-off frequency of 0.3 to 0.5 Hz, in particular wherein the high-pass filtering is a suppression of a signal of 0.2 Hz relative to a signal of Has 0.6 of at least a factor of 5. According to a 42nd embodiment, a method according to any one of Embodiments 38 to 41 is provided, wherein the acceleration sensor is a fiber-optic acceleration sensor; and wherein the method further includes: opto-electronically converting the signal of the fiber optic acceleration sensor; and filtering the opto-electronically-converted acceleration signal with an analog anti-aliasing filter. According to a 43rd embodiment, a method according to embodiment 42 is provided, wherein the filtering of the opto-electronically converted acceleration signal with the analog anti-aliasing filter has a cut-off frequency of 10 Hz to 40 Hz, in particular from 15 Hz to 25 Hz , According to a 44th embodiment, a method according to one of the embodiments 42 to 43 is provided, wherein the signal is guided with an optical fiber to the hub, in particular wherein the optical fiber is guided in the region of the blade root via a spiral which allows a torsion of the optical fiber , According to a 45th embodiment, a method according to embodiment 44 is provided, wherein the light guide is provided at the trailing edge of the rotor blade, in particular wherein the light guide is provided at a profile provided at a trailing edge of the rotor blade. According to a 46th embodiment, a method according to embodiment 45 is provided, wherein the profile is a pultruded profile and / or wherein the profile causes an aerodynamic influence of the rotor blade. According to a 47th embodiment, a method according to any one of embodiments 45 to 46 is provided, wherein the profile extends along at least 30% of the radius of the rotor blade, in particular wherein one or more segments of the profile extend along at least 30% of the radius of the rotor blade extend. According to a 48th embodiment, a method according to any of embodiments 45 to 47 is provided, wherein the acceleration sensor is provided within the profile. According to a 49th embodiment, a method according to one of the embodiments 44 to 48 is provided, wherein the light guide is guided from outside into the interior of the rotor blade at a radial position at which the rotor blade is passable. According to a 50th embodiment, a wind turbine is provided. The wind turbine includes a first rotor blade mounted on a hub; a first drive for rotating the first rotor blade for pitch control of the first rotor blade; at least a second rotor blade mounted on the hub; at least one second drive for rotating the second rotor blade for a pitch control of the second rotor blade, wherein the second drive is controllable independently of the first drive; a controller for driving at least the first drive; a first acceleration sensor in the first rotor blade of the wind turbine; Means for high pass filtering a signal of the first acceleration sensor to determine a time variable variable; and a controller, wherein the controller is configured to control pitching of the first rotor blade using the time-varying amount. According to a 51th embodiment, a wind turbine according to embodiment 50 is provided, wherein the acceleration sensor is provided at a radial position in the range of the outer 70% of the radius of a first rotor blade, in particular wherein the first acceleration sensor in the outer 50% of the radius of the rotor blade, further provided in particular in a range of 60% to 90% of the radius of the rotor blade. According to a 52nd embodiment, the wind turbine according to one of the embodiments 50 to 51, wherein the acceleration sensor to less than 10 wt .-% of metal or contains less than 20 g of metal. According to a 53rd embodiment, the wind turbine according to one of the embodiments 50 to 52 is provided, wherein the wind turbine further includes: a light guide, wherein the acceleration sensor is a fiber optic acceleration sensor and the light guide is guided from the acceleration sensor to a radial rotor blade position, on the the rotor blade is accessible. According to a 54th embodiment, a wind turbine according to Embodiment 53 is provided, wherein the acceleration sensor has a maximum extension of 10 mm in a cross section perpendicular to an axis of the optical fiber. According to a 55th embodiment, there is provided a wind turbine according to any one of embodiments 53 to 54, wherein the light guide is provided at the trailing edge of the rotor blade, in particular wherein the light guide is provided at a profile provided at a trailing edge of the rotor blade is. According to a 56th embodiment, a wind turbine according to embodiment 55 is provided, wherein the profile is a pultruded profile and / or wherein the profile is configured to effect aerodynamic manipulation of the rotor blade. According to a 57th embodiment, a wind turbine according to embodiments 55 to 56 is provided, wherein the profile extends along at least 30% of the radius of the rotor blade, in particular wherein one or more segments of the profile extend along at least 30% of the radius of the rotor blade. According to a 58th embodiment, a wind turbine according to any of embodiments 55 to 57 is provided, wherein the first acceleration sensor is provided within the profile.

Obwohl die vorliegende Erfindung vorstehend anhand typischer Ausführungsbeispiele beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar. Auch ist die Erfindung nicht auf die genannten Anwendungsmöglichkeiten beschränkt. Although the present invention has been described above by means of typical embodiments, it is not limited thereto, but modifiable in many ways. Also, the invention is not limited to the applications mentioned.

