DE102013105400B4 - Method of forming a bump structure - Google Patents

Method of forming a bump structure Download PDF

Info

Publication number
DE102013105400B4
DE102013105400B4 DE102013105400.5A DE102013105400A DE102013105400B4 DE 102013105400 B4 DE102013105400 B4 DE 102013105400B4 DE 102013105400 A DE102013105400 A DE 102013105400A DE 102013105400 B4 DE102013105400 B4 DE 102013105400B4
Authority
DE
Germany
Prior art keywords
copper pillar
metal cap
forming
copper
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102013105400.5A
Other languages
German (de)
Other versions
DE102013105400A1 (en
Inventor
Pei-Chun Tsai
Yu-Jen Tseng
Tin-Hao Kuo
Chen-Shien Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/734,811 external-priority patent/US10008459B2/en
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of DE102013105400A1 publication Critical patent/DE102013105400A1/en
Application granted granted Critical
Publication of DE102013105400B4 publication Critical patent/DE102013105400B4/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13017Shape in side view being non uniform along the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/13076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/1605Shape
    • H01L2224/16057Shape in side view
    • H01L2224/16058Shape in side view being non uniform along the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/36Material effects
    • H01L2924/364Polymers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

Verfahren zum Ausbilden einer Bump-Struktur, umfassend: Ausbilden einer Under-Bump-Metallurgy(UBM)-Struktur (14) auf einem Substrat (12); Ausbilden eines Kupfer-Pillars (16) auf der UBM-Struktur (14), wobei der Kupfer-Pillar (16) so gestaltet ist, dass er ein sich verjüngendes bogenförmiges Profil (22) aufweist, wobei die Seitenwände des Kupfer-Pillars (16) entlang der gesamten Länge des Kupfer-Pillars konkav sind; Ausbilden einer Metallkappe (18) auf dem Kupfer-Pillar (16); und Ausbilden einer Lotstruktur (20) auf der Metallkappe (18); wobei die Unterseite (24) des Kupfer-Pillars (16), die der UBM-Struktur (14) zugewandt ist, breiter ist als seine Oberseite (26), die der Metallkappe (18) zugewandt ist; und die Metallkappe breiter ist als die Oberseite des Kupfer-Pillars, wo der Kupfer-Pillar (16) an die Metallkappe (18) angrenzt; wobei das Ausbilden des Kupfer-Pillars, der Metallkappe und der Lotstruktur ferner umfasst: Aufbringen eines Fotoresists auf der UBM-Struktur und dem Substrat, Erzeugen einer Ladder-Bump-Profilöffnung in dem Fotoresist durch einen Fotolithographieprozess; Bilden des Kupfer-Pillars und der Metallkappe in der Öffnung in dem Fotoresist; Bilden der Lotstruktur auf der Metallkappe; Entfernen des Fotoresists und Ätzen der UBM-Struktur, wobei das Ätzen der UBM-Struktur auch einen Überhang der Metallkappe an der Oberseite des Kupfer-Pillars erzeugt; das Verfahren ferner umfassend: Ausbilden eines Kupferoxid-Films auf den Seitenwänden des Kupfer-Pillars (16); Montieren der Lotstruktur an einem zweiten Substrat (60) und Einbringen einer Unterfüllung (64) zwischen dem Substrat (12) der Bump-Struktur und dem zweiten Substrat (60), wobei der Kupferoxidfilm an der Unterfüllung (64) haftet.A method of forming a bump structure, comprising: forming an under bump metallurgy (UBM) structure (14) on a substrate (12); Forming a copper pillar (16) on the UBM structure (14), wherein the copper pillar (16) is shaped to have a tapered arcuate profile (22), the sidewalls of the copper pillar (16 ) are concave along the entire length of the copper pillar; Forming a metal cap (18) on the copper pillar (16); and forming a solder structure (20) on the metal cap (18); the underside (24) of the copper pillar (16) facing the UBM structure (14) being wider than its top surface (26) facing the metal cap (18); and the metal cap is wider than the top of the copper pillar, where the copper pillar (16) abuts the metal cap (18); wherein forming the copper pillar, the metal cap, and the solder structure further comprises: applying a photoresist to the UBM structure and the substrate, creating a ladder bump profile opening in the photoresist through a photolithography process; Forming the copper pillar and the metal cap in the opening in the photoresist; Forming the solder structure on the metal cap; Removing the photoresist and etching the UBM structure, wherein the etching of the UBM structure also creates an overhang of the metal cap at the top of the copper pillar; the method further comprising: forming a copper oxide film on the sidewalls of the copper pillar (16); Mounting the solder pattern to a second substrate (60) and inserting a underfill (64) between the substrate (12) of the bump structure and the second substrate (60), wherein the copper oxide film adheres to the underfill (64).

