DE102013016487B4 - Process for the preparation of metal-N-heterocyclic carbene complexes - Google Patents

Process for the preparation of metal-N-heterocyclic carbene complexes Download PDF

Info

Publication number
DE102013016487B4
DE102013016487B4 DE102013016487.7A DE102013016487A DE102013016487B4 DE 102013016487 B4 DE102013016487 B4 DE 102013016487B4 DE 102013016487 A DE102013016487 A DE 102013016487A DE 102013016487 B4 DE102013016487 B4 DE 102013016487B4
Authority
DE
Germany
Prior art keywords
metal
chain
group
radical
μmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102013016487.7A
Other languages
German (de)
Other versions
DE102013016487A1 (en
DE102013016487B8 (en
Inventor
A.Stephen K. Hashmi
Christoph Hubbert
Matthias Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HASHMI, A. STEPHEN K., PROF. DR., DE
Original Assignee
Universitaet Heidelberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet Heidelberg filed Critical Universitaet Heidelberg
Priority to DE102013016487.7A priority Critical patent/DE102013016487B8/en
Publication of DE102013016487A1 publication Critical patent/DE102013016487A1/en
Publication of DE102013016487B4 publication Critical patent/DE102013016487B4/en
Application granted granted Critical
Publication of DE102013016487B8 publication Critical patent/DE102013016487B8/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/12Gold compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/189Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms containing both nitrogen and phosphorus as complexing atoms, including e.g. phosphino moieties, in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/02Formation or introduction of functional groups containing oxygen of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/008Methods or theories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/18Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

Verfahren zur Herstellung von Metall-N-heterocyclischen Carben-Komplexen (Metall-NHC-Komplexen) mittels modularer Dreikomponenten-Templatsynthese, umfassend die Umsetzung einer Metallligandverbindung MLmL'n mit der Formel (II), eines CH-aziden Isocyanids mit der allgemeinen Formel (III) und eines Imins mit der allgemeinen Formel (IV).wobei M aus Au, Rh, Ir oder Ru ausgewählt ist, L und L' ein für das jeweilige Metall geeigneter Ligand sind, welcher durch die Koordination auch m und n, die Anzahl der Liganden, vorgibt, wobei m und n jeweils 0, 1, 2, 3 oder 4 sind, Ar aus einer un-, mono- oder disubstituierten Phenylgruppe ausgewählt ist, wobei die Substituenten unabhängig voneinander aus der Gruppe α, bestehend aus einem Wasserstoffatom, einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest, einem (C1-C15)-Thioalkylrest, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome aufweisen kann, einem (C1-C15)-Alkoxyrest, einer Trifluormethylgruppe, Brom, Chlor und Fluor ausgewählt sind, Ar' aus einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest oder aus einer un-, mono- oder disubstituierten Phenylgruppe ausgewählt ist, wobei die Substituenten unabhängig voneinander aus der Gruppe α, bestehend aus einem Wasserstoffatom, einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest, einem (C1-C15)-Thioalkylrest, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome aufweisen kann, einem (C1-C15)-Alkoxyrest, einer Trifluormethylgruppe, Brom, Chlor und Fluor ausgewählt sind, R aus einem geradkettigen oder verzweigtkettigen, unsubstituierten oder substituierten (C1-C15)-Alkylrest, wobei die Substituenten terminale Phenylreste sein können und die Alkylreste durch Etherverbindungen verknüpft sein können, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome, wie beispielsweise O oder S, aufweisen kann, einer un-, mono- oder disubstituierten Phenyl- oder Benzylgruppe ausgewählt sind, wobei die Substituenten unabhängig voneinander aus der Gruppe α ausgewählt sind, oder R für einen Alkylenlinker steht, an dem wiederum endständig eine Gruppe gemäß Formel (I) hängt, oder R für einen Alkylenlinker steht, an dem endständig eine Phosphan-Einheit vorliegt, die gegebenenfalls Metall-koordiniert sein kann, ...Process for the preparation of metal-N-heterocyclic carbene complexes (metal NHC complexes) by means of modular three-component template synthesis, comprising reacting a metal ligand compound MLmL'n with the formula (II), of a CH-acidic isocyanide having the general formula ( III) and an imine of the general formula (IV) .Where M is selected from Au, Rh, Ir or Ru, L and L 'are a ligand suitable for the respective metal, which by coordination also m and n, the number the ligand, where m and n are each 0, 1, 2, 3 or 4, Ar is selected from an unsubstituted, mono- or disubstituted phenyl group, wherein the substituents independently of one another from the group α consisting of a hydrogen atom, a straight-chain or branched-chain (C 1 -C 15) -alkyl radical, a (C 1 -C 15) -thioalkyl radical, a (C 3 -C 15) -cycloalkyl radical which may have one or more heteroatoms, a (C 1 -C 15) -alkoxy radical, a trifluoromethyl group, Bromine, chlorine and fluo Ar 'is selected from a straight-chain or branched-chain (C 1 -C 15) -alkyl radical or from an unsubstituted, monosubstituted or disubstituted phenyl group, where the substituents independently of one another are selected from the group consisting of a hydrogen atom, a straight-chain or branched-chain (C 1 -C 15) -alkyl radical, a (C 1 -C 15) -thioalkyl radical, a (C 3 -C 15) -cycloalkyl radical which may have one or more heteroatoms, a (C 1 -C 15) -alkoxy radical, a trifluoromethyl group, bromine, chlorine and fluorine, R is selected from a straight or branched chain, unsubstituted or substituted (C 1 -C 15) alkyl radical, where the substituents may be terminal phenyl radicals and the alkyl radicals may be linked by ether compounds, a (C 3 -C 15) cycloalkyl radical containing a or a plurality of heteroatoms, such as O or S, are selected from an unsubstituted, mono- or disubstituted phenyl or benzyl group, wherein the substituents independently are each selected from the group α, or R is an alkylene linker, which in turn terminally a group of formula (I) depends, or R is an alkylene linker at the terminal of a phosphine unit is present, which optionally metal-coordinated can be, ...

Description

Die vorliegende Erfindung betrifft Metall-N-heterocyclische Carben-Komplexe (Metall-NHC-Komplexe) sowie deren Synthese. Im Unterschied zu klassischen Synthesen wird hierbei im letzten Reaktionsschritt nicht die M-CCarben Bindung geknüpft, sondern in einer modularen Dreikomponenten-Templatsynthese der Ringschluss des NHC vollzogen. Hieraus ergibt sich eine hohe Synthese-Modularität. Die erfindungsgemäß hergestellten Komplexe sind insbesondere als Katalysatoren verwendbar.The present invention relates to metal-N-heterocyclic carbene complexes (metal NHC complexes) and their synthesis. In contrast to classical syntheses, in the last reaction step, not the MC carbene bond is attached, but in a modular three-component template synthesis the ring closure of the NHC is performed. This results in a high synthesis modularity. The complexes prepared according to the invention are usable in particular as catalysts.

N-heterozyklische Carbene (NHC) sind eine der wichtigsten Ligandenklassen für Übergangsmetallkatalysatoren. Aber nicht nur in Katalysatoren, sondern auch in Flüssigkristallen, Polymeren, medizinischen Anwendungen, elektronisch aktiven Materialien, Nanopartikeln und der supramolekularen Chemie, der Selbstassemblierung sowie der Photochemie kommen NHC-Komplexe zur Anwendung. Trotz der großen Anzahl an unterschiedlichen Anwendungen bleibt die Synthese von Liganden und somit auch von NHC-Komplexen nach wie vor eine herausfordernde Aufgabe.N-heterocyclic carbenes (NHCs) are one of the most important ligand classes for transition-metal catalysts. But not only in catalysts, but also in liquid crystals, polymers, medical applications, electronically active materials, nanoparticles and supramolecular chemistry, self-assembly and photochemistry NHC complexes are used. Despite the large number of different applications, the synthesis of ligands and thus of NHC complexes remains a challenging task.

Im Stand der Technik werden solche Metall-NHC-Komplexe üblicherweise durch Herstellung eines NHC-Vorläufers und anschließender Transmetallierung hergestellt; vgl. F. E. Hahn, ChemCatChem, 2013, 5, 419–430. Derartige Synthesen sind jedoch wenig modular. Zudem ist ein hoher Syntheseaufwand erforderlich.In the prior art, such metal-NHC complexes are usually prepared by preparing an NHC precursor followed by transmetallation; see. F.E. Hahn, ChemCatChem, 2013, 5, 419-430. However, such syntheses are not very modular. In addition, a high synthesis effort is required.

Rieger, D. et al., Inorg. Chim. Acta 1994, 222, S. 275–290, offenbart eine neuartige Reaktion von Metall-Cyano-Komplexen zur Bereitstellung einer metallorganischen Syntheseroute zu 4-Aminoimidazolen mittels einer Vierkomponentenkondensation von Isocyaniden, Aldehyden und Iminen. Van Leusen, A. M. et al., J. Org. Chem. 1977, 42, S. 1153–1159 offenbart eine basenvermittelte Cycloaddition von Sulfonylmethylisocyaniden an Aldiminen und Imidoylchloriden zur Synthese von unterschiedlich substituierten Imidazolen. Hahn, F. E. et al., Chem. Eur. J. 2003, 9, S. 704–712, offenbart eine Templatsynthese benzannellierter, N-heterocyclischer Carbenliganden. Hahn, F. E. et al., Angew. Chem. Int. Ed. 2005, 44, S. 3759–3763) offenbart die Templatsynthese eines koordinierten Tetracarbenliganden mit Kronenethertopologie. Hashmi, S. K. et al., Adv. Synth. Catal. 2010, 352, S. 1315–1337, offenbart die Strukturen offenkettiger Gold(I) Carbene und deren Anwendung in der Gold-katalysierten Phenolsynthese und der Hydratisierung von Alkinen.Rieger, D. et al., Inorg. Chim. Acta 1994, 222, pp. 275-290 discloses a novel reaction of metal-cyano complexes to provide an organometallic synthetic route to 4-aminoimidazoles by means of a four-component condensation of isocyanides, aldehydes and imines. Van Leusen, A.M. et al., J. Org. Chem. 1977, 42, pp. 1153-1159 discloses a base-mediated cycloaddition of sulfonylmethyl isocyanides to aldimines and imidoyl chlorides for the synthesis of differently substituted imidazoles. Hahn, F.E. et al., Chem. Eur. J. 2003, 9, pp. 704-712, discloses a template synthesis of benzannellated N-heterocyclic carbene ligands. Hahn, F.E. et al., Angew. Chem. Int. Ed. 2005, 44, p. 3759-3763) discloses the template synthesis of a coordinated tetracarbene ligand with crown ether topology. Hashmi, S.K. et al., Adv. Synth. Catal. 2010, 352, pp. 1315-1337, discloses the structures of open-chain gold (I) carbenes and their application in gold-catalyzed phenol synthesis and the hydration of alkynes.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Syntheseverfahren bereitzustellen, welches den Zugang zu Metall-NHC-Komplexen unter milden Bedingungen ermöglichen soll. Dabei soll eine hohe Modularität des Verfahrens gewährleistet sein, um so eine effiziente Anwendbarkeit in (Katalyse-)Screenings zu gewährleisten. Der Zugang zu den organischen Edukten sollte einfach und effektiv sein, da nur so die Grundvoraussetzung für eine anwendungsfreundliche Synthese von NHC-Komplexen sichergestellt ist.The present invention is therefore based on the object to provide a synthesis method which should allow access to metal NHC complexes under mild conditions. In this case, a high modularity of the method should be ensured in order to ensure efficient applicability in (catalysis) screenings. Access to the organic reactants should be simple and effective, as this is the only prerequisite for the convenient synthesis of NHC complexes.