Claims (15)

Verfahren zur Überwachung einer Windkraftanlage, umfassend: Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor in einem Rotorblatt der Windkraftanlage, wobei der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält.  A method of monitoring a wind turbine, comprising: Measuring an acceleration with a fiber optic acceleration sensor in a rotor blade of the wind turbine, wherein the acceleration sensor is less than 10 wt .-% of metal or contains less than 20 g of metal. Verfahren gemäß Anspruch 1, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts, insbesondere in den äußeren 50% des Radius des Rotorblatts, insbesondere in einem Bereich von 60% bis 90% des Radius des Rotorblatts zur Verfügung gestellt ist.  Method according to claim 1, wherein the acceleration sensor is available at a radial position in the region of the outer 70% of the radius of the rotor blade, in particular in the outer 50% of the radius of the rotor blade, in particular in a range of 60% to 90% of the radius of the rotor blade is placed. Verfahren gemäß einem der Ansprüche 1 bis 2, wobei der Beschleunigungssensor ein faseroptischer Beschleunigungssensor ist und wobei das Signal mit einem Lichtleiter zur Nabe geführt wird, insbesondere wobei der Lichtleiter Im Bereich der Blattwurzel über eine Spirale geführt wird, die eine Torsion des Lichtleiters erlaubt.  Method according to one of claims 1 to 2, wherein the acceleration sensor is a fiber optic acceleration sensor and wherein the signal is guided with an optical fiber to the hub, in particular wherein the optical fiber is guided in the region of the blade root via a spiral which allows a torsion of the optical fiber. Verfahren gemäß Anspruch 3, wobei ein Verteiler, insbesondere ein an einem Blattschott zur Verfügung gestellten Verteiler, eine Steckverbindung mit dem Lichtleiter zur Verfügung stellt.  A method according to claim 3, wherein a distributor, in particular a distributor provided on a sheet bulkhead, provides a plug-in connection with the light guide. Verfahren gemäß einem der Ansprüche 3 bis 4, wobei der Lichtleiter an der Hinterkante des Rotorblatts zur Verfügung gestellt ist, insbesondere wobei der Lichtleiter an einem an einer Hinterkante des Rotorblatts zur Verfügung gestellten Profil zur Verfügung gestellt ist.  Method according to one of claims 3 to 4, wherein the light guide is provided at the trailing edge of the rotor blade, in particular wherein the light guide is provided at a provided at a trailing edge of the rotor blade profile. Verfahren gemäß Anspruch 5, wobei das Profil ein pultrudiertes Profil ist und/oder wobei das Profil eine aerodynamische Beeinflussung des Rotorblatts bewirkt.  A method according to claim 5, wherein the profile is a pultruded profile and / or wherein the profile causes aerodynamic influence of the rotor blade. Verfahren gemäß einem der Ansprüche 5 bis 6, wobei sich das Profil entlang zumindest 10% oder zumindest 30% des Radius des Rotorblatts erstreckt, insbesondere wobei sich ein oder mehrere Segmente des Profils entlang zumindest 10% oder zumindest 30 % des Radius des Rotorblatts erstrecken.  Method according to one of claims 5 to 6, wherein the profile extends along at least 10% or at least 30% of the radius of the rotor blade, in particular wherein one or more segments of the profile extend along at least 10% or at least 30% of the radius of the rotor blade. Verfahren gemäß einem der Ansprüche 5 bis 7, wobei der Beschleunigungssensor innerhalb des Profils zur Verfügung gestellt wird.  Method according to one of claims 5 to 7, wherein the acceleration sensor is provided within the profile. Verfahren gemäß einem der Ansprüche 3 bis 8, wobei der Lichtleiter an einer radialen Position, an der das Rotorblatt begehbar ist, von außen in das Innere des Rotorblatts geführt wird.  Method according to one of claims 3 to 8, wherein the light guide at a radial position at which the rotor blade is accessible, is guided from the outside into the interior of the rotor blade. Verfahren gemäß einem der Ansprüche 1 bis 9, wobei die mit einem faseroptischen Beschleunigungssensor gemessene Beschleunigung ausgewertet wird zur Erzeugung eines Signals zur Turmfreigangs-Warnung.  A method according to any one of claims 1 to 9, wherein the acceleration measured with a fiber optic acceleration sensor is evaluated to generate a tower release warning signal. Ein Rotorblatt einer Windkraftanlage, umfassend: einen faseroptischen Beschleunigungssensor, wobei der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält.  A rotor blade of a wind turbine, comprising: a fiber optic acceleration sensor, wherein the acceleration sensor is less than 10% by weight of metal or contains less than 20 g of metal. Das Rotorblatt gemäß Anspruch 11, wobei der faseroptische Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts, insbesondere im Bereich der äußeren 50% des Radius des Rotorblatts, zur Verfügung gestellt ist, und wobei ein Lichtleiter vom faseroptischen Beschleunigungssensor bis zu einer radialen Rotorblattposition geführt ist, an der das Rotorblatt begehbar ist.  The rotor blade according to claim 11, wherein the fiber optic acceleration sensor is provided at a radial position in the area of the outer 70% of the radius of the rotor blade, in particular in the area of the outer 50% of the radius of the rotor blade, and wherein a light guide from the fiber optic acceleration sensor to is guided to a radial rotor blade position at which the rotor blade is accessible. Das Rotorblatt gemäß Anspruch 12, wobei der Beschleunigungssensor eine maximale Ausdehnung von 10 mm in einem Querschnitt senkrecht zu einer Achse des Lichtleiters hat.  The rotor blade according to claim 12, wherein the acceleration sensor has a maximum extension of 10 mm in a cross section perpendicular to an axis of the optical fiber. Ein faseroptischen Beschleunigungssensor, umfassend: einen Lichtleiter mit einer Lichtaustrittsfläche; eine Membran; eine mit der Membran in Verbindung stehende Masse; einen optischen Resonator, der zwischen der Lichtaustrittsfläche und der Membran ausgebildet ist; und einen Spiegel, der im Strahlengang zwischen der Lichtaustrittsfläche und der Membran zur Verfügung gestellt ist, wobei der Spiegel in einem Winkel von 30° bis 60° relativ zu einer optischen Achse des Lichtleiters ausgebildet ist.  A fiber optic acceleration sensor comprising: a light guide having a light exit surface; a membrane; a mass associated with the membrane; an optical resonator formed between the light exit surface and the diaphragm; and a mirror provided in the beam path between the light exit surface and the diaphragm, the mirror being formed at an angle of 30 ° to 60 ° relative to an optical axis of the light guide. Das Rotorblatt gemäß einem der Ansprüche 11 bis 13, wobei der faseroptische Beschleunigungssensor ein faseroptischer Beschleunigungssensor gemäß Anspruch 14 ist.  The rotor blade according to any one of claims 11 to 13, wherein the fiber optic acceleration sensor is a fiber optic acceleration sensor according to claim 14.
DE102014117916.1A 2014-12-04 2014-12-04 Method for monitoring a wind turbine, acceleration sensor for a rotor blade, and rotor blade with acceleration sensor Pending DE102014117916A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102014117916.1A DE102014117916A1 (en) 2014-12-04 2014-12-04 Method for monitoring a wind turbine, acceleration sensor for a rotor blade, and rotor blade with acceleration sensor
PCT/EP2015/078236 WO2016087454A2 (en) 2014-12-04 2015-12-01 Method for monitoring a wind power plant, acceleration sensor for a rotor blade, and rotor blade comprising an acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014117916.1A DE102014117916A1 (en) 2014-12-04 2014-12-04 Method for monitoring a wind turbine, acceleration sensor for a rotor blade, and rotor blade with acceleration sensor