Description

Hintergrundbackground

Bei einem typischen Copper (Cu) Pillar Bump-Prozess weist Lot mit oder ohne Nickel (Ni) darunter immer eine größere kritische Dimension (critical dimension) (CD)) als die Unterseite des Cu-Pillars aufgrund von Cu-Überätzung auf. Dieses Bump-Profil mit großer Oberseite und kleiner Unterseite ist für Fine-Pitch-Montageausbeute, speziell bei Bump-On-Trace(BOT)-Montage, kritisch. Da eine obere Under Bump Metallurgy (UBM) näher an einer benachbarten gemeinsamen Cu-Bahn ist, besteht ein höheres Risiko, dass der Lotteil unerwünschterweise eine Bump to trace-Brücke verursachen wird.In a typical Copper (Cu) Pillar Bump process, solder with or without nickel (Ni) below always has a larger critical dimension (CD) than the bottom of the Cu pillar due to Cu overetching. This bump profile with large top and small bottom is critical for fine-pitch mounting yield, especially in bump-on-trace (BOT) assembly. Since an upper Under Bump Metallurgy (UBM) is closer to an adjacent common Cu track, there is a greater risk that the Lot part will undesirably cause a bump to trace bridge.

Zudem weist ein herkömmlicher Bump-Prozess eine Inversionszinn ((inversion tin)(IT))-Schicht entlang der Cu-Pillar-Seitenwand auf. Dieses Inversionszinn kann unerwünschterweise das Risiko einer Ablösung aufgrund von geringer Haftung an oder auf einem Verbundmaterial (d. h. einem Unterfüllmaterial) erhöhen.In addition, a conventional bumping process has an inversion tin (IT) layer along the Cu-pillar sidewall. This inversion tin may undesirably increase the risk of delamination due to poor adhesion to or on a composite material (i.e., underfill material).

Die Erfindung sieht ein Verfahren nach Anspruch I vor. Ausgestaltungen sind in den Unteransprüchen angegeben.The invention provides a method according to claim I before. Embodiments are specified in the subclaims.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Für ein umfassenderes Verständnis der vorliegenden Offenbarung und der Vorteile derselben wird nun auf die folgenden Beschreibungen in Verbindung mit den beigefügten Zeichnungen Bezug genommen werden, in denen:For a more complete understanding of the present disclosure and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:

1 eine Querschnittsansicht einer Ausführungsform einer Ladder-Bump-Struktur zeigt; 1 a cross-sectional view of an embodiment of a ladder-bump structure shows;

2 eine Querschnittsansicht der Ausführungsform der Ladder-Bump-Struktur zeigt, die beispielhafte Dimensionen bereitstellt; 2 Figure 12 is a cross-sectional view of the embodiment of the ladder-bump structure providing exemplary dimensions;

3 eine Tabelle ist, die Ergebnisse simulierter Beanspruchung zeigt; 3 is a table showing results of simulated stress;

4 die Ausführungsform der Ladder-Bump-Struktur von i darstellt, die eine mechanische Bump-On-Trace(BOT)-Verbindung bildet; und 4 the embodiment of the ladder-bump structure of i representing a mechanical bump-on-trace (BOT) connection; and

5 ein Ablaufdiagramm zeigt, das ein Verfahren zum Ausbilden der Ausführungsform der Ladder-Bump-Struktur von 1 darstellt. 5 FIG. 10 is a flowchart showing a method of forming the embodiment of the ladder bump structure of FIG 1 represents.

Korrespondierende Zahlen und Symbole in den verschiedenen Figuren beziehen sich allgemein auf korrespondierende Teile, sofern nichts anderes angegeben wird. Die Figuren sind gezeichnet, um die relevanten Aspekte der Ausführungsformen eindeutig darzustellen, und sind nicht notwendigerweise maßstabsgerecht gezeichnet.Corresponding numbers and symbols in the various figures generally refer to corresponding parts unless otherwise specified. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.

Ausführliche Beschreibung von beispielhaften AusführungsformenDetailed description of exemplary embodiments

Die Herstellung und Verwendung der gegenwärtig bevorzugten Ausführungsformen werden unten im Detail dargelegt. Es versteht sich jedoch, dass die vorliegende Offenbarung viele anwendbare erfinderische Konzepte liefert, die in einer großen Vielzahl von speziellen Kontexten verkörpert sein können. Die erörterten speziellen Ausführungsformen dienen lediglich der Erläuterung und beschränken nicht den Umfang der Offenbarung.The preparation and use of the presently preferred embodiments are set forth in detail below. It should be understood, however, that the present disclosure provides many applicable inventive concepts that may be embodied in a wide variety of specific contexts. The specific embodiments discussed are for illustration only and do not limit the scope of the disclosure.

Die vorliegende Erfindung wird unter Bezugnahme auf bevorzugte Ausführungsformen in einem speziellen Kontext, nämlich Ladder-Bump-Struktur für eine Bump-On-Trace(BOT)-Montage, beschrieben. Die Konzepte der Offenbarung können jedoch auch für andere Halbleiterstrukturen oder -schaltungen gelten.The present invention will be described with reference to preferred embodiments in a specific context, ladder-bump structure for bump-on-trace (BOT) assembly. However, the concepts of the disclosure may also apply to other semiconductor structures or circuits.