Diese Aufgabe wird durch die in den Ansprüchen gekennzeichneten Ausführungsformen gelöst.This object is achieved by the embodiments characterized in the claims.

Insbesondere wird ein Verfahren zur Herstellung von Metall-N-heterocyclischen Carben-Komplexen (Metall-NHC-Komplexen) mittels modularer Dreikomponenten-Templatsynthese bereitgestellt, umfassend die Umsetzung einer Metallligandverbindung MLmL'n mit der Formel (II), eines CH-aziden Isocyanids mit der allgemeinen Formel (III) und eines Imins, vorzugsweise eines Arylimins, mit der allgemeinen Formel (IV).

Figure DE102013016487B4_0002
wobei
M aus Au, Rh, Ir oder Ru ausgewählt ist,
L und L' ein für das jeweilige Metall geeigneter Ligand sind, welcher durch die Koordination auch m und n, die Anzahl der Liganden, vorgibt, wobei m und n jeweils 0, 1, 2, 3 oder 4 sind,
Ar aus einer un-, mono- oder disubstituierten Phenylgruppe ausgewählt ist, wobei die Substituenten unabhängig voneinander aus der Gruppe α, bestehend aus einem Wasserstoffatom, einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest, einem (C1-C15)-Thioalkylrest, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome, wie beispielsweise O oder S, aufweisen kann, einem (C1-C15)-Alkoxyrest, einer Trifluormethylgruppe, Brom, Chlor und Fluor, vorzugsweise aus (C1-C6)-Alkyl, (C1-C6)-Alkoxy, Brom, Chlor und Fluor, ausgewählt sind,
Ar' aus einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest oder aus einer un-, mono- oder disubstituierten Phenylgruppe, vorzugsweise aus einer solchen un-, mono- oder disubstituierten Phenylgruppe, ausgewählt ist, wobei die Substituenten unabhängig voneinander aus der Gruppe α, bestehend aus einem Wasserstoffatom, einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest, einem (C1-C15)-Thioalkylrest, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome, wie beispielsweise O oder S, aufweisen kann, einem (C1-C15)-Alkoxyrest, einer Trifluormethylgruppe, Brom, Chlor und Fluor, vorzugsweise aus (C1-C6)-Alkyl, (C1-C6)-Alkoxy, Brom, Chlor und Fluor, ausgewählt sind,
R aus einem geradkettigen oder verzweigtkettigen, unsubstituierten oder substituierten (C1-C15)-Alkylrest, wobei die Substituenten terminale Phenylreste sein können und die Alkylreste durch Etherverbindungen verknüpft sein können, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome, wie beispielsweise O oder S, aufweisen kann, einer un-, mono- oder disubstituierten Phenyl- oder Benzylgruppe ausgewählt ist, wobei die Substituenten unabhängig voneinander aus der Gruppe α ausgewählt sind, oder
R für einen Alkylenlinker steht, an dem wiederum endständig eine Gruppe gemäß Formel (I) hängt, oder
R für einen Alkylenlinker steht, an dem endständig eine Phosphan-Einheit vorliegt, die gegebenenfalls Metall-, insbesondere Gold-koordiniert sein kann,
oder
Ar' und R zusammen unter Ringschluß für eine 3,4-Dihydroisochinolin-Einheit stehen, und
EWG für eine elektronenziehende Gruppe, insbesondere für eine REWG-SO2-, eine Ester-, eine Phosphonat-, eine Benzotriazol- oder eine Nitro-Gruppe, vorzugsweise für REWG-SO2-, steht, wobei REWG CF3 (Triflyl) oder CH3C6H5 (Tosyl) darstellt,
wodurch Metall-Imidazol-2-yliden-Komplexe gemäß der allgemeinen Formel (I) erhalten werden.In particular, there is provided a process for the preparation of metal-N-heterocyclic carbene complexes (metal-NHC complexes) by modular three-component template synthesis comprising reacting a metal ligand compound ML m L ' n with the formula (II), a CH-acid Isocyanide having the general formula (III) and an imine, preferably an arylimine, having the general formula (IV).
Figure DE102013016487B4_0002
in which
M is selected from Au, Rh, Ir or Ru,
L and L 'are a ligand suitable for the respective metal, which by coordination also predetermines m and n, the number of ligands, where m and n are each 0, 1, 2, 3 or 4,
Ar is selected from an unsubstituted, monosubstituted or disubstituted phenyl group, wherein the substituents independently of one another from the group α, consisting of a hydrogen atom, a straight-chain or branched-chain (C 1 -C 15 ) alkyl radical, a (C 1 -C 15 ) Thioalkyl radical, a (C 3 -C 15 ) -cycloalkyl radical which may have one or more heteroatoms, such as, for example, O or S, a (C 1 -C 15 ) -alkoxy radical, a trifluoromethyl group, bromine, chlorine and fluorine, preferably selected from (C 1 -C 6 ) -alkyl, (C 1 -C 6 ) -alkoxy, bromine, chlorine and fluorine,
Ar 'is selected from a straight-chain or branched-chain (C 1 -C 15 ) -alkyl radical or from an unsubstituted, monosubstituted or disubstituted phenyl group, preferably from such an unsubstituted, monosubstituted or disubstituted phenyl group, where the substituents are independently of one another the group α consisting of a hydrogen atom, a straight-chain or branched-chain (C 1 -C 15 ) -alkyl radical, a (C 1 -C 15 ) -thioalkyl radical, a (C 3 -C 15 ) -cycloalkyl radical having one or more heteroatoms , such as O or S, a (C 1 -C 15 ) alkoxy, a trifluoromethyl group, bromine, chlorine and fluorine, preferably of (C 1 -C 6 ) alkyl, (C 1 -C 6 ) - Alkoxy, bromine, chlorine and fluorine, are selected,
R is selected from a straight-chain or branched-chain, unsubstituted or substituted (C 1 -C 15 ) -alkyl radical, where the substituents can be terminal phenyl radicals and the alkyl radicals can be linked by ether compounds, a (C 3 -C 15 ) -cycloalkyl radical which contains an or a plurality of heteroatoms, such as O or S, an unsubstituted, mono- or disubstituted phenyl or benzyl group is selected, wherein the substituents are independently selected from the group α, or
R is an alkylene linker to which in turn terminally a group according to formula (I) depends, or
R is an alkylene linker at the terminal of which there is a phosphine unit which may optionally be metal-coordinated, in particular gold-coordinated,
or
Ar 'and R together are ring-closed for a 3,4-dihydroisoquinoline moiety, and
EWG is an electron-withdrawing group, in particular an R EWG -SO 2 , an ester, a phosphonate, a benzotriazole or a nitro group, preferably for R EWG -SO 2 -, wherein R EWG CF 3 ( Triflyl) or CH 3 C 6 H 5 (tosyl),
whereby metal-imidazol-2-ylidene complexes according to the general formula (I) are obtained.

Bei der Templatsynthese findet der Ringschluss des NHC-Liganden nach der Bildung der M-CCarben-Bindung statt. Die Schlüsselintermediate bei dieser Strategie sind Metall-Isocyanid-Komplexe. Durch Koordination eines Isocyanids an ein Metall wird das CIsocyanid-Atom stärker polarisiert, so dass ein Ringschluss unter milden Bedingungen ermöglicht wird. Beispiele von Templatsynthesen, die nicht über eine Isonitrilzwischenstufe verlaufen, sind bis heute nicht bekannt.In the template synthesis, the ring closure of the NHC ligand occurs after the formation of the MC carbene bond. The key intermediates in this strategy are metal-isocyanide complexes. By coordination of an isocyanide to a metal, the C isocyanide atom is more polarized, so that a ring closure is possible under mild conditions. Examples of template syntheses that do not involve an isonitrile intermediate are still unknown.

Im Rahmen des erfindungsgemäßen Verfahrens wurde das M d3 / a1 + 2-Schnittmuster angewandt, um die oben genannten Anforderungen an die Synthese zu erfüllen.In the context of the method according to the invention was the M d3 / a1 + 2 pattern applied to meet the above-mentioned requirements of the synthesis.