Publications (1)

Publication Number Publication Date
DE102014117916A1 true DE102014117916A1 (en) 2016-06-09

Family

ID=54754659

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014117916.1A Pending DE102014117916A1 (en) 2014-12-04 2014-12-04 Method for monitoring a wind turbine, acceleration sensor for a rotor blade, and rotor blade with acceleration sensor

Country Status (2)

Country Link
DE (1) DE102014117916A1 (en)
WO (1) WO2016087454A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3919738A1 (en) * 2020-06-05 2021-12-08 Siemens Gamesa Renewable Energy A/S Device and method of controlling blade instabilities of a wind turbine to avoid blade fluttering

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175108B1 (en) * 1998-01-30 2001-01-16 Cidra Corporation Accelerometer featuring fiber optic bragg grating sensor for providing multiplexed multi-axis acceleration sensing
US20040057828A1 (en) * 2002-09-23 2004-03-25 Bosche John Vanden Wind turbine blade deflection control system
CN101285847A (en) * 2007-04-11 2008-10-15 中国科学院半导体研究所 Temperature insensitive optical fibre grating acceleration sensor
CN201203508Y (en) * 2008-05-29 2009-03-04 同济大学 High-sensitivity temperature self-compensation type optical fiber grating acceleration sensing device
DE102012108776A1 (en) * 2012-09-18 2014-03-20 Technische Universität München Method and device for monitoring operating states of rotor blades
DE102013101432A1 (en) * 2013-02-13 2014-08-14 fos4X GmbH Device for detecting acceleration in three directions in space, has lever arm connected with mass unit at lever position and connected to optical fiber of sensor, where optical fiber is connected to lever arm in another lever position
WO2015014366A1 (en) * 2013-07-30 2015-02-05 Vestas Wind Systems A/S Wind turbine operating method and device based on load and acceleration measurements in the blade