In i ist eine Ausführungsform einer Ladder-Bump-Struktur 10 dargestellt. Wie gezeigt ist, enthält die Ladder-Bump-Struktur 10 ein Substrat 12, eine Under-Bump-Metallurgy(UBM)-Struktur 14, einen Kupfer-Pillar 16, eine Metallkappe 18 und eine Lotstruktur 20. Das Substrat 12 kann z. B. ein Siliziumwafer oder eine Silizium enthaltende Materialschicht sein. Bei einigen Ausführungsformen ist eine integrierte Schaltung (nicht gezeigt) auf und/oder in dem Substrat 12, wie auf dem Gebiet bekannt ist, ausgebildet. Zahlreiche Schichten und Strukturen des Substrats 12, einschließlich Transistoren, Verbindungs(interconnect)schichten, Dielektrikumschicht, Passivierungsschichten, Nachpassivierungs-Interconnects, Umver-drahtungsschichten und dergleichen sind der Klarheit halber in den Figuren weggelassen worden, da sie für das Verständnis der vorliegenden Offenbarung nicht notwendig sind.In i is an embodiment of a ladder-bump structure 10 shown. As shown, the ladder bump structure is included 10 a substrate 12 , an under bump metallurgy (UBM) structure 14 , a copper pillar 16 , a metal cap 18 and a solder structure 20 , The substrate 12 can z. B. be a silicon wafer or a silicon-containing material layer. In some embodiments, an integrated circuit (not shown) is on and / or in the substrate 12 as is known in the art. Numerous layers and structures of the substrate 12 , including transistors, interconnect layers, dielectric layer, passivation layers, post-passivation interconnects, rewiring layers, and the like, have been omitted from the figures for the sake of clarity, as they are not necessary to the understanding of the present disclosure.

Weiterhin auf die 1 bezugnehmend, trägt das Substrat 12 die UBM-Struktur 14, die auf oder in dem Substrat 12 montiert sein kann. Wie gezeigt ist, trägt die UBM-Struktur 14 allgemein den Kupfer-Pillar 16. Der Kupfer-Pillar 16 weist ein einschnürendes Profil 22 (auch bekannt als ein bogenförmiges, sich verjüngendes Profil) auf, dessen Breite von einer Unterseite 24 zu einer Oberseite 26 und des Kupfer-Pillars 16, wie in I gezeigt, abnimmt. Mit anderen Worten ist die Unterseite 24 des Kupfer-Pillars 16 breiter als die Oberseite 26 des Kupfer-Pillars 16. In der hierin verwendeten Weise ist die „Unterseite” des Kupfer-Pillars 16 der Teil, der dem Substrat 12 besonders nahekommt, während die „Oberseite” des Kupfer-Pillars 16 der Teil ist, der vom Substrat 12 am weitesten entfernt ist. Bei einer Ausführungsform weist der Kupfer-Pillar 16 Seitenwände 28 auf, die von der Unterseite 24 zur Oberseite 26 entlang der gesamten Höhe 30 (d. h. oder Länge) der Seitenwände 28 des Kupfer-Pillars 16 allgemein konkav sind.Continue to the 1 Referring to, the substrate carries 12 the UBM structure 14 on or in the substrate 12 can be mounted. As shown, the UBM structure carries 14 generally the copper pillar 16 , The copper pillar 16 has a constricting profile 22 (also known as an arched, tapered profile) whose width is from a bottom 24 to a top 26 and the copper pillar 16 , as in I shown, decreases. In other words, the bottom is 24 of the copper pillar 16 wider than the top 26 of the copper pillar 16 , As used herein, the "underside" of the copper pillar 16 the part that is the substrate 12 particularly close as the "top" of the copper pillar 16 the part is that of the substrate 12 farthest away. In one embodiment, the copper pillar 16 side walls 28 on the from the bottom 24 to the top 26 along the entire height 30 (ie, or length) of the sidewalls 28 of the copper pillar 16 are generally concave.

Unverändert auf die 1 bezugnehmend, wird die Metallkappe 18 von dem Kupfer-Pillar 16 getragen oder darauf befestigt. Bei einer Ausführungsform ist die Metallkappe 18 aus Nickel (Ni) gebildet. Ebenso können andere Metalle für die Metallkappe 18 geeignet verwendet werden. Wie gezeigt, überragt die Metallkappe 18 allgemein den Kupfer-Pillar 16, wo sich die Metallkappe 18 und der Kupfer-Pillar 16 treffen oder aneinandergrenzen. Mit anderen Worten ist die Metallkappe 18 breiter als der Kupfer-Pillar 16, wo der Kupfer-Pillar 16 an die Metallkappe 18 in der Nähe der Oberseite 16 des Kupfer-Pillars 16 anschließt.Unchanged to the 1 Referring to, the metal cap 18 from the copper pillar 16 worn or attached to it. In one embodiment, the metal cap 18 made of nickel (Ni). Likewise, other metals can be used for the metal cap 18 suitable to be used. As shown, the metal cap towers over 18 generally the copper pillar 16 where the metal cap is 18 and the copper pillar 16 meet or contiguous. In other words, the metal cap 18 wider than the copper pillar 16 where the copper pillar 16 to the metal cap 18 near the top 16 of the copper pillar 16 followed.