Figure DE102013016487B4_0003
Figure DE102013016487B4_0003

Die benötigten CH-aziden Isocyanide (vgl. vorstehende Formel (III)) sind entweder kommerziell erhältlich oder können einfach synthetisiert werden. So können die Isocyanide, wenn beispielsweise Tosylat als elektronenziehende Gruppe vorgesehen wird, in einfacher Weise aus einem Arylaldehyd, Sulfinsäure und Formamid unter Herstellung eines Formamid-Derivats und anschließender Reaktion mit POCl3 unter Dehydratisierung hergestellt werden. Die Imine (vgl. vorstehende Formel (IV)) sind durch eine einfache Kondensationsreaktion aus Aldehyden und primären Aminen in großen Mengen synthetisierbar.The required CH-acidic isocyanides (see the above formula (III)) are either commercially available or can be easily synthesized. Thus, when, for example, tosylate is provided as the electron-withdrawing group, the isocyanides can be easily prepared from an aryl aldehyde, sulfinic acid and formamide to produce a formamide derivative and then reacting with POCl 3 under dehydration. The imines (see formula (IV) above) can be synthesized in large quantities by a simple condensation reaction of aldehydes and primary amines.

Als Metallligand-Ausgangsverbindung (II) kommen die dem Fachmann bekannten Au, Rh, Ir bzw. Ru-Komplexe in Frage. Die Liganden L und L' und somit m und n liegen im Kenntnisbereich des Fachmanns. Neben den klassischen Liganden wie Halogeniden und cp (Cyclopentadienyl) bzw. cp* und Cymene kommen auch koordinierende Lösungsmittel wie THF, THT, DMS, etc. in Frage. Suitable metal ligand starting compounds (II) are the Au, Rh, Ir or Ru complexes known to the person skilled in the art. The ligands L and L 'and thus m and n are within the skill of the art. In addition to the classical ligands such as halides and cp (cyclopentadienyl) or cp * and Cymene also coordinating solvents such as THF, THT, DMS, etc. come into question.

Als Metallligand-Ausgangsverbindung (II) können beispielsweise (THT)AuCl, (DMS)AuCl, (RhCl2(cp*)]-Dimer, (IrCl2(cp*)]-Dimer, [RuCl2(cymene)]-Dimer, [RuCl2(benzol)]-Dimer oder [RuCl2(toluol)]-Dimer eingesetzt werden.For example, (THT) AuCl, (DMS) AuCl, (RhCl 2 (cp *)) dimer, (IrCl 2 (cp *)) dimer, [RuCl 2 (cymene)] dimer can be used as metal ligand starting compound (II) , [RuCl 2 (benzene)] - dimer or [RuCl 2 (toluene)] - dimer can be used.

Als Lösungsmittel können für das erfindungsgemäße Syntheseverfahren insbesondere Aceton, Acetonitril, Benzol, Toluol, Tetrachlorkohlenstoff, Chlorbenzol, Chloroform, Cyclohexan, 1,2-Dichlorethan, Diethylether, Diethylenglycoldimethylester, DME (1,2-Dimethoxyethan), Dimethylformamid, Dimethylsulfoxid, Dioxan, Essigester, Hexamethylphosphoramid, Hexamethylphosphortriamid, Pentan, Hexan, Cyclohexan, Methyl-tert-Butylether, N-Methyl-2-pyrrolidinon, Nitromethan, Petrolether, Tetrahydrofuran, Toluol oder Xylole verwendet werden.Suitable solvents for the synthesis process according to the invention in particular acetone, acetonitrile, benzene, toluene, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, Diethylenglycoldimethylester, DME (1,2-dimethoxyethane), dimethylformamide, dimethyl sulfoxide, dioxane, ethyl acetate , Hexamethylphosphoramide, hexamethylphosphoric triamide, pentane, hexane, cyclohexane, methyl tert-butyl ether, N-methyl-2-pyrrolidinone, nitromethane, petroleum ether, tetrahydrofuran, toluene or xylenes.

Für die Entwicklung des erfindungsgemäßen Verfahrens wurden die Gold-Isocyanid-Komplexe als Modell verwendet. Diese haben den Vorteil, dass aufgrund der linearen Koordination der Liganden am Gold die Reaktion nicht durch sterische Hinderung anderer Liganden unterdrückt werden kann. Auch liegen in zweifach koordinierten Gold-Komplexen keine freien Koordinationsstellen am Zentralatom vor, an denen Nebenreaktionen katalysiert werden könnten. Außerdem sind in den NMR-Spektren keine zusätzlichen Signale vorhanden, die eventuell mit Produktsignalen überlagern können.For the development of the method according to the invention, the gold-isocyanide complexes were used as a model. These have the advantage that due to the linear coordination of the ligands on the gold, the reaction can not be suppressed by steric hindrance of other ligands. Also, in two-coordinate gold complexes there are no vacant coordination sites on the central atom at which side reactions could be catalyzed. In addition, no additional signals are present in the NMR spectra, which may possibly overlap with product signals.

Im Rahmen der vorliegenden Erfindung konnte die Synthese der Gold-NHC-Komplexe 4 in einer Eintopf-Reaktion verwirklicht werden. Vorzugsweise wurde dabei (THT)AuCl 1a bzw. (DMS)AuCl 1b und ein Isocyanid 2a bzw. 2b in Acetonitril 1 h bei Raumtemperatur gerührt. Der als weißer Feststoff ausgefallene Isocyanid-Komplex löst sich bei der Zugabe eines Imins 3 sofort auf, um nach ca. 5 Minuten als Gold-NHC-Komplex 4 erneut auszufallen. Um vollständigen Umsatz zu erzielen, wird üblicherweise die Suspension noch für eine weitere Stunde bei Raumtemperatur gerührt.In the context of the present invention, the synthesis of the gold NHC complexes 4 in a one-pot reaction could be realized. Preferably (THT) AuCl 1a or (DMS) AuCl 1b and an isocyanide 2a or 2b were stirred in acetonitrile for 1 h at room temperature. The precipitated as a white solid isocyanide complex dissolves immediately upon addition of an imine 3, after about 5 minutes as gold-NHC complex 4 again precipitate. In order to achieve complete conversion, the suspension is usually stirred for a further hour at room temperature.

Durch die Modularität des erfindungsgemäßen Verfahrens können Gold-Komplexe mit verschiedenen trisubstituierten ungesättigten NHC-Liganden in guten bis sehr guten Ausbeuten synthetisiert werden. Das erfindungsgemäße Verfahren ermöglicht den Zugang zu NHC-Liganden mit symmetrisch (4a–f) und unsymmetrisch (4g–h) Ar/Ar'-substituiertem Rückgrat. Zudem gestattet das erfindungsgemäße Verfahren, dass das N-Atom lineare (4c–d), verzweigte (4a) und cyclische (4f) Alkyl- sowie Aryl-Substituenten (4b) tragen kann. Aber auch annellierte NHC-Liganden (4e) sind auf diesem Wege zugänglich. Außerdem ist die Synthese von zweikernigen NHC/NHC-(4i) sowie Phosphan/NHC-Komplexen (4j) möglich.Due to the modularity of the process according to the invention, gold complexes with various trisubstituted unsaturated NHC ligands can be synthesized in good to very good yields. The process of the invention allows access to NHC ligands with symmetrical (4a-f) and unsymmetrical (4g-h) Ar / Ar'-substituted backbone. In addition, the process according to the invention allows the N atom to carry linear (4c-d), branched (4a) and cyclic (4f) alkyl and aryl substituents (4b). However, annellated NHC ligands (4e) are also accessible in this way. In addition, the synthesis of dinuclear NHC / NHC (4i) and phosphine / NHC complexes (4j) is possible.

Figure DE102013016487B4_0004
Figure DE102013016487B4_0004

Um den Beweis zu erbringen, dass es sich tatsächlich um eine NHC-Templatsynthese handelt und nicht um eine Heterozyklensynthese, kann neben der Massenspektrometrie auch die NMR-Spektroskopie beitragen. Im 1H-NMR-Spektrum findet man ein stark tieffeldverschobenes (δ > 10 ppm) Singulet, das keine Kreuzpeaks im HSQC zeigt. Dies ist ein deutlicher Hinweis auf eine NH-Gruppe, wie sie in den Komplexen 4a–j vorliegt. Der Heterozyklus würde hingegen ein Singulett im Bereich δ = 8–10 ppm aufweisen, der außerdem einen Kreuzpeak im HSQC aufweisen würde. Ein solches Signal wurde in keinem der Spektren beobachtet. Das Signal bei δ > 10 ppm kann daher als Marker für die Synthese oder die weitere Umsetzung von trisubstituierten NHC-Komplexen benutzt werden.To prove that it is indeed a NHC template synthesis and not a heterocyclic synthesis, in addition to the mass spectrometry and NMR spectroscopy contribute. In the 1 H NMR spectrum one finds a strongly downfield shifted (δ> 10 ppm) singlet, which shows no cross peaks in the HSQC. This is a clear indication of an NH group as it exists in the complexes 4a-j. In contrast, the heterocycle would have a singlet in the range δ = 8-10 ppm, which would also have a cross peak in the HSQC. Such a signal was not observed in any of the spectra. The signal at δ> 10 ppm can therefore be used as a marker for the synthesis or further implementation of trisubstituted NHC complexes.

Der endgültige Beweis, dass es sich um eine NHC-Templatsynthese und nicht um eine Imidazolsynthese mit anschließender Au-N-Koordinierung handelt, kann durch Röntgenkristallstrukturanalyse erbracht werden. Die Bindungslängen und -winkel zeigen die typischen Werte eines Gold-NHC-Komplexes. Auf Grund des unsymmetrischen Substitutionsmusters kommt es jedoch zu einer leichten Verzerrung des NHC-Rings und zu einer leichten Verkippung des NHC in der Ringebene.The final proof that this is an NHC template synthesis and not an imidazole synthesis followed by Au-N coordination can be obtained by X-ray crystal structure analysis. The bond lengths and angles show the typical values of a gold-NHC complex. Due to the asymmetrical substitution pattern, however, there is a slight distortion of the NHC ring and a slight tilting of the NHC in the ring plane.