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983003010A1 (en) * 1982-02-24 1983-09-01 Jackson, David, Alfred Optical displacement sensing apparatus
GB8902034D0 (en) * 1989-01-31 1989-03-22 Kent Scient Ind Projects Optical displacement sensor
US5311485A (en) * 1992-10-30 1994-05-10 The United States Of America As Represented By The United States Department Of Energy Fiber optic hydrophone
DE20110825U1 (en) * 2001-06-29 2001-12-13 Guenther Sandra Fiber optic sensor for the detection of bending conditions
EP1929249B9 (en) * 2005-08-12 2016-12-28 Fiso Technologies Inc. Single piece fabry-perot optical sensor and method of manufacturing the same
GB2478600A (en) * 2010-03-12 2011-09-14 Vestas Wind Sys As A wind energy power plant optical vibration sensor
DE102011121439A1 (en) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Measuring device for detecting load of rotor blade of rotor of wind turbine, has sensor obtaining rotational speed about longitudinal axis of rotor blade and transmitting unit transmitting measurement signal to control unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175108B1 (en) * 1998-01-30 2001-01-16 Cidra Corporation Accelerometer featuring fiber optic bragg grating sensor for providing multiplexed multi-axis acceleration sensing
US20040057828A1 (en) * 2002-09-23 2004-03-25 Bosche John Vanden Wind turbine blade deflection control system
CN101285847A (en) * 2007-04-11 2008-10-15 中国科学院半导体研究所 Temperature insensitive optical fibre grating acceleration sensor
CN201203508Y (en) * 2008-05-29 2009-03-04 同济大学 High-sensitivity temperature self-compensation type optical fiber grating acceleration sensing device
DE102012108776A1 (en) * 2012-09-18 2014-03-20 Technische Universität München Method and device for monitoring operating states of rotor blades
DE102013101432A1 (en) * 2013-02-13 2014-08-14 fos4X GmbH Device for detecting acceleration in three directions in space, has lever arm connected with mass unit at lever position and connected to optical fiber of sensor, where optical fiber is connected to lever arm in another lever position
WO2015014366A1 (en) * 2013-07-30 2015-02-05 Vestas Wind Systems A/S Wind turbine operating method and device based on load and acceleration measurements in the blade

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Soref, R.A. et al. Tilting-mirror fiber-optic accelerometer. In: Applied Optics. Vol. 23, No. 3, 01.02.1984. *

Also Published As

Publication number Publication date
WO2016087454A3 (en) 2016-07-28
WO2016087454A2 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
EP3227690B1 (en) Method for monitoring a wind turbine, method for identifying ice on a wind turbine, acceleration sensor for a rotor blade, rotor blade comprising an acceleration sensor, and profile for a rotor blade
EP3227552B1 (en) Method for the individual pitch control of rotor blades of a wind turbine, and wind turbines
DE102014117914B4 (en) Method for detecting a flutter of a rotor blade of a wind turbine
EP2898216B1 (en) Method and device for monitoring operating states of rotor blades
EP3652433A1 (en) Strain and vibration measuring system for monitoring rotor blades
EP3353501B1 (en) Light guide clamping device, fibre optic sensor and production method
DE102017125457B4 (en) Method for determining a probability of throttling and/or shutting down at least one wind turbine due to ice build-up
DE102017115926B4 (en) Blade bending moment determination with two load sensors per rotor blade and including rotor data
EP3353516B1 (en) Fibre-optic pressure sensor and method
EP3803114A1 (en) Sensor arrangement for a wind turbine
DE102012214441B4 (en) Measuring method
EP3353500B1 (en) Sensor patch, and method for producing a sensor patch
EP3877646A1 (en) Improving or optimizing wind turbine output by detecting flow detachment
DE102014117916A1 (en) Method for monitoring a wind turbine, acceleration sensor for a rotor blade, and rotor blade with acceleration sensor
EP3673175A1 (en) Method for increasing the yield of a wind farm under icing conditions
DE102018127414A1 (en) Improvement or maximization of the yield depending on the turbulence intensity and its measurement
DE102018127801A1 (en) Improvement or optimization of the yield of a wind energy plant through aerodynamic adaptation in the event of a stall
DE102019101630A1 (en) Fiber optic sensor and method

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R082 Change of representative

Representative=s name: ZACCO LEGAL RECHTSANWALTSGESELLSCHAFT MBH, DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

R016 Response to examination communication
R082 Change of representative

Representative=s name: ZACCO LEGAL RECHTSANWALTSGESELLSCHAFT MBH, DE

R082 Change of representative

Representative=s name: ZACCO LEGAL RECHTSANWALTSGESELLSCHAFT MBH, DE

R081 Change of applicant/patentee

Owner name: VC VIII POLYTECH HOLDING APS, DK

Free format text: FORMER OWNER: FOS4X GMBH, 81371 MUENCHEN, DE