Bei einer Ausführungsform erzeugt oder induziert der Prozess des Ätzens der UBM-Struktur 14 den Überhang der Metallkappe 18 und/oder das einschnürende Profil 22 des Kupfer-Pillars 16. Ein Ladder-Fotoresist (photoresist (PR)) wird auf einen mit einem UBM-Film beschichteten Silizium(Si)-Wafer gesprüht. Ein gut kontrollierter Fotolithographieprozess wird zum Erzeugen eines Ladder-Bump-Profils verwendet, das eine kleinere obere und eine größere untere kritische Dimension (CD) aufweist. Nachdem das Ladder-Bump-Profil erzeugt ist, folgt ein normaler Bump-Prozess, der Überziehen (plating) von Kupfer und der Metallkappe in der Fotoresistöffnung, Entfernen von umgebendem Fotoresist und Ätzen von freiliegendem und unerwünschtem UBM-Film durch chemisches Ätzen, um den sogenannten Ladder-Bump zu erzielen, der auf dem Wafer existiert, umfasst. Der Überhang der Metallkappe 18 sorgt für eine größere Kontaktfläche und weist eine starke Haftung an oder auf zum Beispiel einer geformten Unterfüllung (molded underfill (MUF)) oder einem Unterfüllungsverbund auf.In one embodiment, the process of etching creates or induces the UBM structure 14 the overhang of the metal cap 18 and / or the constricting profile 22 of the copper pillar 16 , A ladder photoresist (photoresist (PR)) is sprayed onto a silicon (Si) wafer coated with a UBM film. A well-controlled photolithography process is used to create a ladder-bump profile having smaller upper and lower critical dimensions (CD). After the ladder bump profile is created, a normal bump process, copper plating and the metal cap in the photoresist opening, removal of surrounding photoresist, and etching of exposed and unwanted UBM film by chemical etching, follow so-called ladder bump existing on the wafer comprises. The overhang of the metal cap 18 provides a larger contact area and has strong adhesion to or on, for example, a molded underfill (MUF) or underfill composite.

Weiterhin auf die 1 bezugnehmend, wird die Lotstruktur 20 auf oder über der Metallkappe 18 montiert. Bei einer Ausführungsform kann die Lotstruktur 20 eine Kugel, ein Bump oder dergleichen sein, die/der mit einem anderen elektrischen Bauelement kontaktiert werden und Reflow-gelötet werden kann, um die beiden Bauelemente miteinander elektrisch zu verbinden.Continue to the 1 Referring to, the solder structure becomes 20 on or over the metal cap 18 assembled. In one embodiment, the solder structure 20 a ball, a bump or the like, which are contacted with another electrical component and can be reflow-soldered to electrically connect the two components together.

Nunmehr auf die 2 bezugnehmend, beträgt bei einer Ausführungsform einer Ladder-Bump-Struktur 10 das Verhältnis der Breite 38 des Kupfer-Pillars 16 auf halber Höhe 30 (d. h. Länge) des Kupfer-Pillars 16 zur Breite 36 der Unterseite 24 des Kupfer-Pillars 16 zwischen ca. 0,9 bis ca. 0,93. Zusätzlich liegt bei einer Ausführungsform das Verhältnis der Breite 40 des Kupfer-Pillars 16 auf einem Viertel der Höhe 30 des Kupfer-Pillars 16 (von der Oberseite 26 des Kupfer-Pillars 16 gemessen) zur Breite 36 der Unterseite 24 des Kupfer-Pillars 16 zwischen ca. 0,92 bis ca. 0,94.Now on the 2 In one embodiment, a ladder bump structure is shown 10 the ratio of the width 38 of the copper pillar 16 halfway up 30 (ie length) of the copper pillar 16 to the width 36 the bottom 24 of the copper pillar 16 between about 0.9 to about 0.93. Additionally, in one embodiment, the ratio of the width is 40 of the copper pillar 16 on a quarter of the height 30 of the copper pillar 16 (from the top 26 of the copper pillar 16 measured) to the width 36 the bottom 24 of the copper pillar 16 between about 0.92 to about 0.94.

3 liefert die Ergebnisse 42 von Simulationsstudien, die durchgeführt wurden, um die mögliche Verbesserung der Belastbarkeit, insbesondere der Belastung, die auf darunterliegende und/oder umgebende Schichten, wie zum Beispiel ELK (Extra Low K dielectric layers), Passivierungsschichten, UBM-Schichten und Polyimidschichten, die typischerweise einen Teil einer verpackten integrierten Schaltungsstruktur bilden, zu bestimmen. Man beachte, dass die Simulationsergebnisse nahelegen, dass die in den 1 und 2 dargestellte Struktur zu einer verminderten Beanspruchung in den darunterliegenden und/oder umgebenden Schichten und Strukturen führen wird. 3 delivers the results 42 Simulation studies that have been carried out to evaluate the possible improvement in load capacity, especially stress, on underlying and / or surrounding layers, such as Extra Low K (ELK) dielectric layers, passivation layers, UBM layers, and polyimide layers, typically one Form part of a packaged integrated circuit structure. Note that the simulation results suggest that the in the 1 and 2 shown structure will lead to a reduced stress in the underlying and / or surrounding layers and structures.