Obwohl die Isocyanid-Komplexe von Rhodium und Iridium keine ausreichende Aktivierung für die „klassische” Templatsynthese von NHC-Komplexen aufweisen, können unter angepassten Reaktionsbedingungen die Rhodium- und Iridium-NHC-Komplexe hergestellt werden. Hier werden zunächst in einem ersten Schritt die Rhodium- und Iridium-Isocyanid-Komplexe hergestellt, welche dann in einem zweiten Schritt unter Verwendung einer Aminbase, vorzugsweise Triethylamin, in die Rhodium- und Iridium-NHC-Komplexe überführt werden. Beispielhaft werden nachstehend die Rhodium- und Iridium-NHC-Komplexe 7a–h bzw. 8a–h angegeben. Although the isocyanide complexes of rhodium and iridium do not have sufficient activation for the "classical" template synthesis of NHC complexes, the rhodium and iridium NHC complexes can be prepared under adapted reaction conditions. Here, the rhodium and iridium isocyanide complexes are first prepared in a first step, which are then converted in a second step using an amine base, preferably triethylamine, in the rhodium and iridium NHC complexes. The rhodium and iridium-NHC complexes 7a-h and 8a-h are given below by way of example.

Anzumerken ist, dass auf die eigentliche NHC-Synthese in der Regel eine Ligandenaustauschreaktion folgt, in der beispielsweise ein Chloro-Ligand durch das in der Reaktion entstehende Tosylat-Anion ersetzt wird. Mit Ausbeuten im Bereich von 66% bis 89% für die NH/NRAlkyl-stabilisierten NHC-Komplexe ist die Ausbeute für die Rhodium-Komplexe 7a–h etwas besser als für die entsprechenden Iridiumkomplexe 8a–h (55–78%).It should be noted that the actual NHC synthesis is generally followed by a ligand exchange reaction in which, for example, a chloro ligand is replaced by the tosylate anion formed in the reaction. With yields in the range of 66% to 89% for the NH / NR alkyl- stabilized NHC complexes, the yield for the rhodium complexes 7a-h is slightly better than for the corresponding iridium complexes 8a-h (55-78%).

Figure DE102013016487B4_0005
Figure DE102013016487B4_0005

Röntgenstrukturanalysen der Rhodium-/Iridium-NHC-Komplexe zeigen deutlich, dass es sich um tetraedrische NHC-Komplexe handelt, deren Strukturen die für diese Verbindungsklasse zu erwartenden Bindungslängen und -winkel aufweisen. Der Tosylat-Ligand ist über ein S-Atom an das Metall koordiniert.X-ray crystallographic analyzes of the rhodium / iridium NHC complexes clearly show that they are tetrahedral NHC complexes whose structures have the bond lengths and angles expected for this class of compounds. The tosylate ligand is coordinated to the metal via an S atom.

Ruthenium-NHC-Komplexe 10a–f können ebenfalls trotz der geringen CN-Aktivierung durch das Metall synthetisiert werden. Auch hier wird zunächst in einem ersten Schritt der Ruthenium-Isocyanid-Komplex hergestellt, welcher dann in einem zweiten Schritt unter Verwendung einer Aminbase, vorzugsweise Triethylamin, in einen Ruthenium-NHC-Komplex überführt wird.Ruthenium-NHC complexes 10a-f can also be synthesized by the metal despite the low CN activation. Again, first in a first step, the ruthenium-isocyanide complex is prepared, which is then converted in a second step using an amine base, preferably triethylamine, in a ruthenium-NHC complex.

Figure DE102013016487B4_0006
Figure DE102013016487B4_0006

Röntgenkristallstrukturanalysen der Ruthenium-NHC-Komplexe zeigen wiederum eine tetraedrische Koordinationssphäre mit dem neu entstandenen NHC sowie jeweils einem Chloro-, Cymene- und Ts-Liganden. Die Bindungswinkel und -längen liegen auch für diese Komplexe in dem für solche Verbindungen typischen Bereich.X-ray crystallographic analyzes of the ruthenium-NHC complexes again show a tetrahedral coordination sphere with the newly formed NHC and one chloro, one Cymene, and one Ts ligand. The bond angles and lengths are also in the range typical of such compounds for these complexes.

Was den Reaktionsmechanismus des erfindungsgemäßen Verfahrens betrifft, so kann man davon ausgehen, dass bei der Reaktion des Gold-Isocyanid-Komplexes eine ausreichende Aktivierung des CH-aziden Protons vorliegt, um von einem Imin deprotoniert zu werden. Die NHC-Templatsynthese beginnt also in allen Fällen mit der Deprotonierung des CH-aziden Protons unter Bildung von A. Daher ist es naheliegend, dass der Reaktionsverlauf mit Ausnahme des letzten Reaktionsschrittes der goldkatalysierten Oxazol- und Imidazolsynthese nach Ito/Hayashi entspricht; vgl. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405–6406. Anstelle der Protodemetallierung von C findet im letzten Reaktionsschritt eine Protonierung des N-Atoms unter Bildung von D statt. Der Grund für das Ausbleiben der Protodesaurierung liegt wahrscheinlich am Wechsel von einer kationischen Gold-Spezies [AuPR3]+ zu einer neutralen Gold-Spezies [AuCl]. Im finalen Reaktionsschritt wird durch Eliminierung von Sulfinsäure (für den Fall von Ts als EWG) das Produkt gebildet.As far as the reaction mechanism of the process according to the invention is concerned, it can be assumed that in the reaction of the gold-isocyanide complex there is sufficient activation of the CH-acidic proton in order to be deprotonated by an imine. Thus, in all cases, NHC template synthesis starts with the deprotonation of the CH-acidic proton to give A. Therefore, it is obvious that the course of the reaction, with the exception of the last reaction step, corresponds to the gold-catalyzed oxazole and imidazole synthesis according to Ito / Hayashi; see. Ito, M. Sawamura, T. Hayashi, J. Am. Chem. Soc. 1986, 108, 6405-6406. Instead of protodermetalation of C, in the last reaction step protonation of the N atom takes place to form D. The reason for the lack of protodesauration is probably due to the change from a cationic gold species [AuPR 3 ] + to a neutral gold species [AuCl]. In the final reaction step, the product is formed by elimination of sulfinic acid (in the case of Ts as EWG).

Figure DE102013016487B4_0007
Figure DE102013016487B4_0007

Im Rahmen der vorliegenden Erfindung wurden die trisubstituierten NHC-Liganden auch in trimere Gold-NHC-Komplexe überführt. Beispielhaft werden die Gold-NHC-Trimere 11a–c angeführt, welche in exzellenter Ausbeute gewonnen werden können.In the context of the present invention, the trisubstituted NHC ligands were also converted into trimeric gold-NHC complexes. By way of example, mention is made of the gold NHC trimers 11a-c, which can be obtained in excellent yield.

Figure DE102013016487B4_0008
Figure DE102013016487B4_0008

Figure DE102013016487B4_0009
Figure DE102013016487B4_0009

Erfindungsgemäß können die Gold-NHC-Trimere auch in tetrasubstituierte Gold-NHC-Komplexe überführt werden. Beispielhaft können ausgehend von den Gold-NHC-Trimeren 11a und 11b mit trisubstituierten NHC-Liganden die tetrasubstituierten Gold-NHC-Komplexe 12a–c in einer analogen Strategie unter angepassten Reaktionsbedingungen mit sehr guten Ausbeuten (92–96%) synthetisiert werden.According to the invention, the gold NHC trimers can also be converted into tetrasubstituted gold-NHC complexes. By way of example, starting from the gold NHC trimers 11a and 11b with trisubstituted NHC ligands, the tetrasubstituted gold NHC complexes 12a-c can be synthesized in an analogous strategy under adapted reaction conditions with very good yields (92-96%).

Figure DE102013016487B4_0010
Figure DE102013016487B4_0010

Um die katalytische Aktivität der erfindungsgemäß hergestellten Metall-NHC-Komplexe zu untersuchen, wurde die Phenolsynthese ausgehend von Substrat 13a gewählt. Zuerst wurden verschiedene Silbersalze zur Aktivierung des Katalysators 4a getestet. Hierfür erweist sich beispielsweise AgNTf2 als günstig. Mit allen Katalysatoren verläuft diese Reaktion bis zum vollständigen Umsatz des Edukts. Die Ausbeute an Produkt liegt für die Gold-Komplexe mit trisubstituierten NHC-Liganden im Bereich zwischen 51% und 69%. Einzig Katalysator 4h mit unsymmetrisch substituiertem Rückgrat am NHC-Liganden erreicht quantitative Ausbeute. Durch den vierten Substituenten am NHC steigt die Ausbeute von 69% für 4a bzw. 56% für 4c auf 80% für 12b. Die Verbesserung der Ausbeute an Phenol 14b fiel mit einer Steigerung von 69% für 4b auf 73% für 12c geringer aus als bei 12b.In order to investigate the catalytic activity of the metal-NHC complexes prepared according to the invention, the phenol synthesis starting from substrate 13a was chosen. First, various silver salts were tested to activate the catalyst 4a. For example, AgNTf 2 proves to be favorable for this purpose. With all catalysts, this reaction proceeds until complete conversion of the starting material. The yield of product for the gold complexes with trisubstituted NHC ligands ranges between 51% and 69%. Only catalyst 4h with unsymmetrically substituted backbone on the NHC ligand achieves quantitative yield. The fourth substituent on the NHC increases the yield from 69% for 4a and 56% for 4c to 80% for 12b. The improvement in the yield of phenol 14b was lower with 69% for 4b to 73% for 12c than for 12b.

Bemerkenswert ist die Auswirkung auf die Selektivität, wenn die Katalyse durch Zugabe von HNTf2 zu den Trimeren silberfrei gestartet wird. Für den Gold-NHC-Komplex mit Ph-Substituenten am N-Atom (4b bzw. 11b) ergibt sich keine Änderung des Katalyseergebnisses. Wird jedoch der jPr-substituierte (4a bzw. 11a) oder der anellierte (4e bzw. 11c) Komplex verwendet, erhält man quantitative Ausbeute des gewünschten Produkts.