4 stellt zwei beispielhafte Ladder-Bump-Strukturen 10 dar, die montiert sind, um das Substrat 12 (das ein oder mehrere integrierte Schaltkreisbauelement(e) enthalten kann) auf einem darunterliegenden Substrat 60 anzuschließen. Bei der dargestellten Ausführungsform ist das Substrat 60 unter Verwendung einer Bond-on-Trace(BOT)-Lösung montiert. Unter Verwendung der dargestellten Ladder-Bump-Strukturen 10 kann eine Fine-Pitch-Montage bzw. -Bestückung erreicht werden. Es kann eine Montage- bzw. Bestückungsausbeute, unter Reduzierung der Rate der Brückenbildung von Lot zu Substratbahn 62 und des Leerstellenrisikos einer Bump-zu-Bump-Formunterfüllung (molded underfill (MUF)) 64-, erzielt werden. Ferner erfordert der beispielhafte Ladder-Bump-Prozess keine auf den Seitenwänden 28 des Kupfer-Pillars 16 ausgebildete Inversionszinn (Inversion Tin(IT))-Beschichtung. Dies reduziert die Kosten. Weiterhin ermöglicht das Fehlen der IT-Beschichtung, einen Kupferoxid(CuO)-Film entlang Seitenwänden 28 des Kupfer-Pillars 16 auszubilden. Dieser CuO-Film weist eine höhere Haftung an oder auf dem Verbundmaterial 64 und/oder der Unterfüllung als Inversionszinn auf und verbessert auch die Beständigkeit, wie zum Beispiel Feuchtigkeitsbeständigkeit, was durch die Leistung beim Highly Accelerated Stress Testing (HAST) belegt wird. 4 illustrates two exemplary ladder-bump structures 10 which are mounted to the substrate 12 (which may include one or more integrated circuit devices) on an underlying substrate 60 to join. In the illustrated embodiment, the substrate is 60 mounted using a Bond on Trace (BOT) solution. Using the illustrated ladder-bump structures 10 a fine pitch assembly can be achieved. It can be an assembly yield, reducing the rate of bridging from solder to substrate web 62 and the void risk of a bump-to-bump mold underfill (MUF) 64 -, be achieved. Further, the exemplary ladder bump process does not require any on the sidewalls 28 of the copper pillar 16 formed inversion tin (Inversion Tin (IT)) coating. This reduces the costs. Furthermore, the lack of IT coating allows for a copper oxide (CuO) film along sidewalls 28 of the copper pillar 16 train. This CuO film has a higher adhesion to or on the composite material 64 and / or the underfill as inversion tin, and also improves durability, such as moisture resistance, as evidenced by performance in Highly Accelerated Stress Testing (HAST).

Nunmehr auf die 5 bezugnehmend, wird ein Verfahren 70 zum Ausbilden der Ausführungsform einer Ladder-Bump-Struktur 10 von 1 bereitgestellt. Bei Block 72 wird die UBM-Struktur 14 auf das Si-Substrat 12 aufgetragen. Bei Block 74 wird ein spezieller Fotoresist (photoresist (PR)), Ladder-PR genannt, auf einen Si-Wafer mit aufgetragenem UBM-Film gesprüht. Bei Block 76 wird ein gut kontrollierter Fotolithographieprozess verwendet, um das Ladder-Bump-Profil zu erzeugen, das eine kleinere obere und größere untere kritische Dimension (critical dimension (CD)) aufweist. Danach wird bei Block 78 der Kupfer-Pillar 16 in der Ladder-PR-Öffnung gezüchtet bzw. erzeugt. Insbesondere weist der Kupfer-Pillar 16 ein sich verjüngendes bogenförmiges Profil (d. h. das einschnürende Profil auf). Danach werden die Metallkappe 18 und das Lot 20 auf dem Kupfer-Pillar 16 erzeugt. Dann wird bei Block 80 der umgebende PR entfernt und es erfolgt Ätzen von freiliegendem und unerwünschtem UBM-Film durch chemisches Ätzen. Bei Block 82 wird der sogenannte Ladder-Bump auf dem Wafer 12 ausgebildet. Es versteht sich, das zusätzliche oder Zwischenschritte zum Verfahren 70 bei anderen Ausführungsformen hinzugefügt oder eingeschlossen werden können.Now on the 5 Referring to, a method 70 for forming the embodiment of a ladder-bump structure 10 from 1 provided. At block 72 becomes the UBM structure 14 on the Si substrate 12 applied. At block 74 For example, a special photoresist (photoresist (PR)) called Ladder-PR is sprayed on a Si wafer with UBM film applied. At block 76 For example, a well-controlled photolithography process is used to create the ladder bump profile having a smaller upper and lower critical dimension (CD). After that, at block 78 the copper pillar 16 grown in the ladder PR opening. In particular, the copper pillar 16 a tapered arcuate profile (ie, the constricting profile). After that, the metal cap 18 and the lot 20 on the copper pillar 16 generated. Then at block 80 the surrounding PR is removed and etching of exposed and unwanted UBM film is performed by chemical etching. At block 82 becomes the so-called ladder bump on the wafer 12 educated. It goes without saying that additional or intermediate steps to the procedure 70 can be added or included in other embodiments.

Anhand des Vorangehenden sollte verständlich sein, dass die Ausführungsformen der Bump-Ladder-Strukturen 10 vorteilhafte Merkmale bzw. Eigenschaften bereitstellen. Zum Beispiel wird die Bump-Struktur (d. h. Ladder-Bump-Struktur) für Fine-Pitch-Bond-on-Trace(BOT)-Montage bzw. -Bestückung mit einer Verbesserung der Ausbeute erzielt, indem eine Brückenbildung von Lot-zu-Substratbahn (solder to substrate trace (SBT)) und/oder Leerstellen in der Bump-zu-Bump-Formunterfüllung (molded underfill) (MUF)) vermieden wird/werden. Ferner ist die beispielhafte Bump-Struktur aufgebaut aus einem Ni-Überhang/Cu-Pillar-Einschnürprofil, dessen Abmessungen unten größer sind als oben.From the foregoing, it should be understood that the embodiments of the bump ladder structures 10 provide advantageous features or properties. For example, the bump structure (ie, ladder bump structure) for fine pitch bond-on-trace (BOT) assembly is achieved with yield improvement by bridging solder-to-substrate web (solder to substrate trace (SBT)) and / or voids in the bump-to-bump mold underfill (MUF) are avoided. Further, the exemplary bump structure is constructed of a Ni overhang / Cu pillar crimp profile, the dimensions of which are larger at the bottom than at the top.

Der hierin beschriebene innovative Bump-Prozess lässt eine herkömmliche Inversionszinn (inversion Tin(IT))-Schicht um den Cu-Pillar aus und die Bump-Oberfläche weist etwas CuO auf der Cu-Seitenwand auf, das für eine höhere Haftung an oder auf dem Verbundmaterial oder Unterfüllungsmaterial sorgt.The innovative bumping process described herein omits a conventional inversion tin (IT) layer around the copper pillar and the bump surface has some CuO on the Cu sidewall which is responsible for higher adhesion to or on top of the Cu Composite or underfill material provides.

Vorteile einiger beschriebener Ausführungsformen umfassen, dass das Lot mit Ni (oder ein anderes Metall) eine größere Dimension als eine Oberseite des Cu-Pillars aufweist. Ein beispielhafter UBM-Ätzprozess induziert Ni-Überhang und Cu-Pillar-Einschnürung. Der Ni-Überhang sorgt für eine größere Kontaktfläche und weist eine stärkere Haftung an oder auf einem Verbundmaterial, wie zum Beispiel einer Unterfüllung oder Verbundmaterial (Formmasse), auf. Die beispielhafte Ladder-Bump-Struktur weist eine breitere untere als obere Dimension von Ni auf und das Cu-Pillar-Einschnürprofil kann Extremely Low-k Dielectric (ELK), Passivierung, UBM und Polyimid(PI)-Stress bzw. -Beanspruchung reduzieren. Außerdem sorgen die dargestellten Ausführungsformen für eine größere Kontaktfläche für eine Verbesserung der Cu-Pillar/Verbundmaterial-Haftung. Ein weiterer Vorteil kann sein, dass der Cu-Pillar keine herkömmliche Inversionszinn (inversion Tin(IT))-Beschichtung aufweist und stattdessen Kupferoxid (CuO) an den Seitenwänden verwendet, um die Beständigkeit bei Zuverlässigkeitstests zu verbessern.Advantages of some embodiments described include that the solder with Ni (or other metal) has a larger dimension than a top of the Cu pillar. An exemplary UBM etch process induces Ni overhang and Cu-pillar constriction. The Ni overhang provides for a larger contact area and has stronger adhesion to or on a composite material, such as underfill or composite material (molding compound). The exemplary ladder-bump structure has a wider lower than upper dimension of Ni and the Cu-pillar crimp profile can reduce Extremely Low-k Dielectric (ELK), passivation, UBM, and polyimide (PI) stress. In addition, the illustrated embodiments provide a larger contact area for copper pillar / composite adhesion enhancement. Another advantage may be that the Cu pillar does not have a conventional inversion tin (IT) coating and instead uses copper oxide (CuO) on the sidewalls to improve reliability testing reliability.

Die folgenden Druckschriften beziehen sich auf Verfahren zum Herstellen von Bump-Strukturen: US 2011/0285 023 A1 , US 2006/0223 313 A1 , US 2012/0049 346 A1 , US 2012/0007 230 A1 The following references relate to methods for making bump structures: US 2011/0285 023 A1 . US 2006/0223 313 A1 . US 2012/0049 346 A1 . US 2012/0007 230 A1

Claims (5)