Figure DE102013016487B4_0011
Tabelle 1: Ergebnisse der goldkatalysierten Phenolsynthese.
Figure DE102013016487B4_0012
Noteworthy is the effect on selectivity when catalysis is started silver-free by adding HNTf 2 to the trimers. For the gold-NHC complex with Ph substituents on the N atom (4b or 11b), there is no change in the catalysis result. However, when the j Pr-substituted (4a or 11a) or the fused (4e or 11c) complex is used, quantitative yield of the desired product is obtained.
Figure DE102013016487B4_0011
Table 1: Results of the gold-catalyzed phenol synthesis.
Figure DE102013016487B4_0012

Das erfindungsgemäße Verfahren stellt einen einfachen und modularen Zugang zu Metall-NHC-Komplexen dar, wobei die Templatsynthese unabhängig von der Aktivierung der CN-Gruppe des Isocyanids in den Vorläuferkomplexen ist. Dadurch können in einfacher und vorteilhafter Weise auch Metalle-NHC-Komplexe, die zuvor nicht über eine Templatsynthese zugänglich waren, erzeugt werden. Das erfindungsgemäße Verfahren ermöglicht nicht nur die Synthese von Gold-, sondern auch von Rhodium, Iridium- und Ruthenium-NHC-Komplexen.The process of the invention provides a simple and modular approach to metal NHC complexes, where the template synthesis is independent of the activation of the CN group of the isocyanide in the precursor complexes. As a result, it is possible in a simple and advantageous manner to also produce metal NHC complexes which were not previously accessible via template synthesis. The process according to the invention not only allows the synthesis of gold, but also of rhodium, iridium and ruthenium-NHC complexes.

Die nach dem erfindungsgemäßen Verfahren synthetisierten Gold-NHC-Komplexe können als Edukte für zyklische Gold-NHC-Trimere und Gold-Komplexe mit tetrasubstituierten NHC-Liganden verwendet werden.The gold-NHC complexes synthesized by the process according to the invention can be used as starting materials for cyclic gold NHC trimers and gold complexes with tetrasubstituted NHC ligands.

Die nach dem erfindungsgemäßen Verfahren synthetisierten Metall-NHC-Komplexe eignen sich als Katalysator, beispielsweise für die Phenolsynthese.The metal-NHC complexes synthesized by the process according to the invention are suitable as catalyst, for example for phenol synthesis.

Die Erfindung wird durch die nachstehenden Beispiele näher erläutert, ohne auf diese beschränkt zu sein. The invention is further illustrated by the following examples, without being limited thereto.

I. Gold-ChemieI. Gold Chemistry

Allgemeines Verfahren A: Synthese von Au-NHC-Komplexen

Figure DE102013016487B4_0013
General Procedure A: Synthesis of Au-NHC Complexes
Figure DE102013016487B4_0013

In einem typischen Protokoll wurden (THT)AuCl (1 eq) und Ar-TosMIC (1 eq) in MeCN (5 ml/100 mg [Au]) vereinigt und bei Raumtemperatur gerührt. Nach 1 Stunde wurde das Imin (1 eq) zugegeben und das Gemisch wurde für eine weitere Stunde bei Raumtemperatur gerührt. Nach Zugabe von 20 ml/(100 mg [Au]) TBME wurde das Produkt abfiltriert und im Vakuum getrocknet. 1. Chloro(1-isopropyl-4,5-diphenyl-imidazol-2-yliden)gold(I)

Figure DE102013016487B4_0014
In a typical protocol, (THT) AuCl (1 eq) and Ar-TosMIC (1 eq) were combined in MeCN (5 ml / 100 mg [Au]) and stirred at room temperature. After 1 hour, the imine (1 eq) was added and the mixture was stirred for an additional 1 hour at room temperature. After addition of 20 ml / (100 mg [Au]) of TBME, the product was filtered off and dried in vacuo. 1. Chloro (1-isopropyl-4,5-diphenyl-imidazol-2-ylidene) gold (I)
Figure DE102013016487B4_0014

Gemäß dem Verfahren A wurde die angegebene Verbindung aus (THT)AuCl (500 mg, 1.56 mmol), Ph-TosMIC (423 mg, 1.56 mmol) und N-Benzyliden-2-propylamin (230 mg, 1.56 mmol) synthetisiert.
Farbloser Feststoff: 752 mg (1.52 mmol, 97%); 1H NMR (600 MHz, CD2Cl2): δ = 1.70 (d, J = 6.7 Hz, 6H), 2.28 (s, 3H), 4.41 (sept, J = 6.7 Hz, 1H), 7.21–7.24 (m, 2H), 7.26–7.30 (m, 3H), 7.34 (d, J = 7.3 Hz, 2H), 7.48–7.56 (m, 3H), 10.65 (s, 1H); 13C NMR (150 MHz, CD2Cl2): δ = 24.26 (q, 2C), 50.97 (d), 126.95 (d, 2C), 128.26 (s), 128.44 (s), 128.68 (s), 128.88 (d), 129.29 (d, 2C), 129.71 (d, 2C), 129.87 (s), 130.31 (d), 131.67 (d, 2C), 163.66 (s); IR (KBr disc): υ ~ = 3436, 2977, 2928, 1631, 1492, 1445, 1382, 1369, 1343, 1295, 1217, 1159, 1125, 1073, 1039, 770, 694, 573, 522, 436 cm–1; HR-MS (FAB (+)): m/z = 494.0802, ber. für C18H18ClN2Au [M]+: 494.0824 2. Chloro(1‚4,5-triphenyl-imidazol-2-yliden)gold(I)

Figure DE102013016487B4_0015
According to Method A, the indicated compound was synthesized from (THT) AuCl (500 mg, 1.56 mmol), Ph-TosMIC (423 mg, 1.56 mmol) and N-benzylidene-2-propylamine (230 mg, 1.56 mmol).
Colorless solid: 752 mg (1.52 mmol, 97%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 1.70 (d, J = 6.7 Hz, 6H), 2.28 (s, 3H), 4.41 (sept, J = 6.7 Hz, 1H), 7.21-7.24 ( m, 2H), 7.26-7.30 (m, 3H), 7.34 (d, J = 7.3Hz, 2H), 7.48-7.56 (m, 3H), 10.65 (s, 1H); 13 C NMR (150 MHz, CD 2 Cl 2 ): δ = 24.26 (q, 2C), 50.97 (d), 126.95 (d, 2C), 128.26 (s), 128.44 (s), 128.68 (s), 128.88 (d), 129.29 (d, 2C), 129.71 (d, 2C), 129.87 (s), 130.31 (d), 131.67 (d, 2C), 163.66 (s); IR (KBr disc): υ~ = 3436, 2977, 2928, 1631, 1492, 1445, 1382, 1369, 1343, 1295, 1217, 1159, 1125, 1073, 1039, 770, 694, 573, 522, 436 cm . 1 ; HR-MS (FAB (+)): m / z = 494.0802, calc'd for C 18 H 18 ClN 2 Au [M] +:. 494.0824 2. chloro (1,4,5-triphenyl-imidazole-2-ylidene) gold (I)
Figure DE102013016487B4_0015

Gemäß dem Verfahren A wurde die angegebene Verbindung aus (THT)AuCl (100 mg, 312 μmol), Ph-TosMIC (85 mg, 312 μmol) und N-Benzylidenanilin (57 mg, 312 μmol) synthetisiert.
Farbloser Feststoff: 128 mg (259 μmol, 83%); 1H NMR (600 MHz, CD2Cl2): δ = 7.09 (d, J = 8.0 Hz, 2H), 7.52 (t, J = 7.6 Hz, 2H), 7.29–7.43 (m, 11H), 11.49 (s, 1H); 13C NMR (150 MHz, CD2Cl2): δ = 123.57 (d), 126.07 (d), 127.53 (d), 128.06 (d), 128.08 (s), 128.13 (s), 129.09 (d), 129.20 (d), 129.33 (d), 129.35 (d), 129.41 (d), 129.42 (d), 129.54 (d), 129.58 (s), 130.08 (d), 130.39 (s), 131.26 (d), 138.50 (s), 167.31 (s); IR (KBr disc): υ ~ = 3388, 3200, 3057, 1596, 1497, 1466, 1455, 1447, 1386, 1261, 1074, 1028, 916, 784, 763, 726, 693, 628, 616, 530 cm–1; HR-MS (FAB (+)): m/z = 493.0927, ber. für C21H16N2Au [M-Cl]+: 493.0979. 3. Chloro(1-benzyl-4,5-diphenyl-imidazol-2-yliden)gold(I)

Figure DE102013016487B4_0016
According to Method A, the indicated compound was synthesized from (THT) AuCl (100 mg, 312 μmol), Ph-TosMIC (85 mg, 312 μmol) and N-benzylideneaniline (57 mg, 312 μmol).
Colorless solid: 128 mg (259 μmol, 83%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 7.09 (d, J = 8.0 Hz, 2H), 7.52 (t, J = 7.6 Hz, 2H), 7.29-7.43 (m, 11H), 11.49 ( s, 1H); 13 C NMR (150 MHz, CD 2 Cl 2 ): δ = 123.57 (d), 126.07 (d), 127.53 (d), 128.06 (d), 128.08 (s), 128.13 (s), 129.09 (d), 129.20 (d), 129.33 (d), 129.35 (d), 129.41 (d), 129.42 (d), 129.54 (d), 129.58 (s), 130.08 (d), 130.39 (s), 131.26 (d), 138.50 (s), 167.31 (s); IR (KBr disc): υ ~ = 3388, 3200, 3057, 1596, 1497, 1466, 1455, 1447, 1386, 1261, 1074, 1028, 916, 784, 763, 726, 693, 628, 616, 530 cm - 1 ; HR-MS (FAB (+)): m / z = 493.0927, calc'd for C 21 H 16 N 2 Au [M-Cl -] +:. 493.0979. 3. Chloro (1-benzyl-4,5-diphenyl-imidazol-2-ylidene) gold (I)
Figure DE102013016487B4_0016

Gemäß dem Verfahren A wurde die angegebene Verbindung aus (DMS)AuCl (100 mg, 340 μmol), Ph-TosMIC (93 mg, 340 μmol) und N-Benzylidenbenzylamin (66 mg, 340 μmol) synthetisiert.
Farbloser Feststoff: 99 mg (182 μmol, 54%); 1H NMR (400 MHz, CD2Cl2): δ = 5.33 (s, 2H), 6.99 (d, J = 7.9 Hz, 1H), 6.99 (d, J = 7.1 Hz, 1H), 7.10–7.20 (m, 5H), 7.25–7.29 (m, 3H), 7.29–7.34 (m, 2H), 7.37 (d, J = 7.4 Hz, 1H), 7.39 (d, J = 7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 1H), 11.66 (s, 1H); 13C NMR (100 MHz, CD2Cl2): δ = 53.34 (t), 126.94 (d, 2C), 127.63 (d, 2C), 128.18 (s), 128.24 (s), 128.35 (s), 128.80 (d, 2C), 128.90 (d), 129.26 (d, 2C), 129.51 (d, 2C), 129.71 (d), 129.97 (s), 130.19 (d), 131.48 (d, 2C), 136.45 (s), 167.16 (s); IR (KBr disc): υ ~ = 3198, 3060, 1952, 1632, 1604, 1595, 1493, 1469, 1448, 1410, 1388, 1353, 1332, 1277, 1187, 1125, 1074, 1035, 1011, 976, 919, 766, 731, 697, 596, 571, 515, 492, 465 cm–1; HR-MS (FAB (+)): m/z = 507.1152, ber. für C22H18N2Au [M-Cl]+: 507.1136. 4. Chloro(1-phenylethyl-4,5-diphenyl-imidazol-2-yliden)gold(I)

Figure DE102013016487B4_0017
According to Method A, the indicated compound was synthesized from (DMS) AuCl (100 mg, 340 μmol), Ph-TosMIC (93 mg, 340 μmol) and N-benzylidenbenzylamine (66 mg, 340 μmol).
Colorless solid: 99 mg (182 μmol, 54%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 5.33 (s, 2H), 6.99 (d, J = 7.9 Hz, 1H), 6.99 (d, J = 7.1 Hz, 1H), 7.10-7.20 ( m, 5H), 7.25-7.29 (m, 3H), 7.29-7.34 (m, 2H), 7.37 (d, J = 7.4Hz, 1H), 7.39 (d, J = 7.4Hz, 1H), 7.46 (t , J = 7.4 Hz, 1H), 11.66 (s, 1H); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 53.34 (t), 126.94 (d, 2C), 127.63 (d, 2C), 128.18 (s), 128.24 (s), 128.35 (s), 128.80 (d, 2C), 128.90 (d), 129.26 (d, 2C), 129.51 (d, 2C), 129.71 (d), 129.97 (s), 130.19 (d), 131.48 (d, 2C), 136.45 (s 167.16 (s); IR (KBr disc): υ ~ = 3198, 3060, 1952, 1632, 1604, 1595, 1493, 1469, 1448, 1410, 1388, 1353, 1332, 1277, 1187, 1125, 1074, 1035, 1011, 976, 919 , 766, 731, 697, 596, 571, 515, 492, 465 cm -1 ; HR-MS (FAB (+)): m / z = 507.1152, Calcd for C 22 H18N 2 Au [M-Cl -] +:. 507.1136. 4. Chloro (1-phenylethyl-4,5-diphenyl-imidazol-2-ylidene) gold (I)
Figure DE102013016487B4_0017

Gemäß dem Verfahren A wurde die angegebene Verbindung aus (THT)AuCl (100 mg, 312 μmol), Ph-TosMIC (85 mg, 312 μmol) und N-Benzyliden-2-phenylethylamine (66 mg, 312 μmol) synthetisiert.
Farbloser Feststoff: 114 mg (205 μmol, 66%); 1H NMR (600 MHz, CD2Cl2): δ = 3.02 (t, J = 7.6 Hz, 2H), 4.25 (t, J = 7.6 Hz, 2H), 6.92 (d, J = 7.4 Hz, 2H), 7.14 (tt, J = 7.2, 1.4 Hz, 1H), 7.16 (d, J = 7.4 Hz, 2H), 7.19 (d, J = 7.4 Hz, 2H), 7.26–7.32 (m, 3H), 7.34–7.37 (m, 2H), 7.48 (m, 2H), 7.53 (tt, J = 7.4, 1.4 Hz, 1H), 11.80 (s, 1H); 13C NMR (300 MHz, CD2Cl2): δ = 37.99 (t), 50.79 (t), 126.91 (d, 2C), 127.07 (d), 128.32 (s), 128.44 (s), 128.75 (d), 128.95 (d, 2C), 129.19 (d, 2C), 129.22 (d, 2C), 129.28 (s), 129.60 (s), 129.71 (d, 2C), 130.21 (d), 131.37 (d, 2C), 137.57 (s), 166.01 (s); IR (KBr disc): υ ~ = 3179, 3058, 3026, 2943, 1603, 1595, 1492, 1470, 1452, 1407, 1389, 1357, 1157, 1074, 1030, 769, 698, 604, 515, 501 cm–1; HR-MS (FAB (+)): m/z = 556.0903, ber. für C23H20ClN2Au [M]+: 556.0981. 5. Chloro(1-phenyl-5,6-dihydroimidazo[5,1-a]isochinolin-3-yliden)gold(I)

Figure DE102013016487B4_0018
According to Method A, the indicated compound was synthesized from (THT) AuCl (100 mg, 312 μmol), Ph-TosMIC (85 mg, 312 μmol) and N-benzylidene-2-phenylethylamine (66 mg, 312 μmol).
Colorless solid: 114 mg (205 μmol, 66%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 3.02 (t, J = 7.6 Hz, 2H), 4.25 (t, J = 7.6 Hz, 2H), 6.92 (d, J = 7.4 Hz, 2H) , 7.14 (tt, J = 7.2, 1.4 Hz, 1H), 7.16 (d, J = 7.4 Hz, 2H), 7.19 (d, J = 7.4 Hz, 2H), 7.26-7.32 (m, 3H), 7.34- 7.37 (m, 2H), 7.48 (m, 2H), 7.53 (tt, J = 7.4, 1.4 Hz, 1H), 11.80 (s, 1H); 13 C NMR (300 MHz, CD 2 Cl 2 ): δ = 37.99 (t), 50.79 (t), 126.91 (d, 2C), 127.07 (d), 128.32 (s), 128.44 (s), 128.75 (i.e. ), 128.95 (d, 2C), 129.19 (d, 2C), 129.22 (d, 2C), 129.28 (s), 129.60 (s), 129.71 (d, 2C), 130.21 (d), 131.37 (d, 2C ), 137.57 (s), 166.01 (s); IR (KBr disc): υ~ = 3179, 3058, 3026, 2943, 1603, 1595, 1492, 1470, 1452, 1407, 1389, 1357, 1157, 1074, 1030, 769, 698, 604, 515, 501 cm - 1 ; HR-MS (FAB (+)): m / z = 556.0903, calc'd for C 23 H 20 ClN 2 Au [M] +. 556.0981. 5. Chloro (1-phenyl-5,6-dihydroimidazo [5,1-a] isoquinolin-3-ylidene) gold (I)
Figure DE102013016487B4_0018

Gemäß dem Verfahren A wurde die angegebene Verbindung aus (THT)AuCl (100 mg, 312 mol), Ph-TosMIC (85 mg, 312 μmol) und 3,4-Dihydroisochinolin (41 mg, 312 μmol) synthetisiert.
Farbloser Feststoff: 136 mg (284 μmol, 91%); 1H NMR (600 MHz, CD2Cl2): δ = 3.16 (t, J = 6.5 Hz, 2H), 4.43 (t, J = 6.5 Hz, 2H), 7.12 (t, J = 7.5, 1H), 7.26 (t, J = 7.5, 1H), 7.31 (dd, J = 7.5, 1H), 7.40 (d, J = 7.5, 1H), 7.48–7.55 (m, 3H), 7.61 (dd, J = 7.5, 1.4 Hz, 2H), 10.69 (s, 1H); 13C NMR (300 MHz, CD2Cl2): δ = 29.61 (t), 46.83 (t), 124.41 (d), 124.12 (s), 125.75 (s), 127.57 (d), 127.69 (s), 128.73 (d, 2C), 128.89 (s), 128.99 (d), 129.05 (d), 129.74 (d, 2C), 130.03 (d), 134.10 (s), 164.89 (s); IR (KBr disc): υ ~ = 3397, 3210, 3057, 2940, 1598, 1486, 1471, 1456, 1418, 1345, 1313, 1034, 764, 752, 728, 699, 672, 599, 570, 493 cm–1; HR-MS (FAB (+)): m/z = 443.0840, ber. für C17H14N2Au [M-Cl]+: 443.0823. 6. Chloro(1-cyclohexyl-4,5-diphenyl-imidazol-2-yliden)gold(I)

Figure DE102013016487B4_0019
According to Method A, the indicated compound was synthesized from (THT) AuCl (100 mg, 312 mol), Ph-TosMIC (85 mg, 312 μmol) and 3,4-dihydroisoquinoline (41 mg, 312 μmol).
Colorless solid: 136 mg (284 μmol, 91%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 3.16 (t, J = 6.5 Hz, 2H), 4.43 (t, J = 6.5 Hz, 2H), 7.12 (t, J = 7.5, 1H), 7.26 (t, J = 7.5, 1H), 7.31 (dd, J = 7.5, 1H), 7.40 (d, J = 7.5, 1H), 7.48-7.55 (m, 3H), 7.61 (dd, J = 7.5, 1.4 Hz, 2H), 10.69 (s, 1H); 13 C NMR (300 MHz, CD 2 Cl 2 ): δ = 29.61 (t), 46.83 (t), 124.41 (d), 124.12 (s), 125.75 (s), 127.57 (d), 127.69 (s). 128.73 (d, 2C), 128.89 (s), 128.99 (d), 129.05 (d), 129.74 (d, 2C), 130.03 (d), 134.10 (s), 164.89 (s); IR (KBr disc): υ ~ = 3397, 3210, 3057, 2940, 1598, 1486, 1471, 1456, 1418, 1345, 1313, 1034, 764, 752, 728, 699, 672, 599, 570, 493 cm - 1 ; HR-MS (FAB (+)): m / z = 443.0840, calc'd for C 17 H 14 N 2 Au [M-Cl -] +:. 443.0823. 6. Chloro (1-cyclohexyl-4,5-diphenyl-imidazol-2-ylidene) gold (I)
Figure DE102013016487B4_0019