Verfahren zum Ausbilden einer Bump-Struktur, umfassend: Ausbilden einer Under-Bump-Metallurgy(UBM)-Struktur (14) auf einem Substrat (12); Ausbilden eines Kupfer-Pillars (16) auf der UBM-Struktur (14), wobei der Kupfer-Pillar (16) so gestaltet ist, dass er ein sich verjüngendes bogenförmiges Profil (22) aufweist, wobei die Seitenwände des Kupfer-Pillars (16) entlang der gesamten Länge des Kupfer-Pillars konkav sind; Ausbilden einer Metallkappe (18) auf dem Kupfer-Pillar (16); und Ausbilden einer Lotstruktur (20) auf der Metallkappe (18); wobei die Unterseite (24) des Kupfer-Pillars (16), die der UBM-Struktur (14) zugewandt ist, breiter ist als seine Oberseite (26), die der Metallkappe (18) zugewandt ist; und die Metallkappe breiter ist als die Oberseite des Kupfer-Pillars, wo der Kupfer-Pillar (16) an die Metallkappe (18) angrenzt; wobei das Ausbilden des Kupfer-Pillars, der Metallkappe und der Lotstruktur ferner umfasst: Aufbringen eines Fotoresists auf der UBM-Struktur und dem Substrat, Erzeugen einer Ladder-Bump-Profilöffnung in dem Fotoresist durch einen Fotolithographieprozess; Bilden des Kupfer-Pillars und der Metallkappe in der Öffnung in dem Fotoresist; Bilden der Lotstruktur auf der Metallkappe; Entfernen des Fotoresists und Ätzen der UBM-Struktur, wobei das Ätzen der UBM-Struktur auch einen Überhang der Metallkappe an der Oberseite des Kupfer-Pillars erzeugt; das Verfahren ferner umfassend: Ausbilden eines Kupferoxid-Films auf den Seitenwänden des Kupfer-Pillars (16); Montieren der Lotstruktur an einem zweiten Substrat (60) und Einbringen einer Unterfüllung (64) zwischen dem Substrat (12) der Bump-Struktur und dem zweiten Substrat (60), wobei der Kupferoxidfilm an der Unterfüllung (64) haftet.A method of forming a bump structure, comprising: forming an underbump metallurgy (UBM) structure ( 14 ) on a substrate ( 12 ); Forming a copper pillar ( 16 ) on the UBM structure ( 14 ), the copper pillar ( 16 ) is designed so that it has a tapered arcuate profile ( 22 ), wherein the side walls of the copper pillar ( 16 ) are concave along the entire length of the copper pillar; Forming a metal cap ( 18 ) on the copper pillar ( 16 ); and forming a solder structure ( 20 ) on the metal cap ( 18 ); where the bottom ( 24 ) of the copper pillar ( 16 ), the UBM structure ( 14 ) is wider than its top ( 26 ), the metal cap ( 18 facing); and the metal cap is wider than the top of the copper pillar, where the copper pillar ( 16 ) to the metal cap ( 18 ) adjoins; wherein forming the copper pillar, the metal cap, and the solder structure further comprises: applying a photoresist to the UBM structure and the substrate, creating a ladder bump profile opening in the photoresist through a photolithography process; Forming the copper pillar and the metal cap in the opening in the photoresist; Forming the solder structure on the metal cap; Removing the photoresist and etching the UBM structure, wherein the etching of the UBM structure also creates an overhang of the metal cap at the top of the copper pillar; the method further comprising: forming a copper oxide film on the sidewalls of the copper pillar ( 16 ); Mounting the solder structure on a second substrate ( 60 ) and introducing an underfill ( 64 ) between the substrate ( 12 ) of the bump structure and the second substrate ( 60 ), wherein the copper oxide film on the underfill ( 64 ) liable. Verfahren nach Anspruch 1, wobei das Verhältnis der Breite (38) des Kupfer-Pillars (16) auf einer halben Höhe des Kupfer-Pillars (16) zur Breite (36) der Unterseite (24) des Kupfer-Pillars (16) zwischen ca. 0,9 und ca. 0,93 beträgt.Method according to claim 1, wherein the ratio of the width ( 38 ) of the copper pillar ( 16 ) at half the height of the copper pillar ( 16 ) to the width ( 36 ) of the underside ( 24 ) of the copper pillar ( 16 ) is between about 0.9 and about 0.93. Verfahren nach Anspruch 1, wobei das Verhältnis der Breite (40) des Kupfer-Pillars (16) auf einer viertel Höhe des Kupfer-Pillars, gemessen von seiner Oberseite (26), zur Breite (36) der Unterseite (24) des Kupfer-Pillars zwischen ca. 0,92 und ca. 0,94 beträgt.Method according to claim 1, wherein the ratio of the width ( 40 ) of the copper pillar ( 16 ) at a quarter height of the copper pillar measured from its top ( 26 ), to the width ( 36 ) of the underside ( 24 ) of the copper pillar is between about 0.92 and about 0.94. Verfahren nach einem der vorangehenden Ansprüche, wobei die Metallkappe (18) aus Nickel gebildet ist. Method according to one of the preceding claims, wherein the metal cap ( 18 ) is formed of nickel. Verfahren nach einem der vorangehenden Ansprüche, wobei Seitenwände des Kupfer-Pillars (16) frei von irgendeiner Zinnbeschichtung sind.Method according to one of the preceding claims, wherein side walls of the copper pillar ( 16 ) are free from any tin coating.
DE102013105400.5A 2012-09-18 2013-05-27 Method of forming a bump structure Active DE102013105400B4 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201261702624P 2012-09-18 2012-09-18
US61/702,624 2012-09-18
US201261707609P 2012-09-28 2012-09-28
US201261707644P 2012-09-28 2012-09-28
US201261707442P 2012-09-28 2012-09-28
US61/707,442 2012-09-28
US61/707,644 2012-09-28
US61/707,609 2012-09-28
US13/734,811 US10008459B2 (en) 2012-09-18 2013-01-04 Structures having a tapering curved profile and methods of making same
US13/734,811 2013-01-04