Gemäß dem Verfahren A wurde die angegebene Verbindung aus (THT)AuCl (100 mg, 312 μmol), Ph-TosMIC (85 mg, 312 μmol) und N-Benzyliden-cyclohexylamin (59 mg, 312 μmol) synthetisiert.
Farbloser Feststoff: 120 mg (224 μmol, 72%); 1H NMR (600 MHz, CD2Cl2): δ = 1.17 (q, J = 13.0 Hz, 2H), 1.62 (d, J = 13.0 Hz, 2H), 1.85 (d, J = 13.0 Hz, 2H), 1.95 (d, J = 13.0 Hz, 2H), 2.69 (q, J = 12.3 Hz, 2H), 3.88 (t, J = 12.3 Hz, 1H), 7.19–7.23 (m, 2H), 7.27–7.33 (m, 2H), 7.48–7.56 (m, 2H), 10.47 (s, 1H); 13C NMR (150 MHz, CD2Cl2): δ = 25.38 (t), 26.40 (t), 30.08 (t), 35.06 (t), 58.53 (d), 127.00 (d, 2C), 128.24 (s), 128.27 (s), 128.57 (s), 128.90 (d), 129.30 (d, 2C), 129.72 (d, 2C), 130.06 (d), 130.30 (s), 131.54 (d, 2C), CCarben fehlt; IR (KBr disc): υ ~ = 3402, 3212, 3057, 2931, 2853, 1604, 1595, 1492, 1470, 1446, 1359, 1346, 1206, 1073, 1032, 970, 893, 769, 700, 614 cm–1; HR-MS (FAB (+)): m/z = 499.1454, ber. für C21H22N2Au [M-Cl]+: 499.1449. 7. Chloro(5-(4-bromophenyl)-1-isopropyl-4-phenyl-imidazol-2-yliden)-gold(I)

Figure DE102013016487B4_0020
According to Method A, the indicated compound was synthesized from (THT) AuCl (100 mg, 312 μmol), Ph-TosMIC (85 mg, 312 μmol) and N-benzylidene-cyclohexylamine (59 mg, 312 μmol).
Colorless solid: 120 mg (224 μmol, 72%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 1.17 (q, J = 13.0 Hz, 2H), 1.62 (d, J = 13.0 Hz, 2H), 1.85 (d, J = 13.0 Hz, 2H) , 1.95 (d, J = 13.0 Hz, 2H), 2.69 (q, J = 12.3 Hz, 2H), 3.88 (t, J = 12.3 Hz, 1H), 7.19-7.23 (m, 2H), 7.27-7.33 ( m, 2H), 7.48-7.56 (m, 2H), 10.47 (s, 1H); 13 C NMR (150 MHz, CD 2 Cl 2 ): δ = 25.38 (t), 26.40 (t), 30.08 (t), 35.06 (t), 58.53 (d), 127.00 (d, 2C), 128.24 (s ), 128.27 (s), 128.57 (s), 128.90 (d), 129.30 (d, 2C), 129.72 (d, 2C), 130.06 (d), 130.30 (s), 131.54 (d, 2C), C carbene is missing; IR (KBr disc): υ~ = 3402, 3212, 3057, 2931, 2853, 1604, 1595, 1492, 1470, 1446, 1359, 1346, 1206, 1073, 1032, 970, 893, 769, 700, 614 cm - 1 ; HR-MS (FAB (+)): m / z = 499.1454, calc'd for C 21 H 22 N 2 Au [M-Cl -] +:. 499.1449. 7. Chloro (5- (4-bromophenyl) -1-isopropyl-4-phenyl-imidazol-2-ylidene) gold (I)
Figure DE102013016487B4_0020

Gemäß dem Verfahren A wurde die angegebene Verbindung aus (THT)AuCl (100 mg, 312 μmol), Ph-TosMIC (85 mg, 312 μmol) und N-4-Bromobenzyliden-isopropylamin (71 mg, 312 μmol) synthetisiert.
Farbloser Feststoff: 145 mg (253 μmol, 81%); 1H NMR (600 MHz, CD2Cl2): δ = 1.70 (d, J = 6.9 Hz, 6H), 4.39 (sept, J = 6.9 Hz, 1H), 7.20–7.23 (m, 4H), 7.30–7.34 (m, 3H), 7.66 (d, J = 7.9 Hz, 2H), 10.53 (s, 1H); 13C NMR (150 MHz, CD2Cl2): δ = 23.90 (q), 50.79 (d), 124.48 (s), 126.69 (d, 2C), 127.27 (s), 127.54 (s), 128.24 (s), 128.45 (s), 128.78 (d), 129.08 (d, 2C), 123.71 (d, 2C), 132.95 (d, 2C), CCarben fehlt; IR (KBr disc): υ ~ = 3432, 2975, 2925, 1630, 1491, 1445, 1369, 1337, 1218, 1157, 1125, 1099, 1071, 1029, 1011, 832, 770, 695, 573, 505 cm–1; HR-MS (FAB (+)): m/z = 537.0252 ber. für C18H17BrN2Au [M-Cl]+: 537.0241. 8. Chloro(1-isopropyl-4-(4-methoxyphenyl)-5-phenyl-imidazol-2-yliden)-gold(I)

Figure DE102013016487B4_0021
According to Method A, the indicated compound was synthesized from (THT) AuCl (100 mg, 312 μmol), Ph-TosMIC (85 mg, 312 μmol) and N-4-bromobenzylidene-isopropylamine (71 mg, 312 μmol).
Colorless solid: 145 mg (253 μmol, 81%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 1.70 (d, J = 6.9 Hz, 6H), 4.39 (sept, J = 6.9 Hz, 1H), 7.20-7.23 (m, 4H), 7.30- 7.34 (m, 3H), 7.66 (d, J = 7.9 Hz, 2H), 10.53 (s, 1H); 13 C NMR (150 MHz, CD 2 Cl 2 ): δ = 23.90 (q), 50.79 (d), 124.48 (s), 126.69 (d, 2C), 127.27 (s), 127.54 (s), 128.24 (s ), 128.45 (s), 128.78 (d), 129.08 (d, 2C), 123.71 (d, 2C), 132.95 (d, 2C), C carbene is absent; IR (KBr disc): υ~ = 3432, 2975, 2925, 1630, 1491, 1445, 1369, 1337, 1218, 1157, 1125, 1099, 1071, 1029, 1011, 832, 770, 695, 573, 505 cm - 1 ; HR-MS (FAB (+)): m / z = 537.0252 for C 18 H 17 BrN 2 Au [M-Cl -] +:. 537.0241. 8. Chloro (1-isopropyl-4- (4-methoxyphenyl) -5-phenyl-imidazol-2-ylidene) gold (I)
Figure DE102013016487B4_0021

Gemäß dem Verfahren A wurde die angegebene Verbindung aus (DMS)AuCl (100 mg, 339 μmol), Ph-TosMIC (103 mg, 339 μmol) und N-4-Bromobenzyliden-isopropylamin (50 mg, 339 μmol) synthetisiert.
Rötlich-brauner Feststoff: 118 mg (224 μmol, 66%); 1H NMR (400 MHz, CD2Cl2): δ = 1.67 (d, J = 6.9 Hz, 6H), 3.75 (s, 3H), 4.40 (sept, J = 6.9 Hz, 1H), 6.80 (d, J = 8.9 Hz, 2H), 7.22 (d, J = 8.9 Hz, 2H), 7.30–7.35 (m, 2H), 7.49–7.52 (m, 2H), 7.69–7.74 (m, 1H), 11.55 (s, 1H); 13C NMR (100 MHz, CD2Cl2): δ = 24.25 (q, 2C), 50.80 (d), 55.62 (q), 114.54 (d, 2C), 120.82 (s), 126.19 (d), 128.50 (d, 2C), 128.73 (s), 129.20 (s), 129.64 (d, 2C), 130.10 (s), 131.81 (d, 2C), 160.01 (s), 162.31 (s); IR (KBr disc): υ ~ = 3571, 3489, 3436, 3256, 3233, 3066, 2976, 2932, 2837, 1608, 1574, 1520, 1497, 1463, 1371, 1300, 1248, 1213, 1183, 1126, 1070, 1032, 837, 815, 776, 736, 707, 684 601, 569, 529, 470 cm–1; HR-MS (FAB (+)): m/z = 489.1261, calc. for C19H20ON2Au [M]+: 489.1241. 9. Dichloro(4,4',5,5'-tetraphenyl-3,3'-propylene-diimidazol-2-yliden)-digold(I)

Figure DE102013016487B4_0022
According to Method A, the indicated compound was synthesized from (DMS) AuCl (100 mg, 339 μmol), Ph-TosMIC (103 mg, 339 μmol) and N-4-bromobenzylidene-isopropylamine (50 mg, 339 μmol).
Reddish-brown solid: 118 mg (224 μmol, 66%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.67 (d, J = 6.9 Hz, 6H), 3.75 (s, 3H), 4.40 (sept, J = 6.9 Hz, 1H), 6.80 (d, J = 8.9Hz, 2H), 7.22 (d, J = 8.9Hz, 2H), 7.30-7.35 (m, 2H), 7.49-7.52 (m, 2H), 7.69-7.74 (m, 1H), 11.55 (s , 1H); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 24.25 (q, 2C), 50.80 (d), 55.62 (q), 114.54 (d, 2C), 120.82 (s), 126.19 (d), 128.50 (d, 2C), 128.73 (s), 129.20 (s), 129.64 (d, 2C), 130.10 (s), 131.81 (d, 2C), 160.01 (s), 162.31 (s); IR (KBr disc): υ ~ = 3571, 3489, 3436, 3256, 3233, 3066, 2976, 2932, 2837, 1608, 1574, 1520, 1497, 1463, 1371, 1300, 1248, 1213, 1183, 1126, 1070, 1032, 837, 815, 776, 736, 707, 684 601, 569, 529, 470 cm -1 ; HR-MS (FAB (+)): m / z = 489.1261, calc. for C 19 H 20 ON 2 Au [M] + : 489.1241. 9. Dichloro (4,4 ', 5,5'-tetraphenyl-3,3'-propylene-diimidazol-2-ylidene) -digold (I)
Figure DE102013016487B4_0022