Publications (2)

Publication Number Publication Date
DE102013105400A1 DE102013105400A1 (en) 2014-03-20
DE102013105400B4 true DE102013105400B4 (en) 2018-04-05

Family

ID=50181860

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013105400.5A Active DE102013105400B4 (en) 2012-09-18 2013-05-27 Method of forming a bump structure

Country Status (1)

Country Link
DE (1) DE102013105400B4 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051954A1 (en) 2004-09-07 2006-03-09 Siliconware Precision Industries Co, Ltd. Bump structure of semiconductor package and method for fabricating the same
US20060223313A1 (en) 2005-04-01 2006-10-05 Agency For Science, Technology And Research Copper interconnect post for connecting a semiconductor chip to a substrate and method of fabricating the same
US20110285023A1 (en) 2010-05-20 2011-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate Interconnections having Different Sizes
US20120007230A1 (en) 2010-07-08 2012-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive bump for semiconductor substrate and method of manufacture
US20120012997A1 (en) 2010-07-13 2012-01-19 Taiwan Semiconductor Manufacturing Company, Ltd. Recessed Pillar Structure
US20120049346A1 (en) 2010-08-30 2012-03-01 Taiwan Semiconductor Manufacturing Company, Ltd. Pillar Bumps and Process for Making Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051954A1 (en) 2004-09-07 2006-03-09 Siliconware Precision Industries Co, Ltd. Bump structure of semiconductor package and method for fabricating the same
US20060223313A1 (en) 2005-04-01 2006-10-05 Agency For Science, Technology And Research Copper interconnect post for connecting a semiconductor chip to a substrate and method of fabricating the same
US20110285023A1 (en) 2010-05-20 2011-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate Interconnections having Different Sizes
US20120007230A1 (en) 2010-07-08 2012-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive bump for semiconductor substrate and method of manufacture
US20120012997A1 (en) 2010-07-13 2012-01-19 Taiwan Semiconductor Manufacturing Company, Ltd. Recessed Pillar Structure
US20120049346A1 (en) 2010-08-30 2012-03-01 Taiwan Semiconductor Manufacturing Company, Ltd. Pillar Bumps and Process for Making Same

Also Published As

Publication number Publication date
DE102013105400A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US10008459B2 (en) Structures having a tapering curved profile and methods of making same
DE102013103465B4 (en) Terminal structure with reduced voltage for integrated circuits
DE102016100279B4 (en) OPENING IN THE PAD FOR BONDING AN INTEGRATED PASSIVE DEVICE IN AN INFO PACKAGE
DE69632969T2 (en) Method of forming solder bumps and solder bump structure
DE102011016361B4 (en) Wafer-level chip-scale package device with bump units configured to reduce stress-related failures
DE102011013225A1 (en) Advanced Wafer Level Packaging (WLP) for improved temperature cycling, drop and high current applications
DE10125035A1 (en) Semiconductor device
DE102006036798B4 (en) Electronic component and method for manufacturing
DE112004000360T5 (en) Two-metal stud bumping for flip-chip applications
DE10250636A1 (en) Semiconductor structure used in semiconductor wafer processing, includes conductive layer having specific portion extended beyond edge of semiconductor chip having a micromechanical device
DE102011105354A1 (en) Device with bump units comprising a barrier metal.
DE102012219330A1 (en) A semiconductor device and method for forming bump structures with a protective layer
DE102005040213A1 (en) Manufacturing semiconductor device involves depositing photosensitive layer to cover exposed portion of electrode, and subjecting photosensitive layer to photolithography to partially remove photosensitive layer
DE102016101089B4 (en) Multiple impact process for bonding
DE102019128619A1 (en) SEMICONDUCTOR DEVICE AND METHOD FOR THEIR PRODUCTION
DE102009010885B4 (en) Metallization system of a semiconductor device with metal columns with a smaller diameter at the bottom and manufacturing method thereof
DE10158809A1 (en) Production of a conducting strip on a passivated substrate comprises applying mask to the substrate, structuring the mask to form an opening, providing a conducting strip in the opening, removing the mask and encasing the conducting strip
DE10146353A1 (en) A solder bump structure and a method of making the same
DE102013105400B4 (en) Method of forming a bump structure
DE102012107876A1 (en) Support plate, device with carrier plate and method for producing a carrier plate
DE102014019169A1 (en) Housing with a substrate with embedded metal trace overlaps from joint
DE102014101030B4 (en) Barrier structures between external electrical connection parts and the corresponding process
DE10239081B4 (en) Method for producing a semiconductor device
DE10241589A1 (en) Process for solder-stop structuring protrusions on wafers such as three dimensional contact structures for improving integration comprises depositing a resist on the three dimensional structure, and further processing
DE102019117917A1 (en) BONDING STRUCTURES IN SEMICONDUCTOR PACKAGES AND METHOD FOR THEIR PRODUCTION

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01L0023482000

Ipc: H01L0021600000

R018 Grant decision by examination section/examining division
R020 Patent grant now final