Gemäß dem Verfahren A wurde die angegebene Verbindung aus (THT)AuCl (100 mg, 312 μmol), Ph-TosMIC (85 mg, 312 μmol), und N1,N3-Dibenzylidenpropyl-1,3-diamin (39 mg, 156 μmol) synthetisiert.
Farbloser Feststoff: 123 mg (130 μmol, 83%); 1H NMR (300 MHz, CD2Cl2): δ = 2.08 (quint., J = 7.2 Hz, 2H), 4.08 (t, J = 7.2 Hz, 4H), 7.13 (d, J = 7.9 Hz, 1H), 7.31–7.36 (m, 5H), 7.38–7.44 (m, 4H), 7.46–7.52 (m, 4H), 7.53–7.59 (m, 5H), 7.31–7.36 (m, 5H), 7.67 (d, J = 7.9 Hz, 1H), 13.35 (s, 2H); 13C NMR (125 MHz, CD2Cl2): δ = 32.63, 46.35, 126.37, 127.46, 128.61, 128.67, 128.67, 128.92, 129.28, 129.57, 129.84, 130.11, 130.47, 131.74, 138.42, 147.00, 167.00; IR (KBr disc): υ ~ = 3429, 3161, 3054, 1631, 1598, 1493, 1449, 1409, 1173, 1124, 1096, 1037, 1011, 814, 769, 697, 650, 587, 570, 504 cm–1; HR-MS (FAB (+)): m/z = 909.1406 ber. für C33H28ClN4Au2 [M-Cl]+: 909.1334. 10. Dichloro(3-(2-(diphenylphosphino)ethyl)-4,5-diphenyl-diimidazol-2-yliden)-digold(I)

Figure DE102013016487B4_0023
According to Method A, the indicated compound was prepared from (THT) AuCl (100 mg, 312 μmol), Ph-TosMIC (85 mg, 312 μmol), and N 1 , N 3 -dibenzylidenepropyl-1,3-diamine (39 mg, 156 μmol).
Colorless solid: 123 mg (130 μmol, 83%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 2.08 (quint., J = 7.2 Hz, 2H), 4.08 (t, J = 7.2 Hz, 4H), 7.13 (d, J = 7.9 Hz, 1H ), 7.31-7.36 (m, 5H), 7.38-7.44 (m, 4H), 7.46-7.52 (m, 4H), 7.53-7.59 (m, 5H), 7.31-7.36 (m, 5H), 7.67 (i.e. , J = 7.9 Hz, 1H), 13.35 (s, 2H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 32.63, 46.35, 126.37, 127.46, 128.61, 128.67, 128.67, 128.92, 129.28, 129.57, 129.84, 130.11, 130.47, 131.74, 138.42, 147.00, 167.00; IR (KBr disc): υ~ = 3429, 3161, 3054, 1631, 1598, 1493, 1449, 1409, 1173, 1124, 1096, 1037, 1011, 814, 769, 697, 650, 587, 570, 504 cm - 1 ; HR-MS (FAB (+)): m / z = 909.1406 calcd for C 33 H 28 ClN 4 Au 2 [M-Cl -] +:. 909.1334. 10. Dichloro (3- (2- (diphenylphosphino) ethyl) -4,5-diphenyl-diimidazol-2-ylidene) -digold (I)
Figure DE102013016487B4_0023

Gemäß dem Verfahren A wurde die angegebene Verbindung aus (DMS)AuCl, Ph-TosMIC und einer gleichzeitig hergestellten Lösung von AuCl(N-benzyliden-2-(diphenyl-phosphino)ethanamin) synthetisiert. Die Lösung von AuCl(N-benzyliden-2-(diphenylphosphino)-ethanamin) wurde durch Rühren von (DMS)AuCl und N-Benzyliden-2-(diphenyl-phosphino)ethanamine in 3 ml MeCN bei Raumtemperatur für 1 Stunde hergestellt. Die erhaltene Lösung wurde in den Reaktionskolben ohne Reinigung überführt.
Farbloser Feststoff: 105 mg (117 μmol, 46%); 1H NMR (300 MHz, CD2Cl2): δ = 2.89–3.02 (m, 2H), 4.26–4.46 (m, 2H), 7.23–7.37 (m, 6H), 7.41–7.71 (m, 14H), 11.68 (s, 1H); IR (KBr disc): υ ~ = 3419, 3215, 3055, 2224, 1967, 1635, 1595, 1559, 1540, 1492, 1448, 1436, 1405, 1358, 1336, 1159, 1122, 1104, 1073, 1037, 1012, 998, 975, 920, 858, 814, 769, 742, 693, 649, 572, 536, 521 cm–1; HR-MS (FAB (+)): m/z = 861.0740 ber. für C29H25ClN2PAu2 [M-Cl]+: 861.0775. Allgemeines Verfahren B: Synthese von Au-NHC-Trimeren

Figure DE102013016487B4_0024
According to Method A, the indicated compound was synthesized from (DMS) AuCl, Ph-TosMIC and a concurrently prepared solution of AuCl (N-benzylidene-2- (diphenylphosphino) ethanamine). The solution of AuCl (N-benzylidene-2- (diphenylphosphino) -ethanamine) was prepared by stirring (DMS) AuCl and N-benzylidene-2- (diphenylphosphino) ethanamine in 3 ml of MeCN at room temperature for 1 hour. The resulting solution was transferred to the reaction flask without purification.
Colorless solid: 105 mg (117 μmol, 46%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 2.89-3.02 (m, 2H), 4.26-4.46 (m, 2H), 7.23-7.37 (m, 6H), 7.41-7.71 (m, 14H) , 11.68 (s, 1H); IR (KBr disc): υ~ = 3419, 3215, 3055, 2224, 1967, 1635, 1595, 1559, 1540, 1492, 1448, 1436, 1405, 1358, 1336, 1159, 1122, 1104, 1073, 1037, 1012 , 998, 975, 920, 858, 814, 769, 742, 693, 649, 572, 536, 521 cm -1 ; HR-MS (FAB (+)): m / z = 861.0740 calcd for C 29 H 25 ClN 2 PAu 2 [M-Cl -] +:. 861.0775. General Procedure B: Synthesis of Au-NHC Trimers
Figure DE102013016487B4_0024

In einem typischen Protokoll wurde ein trisubstituierter Au-NHC Komplex in DCM gelöst und NEt3 wurde zugegeben. Nach 30 min Rühren wurde die Reaktion mit Wasser gequencht. Die organische Schicht wurde abgetrennt, mit MgSO4 getrocknet und das Lösungsmittel wurde unter vermindertem Druck bei Raumtemperatur entfernt. Der erhaltene Feststoff wurde durch Umkristallisation in DCM/Pentan gereinigt. 1. (1-Isopropyl-4,5-diphenyl-imidazol-2-ylidenat)gold(I)-trimer

Figure DE102013016487B4_0025
In a typical protocol, a trisubstituted Au-NHC complex was dissolved in DCM and NEt 3 was added. After stirring for 30 minutes, the reaction was quenched with water. The organic layer was separated, dried with MgSO 4 and the solvent was removed under reduced pressure at room temperature. The resulting solid was purified by recrystallization in DCM / pentane. 1. (1-Isopropyl-4,5-diphenyl-imidazol-2-ylidenate) gold (I) trimer
Figure DE102013016487B4_0025

Gemäß dem Verfahren B wurde die angegebene Verbindung aus Chloro(1-isopropyl-4,5-diphenyl-imidazol-2-yliden)gold(I) (500 mg, 1.01 mmol) synthetisiert.
Weißer Feststoff: 452 mg (329 μmol, 98%); 1H NMR (400 MHz, CD2Cl2): δ = 1.38 (d, J = 6.9 Hz, 18H), 4.24 (sept, J = 6.9 Hz, 3H), 7.16–7.26 (m, 15H), 7.32–7.40 (m, 9H), 7.48–7.53 (m, 6H); 13C NMR (125 MHz, CD2Cl2): δ = 24.35 (q, 6C), 49.56 (d, 3C), 127.14 (d, 3C), 128.35 (d, 6C), 128.53 (d, 3C), 128.79 (d, 6C), 130.06 (d, 6C), 130.41 (s, 3C), 131.84 (d, 6C), 131.94 (s, 3C), 134.21 (s, 3C), 136.81 (s, 3C), 165.31 (s, 3C); IR (KBr disc): υ ~ = 2969, 2926, 1676, 1602, 1501, 1483, 1443, 1382, 1366, 1344, 1311, 1292, 1274, 1178, 1105, 1073, 1022, 779, 769, 698 cm–1; HR-MS (FAB (+)): m/z = 1375.3162 ber. für C54H52N6Au3 [M+H+]+: 1375.3250. 2. (1‚4,5-Triphenyl-imidazol-2-ylidenat)gold(I)-trimer

Figure DE102013016487B4_0026
According to Method B, the indicated compound was synthesized from chloro (1-isopropyl-4,5-diphenyl-imidazol-2-ylidene) gold (I) (500 mg, 1.01 mmol).
White solid: 452 mg (329 μmol, 98%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.38 (d, J = 6.9 Hz, 18H), 4.24 (sept, J = 6.9 Hz, 3H), 7.16-7.26 (m, 15H), 7.32- 7.40 (m, 9H), 7.48-7.53 (m, 6H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 24.35 (q, 6C), 49.56 (d, 3C), 127.14 (d, 3C), 128.35 (d, 6C), 128.53 (d, 3C), 128.79 (d, 6C), 130.06 (d, 6C), 130.41 (s, 3C), 131.84 (d, 6C), 131.94 (s, 3C), 134.21 (s, 3C), 136.81 (s, 3C), 165.31 (s, 3C); IR (KBr disc): υ ~ = 2969, 2926, 1676, 1602, 1501, 1483, 1443, 1382, 1366, 1344, 1311, 1292, 1274, 1178, 1105, 1073, 1022, 779, 769, 698 cm - 1 ; HR-MS (FAB (+)): m / z = 1375.3162 calcd for C 54 H 52 N 6 Au 3 [M + H + ] + : 1375.3250. 2. (1,4,5-Triphenyl-imidazol-2-ylidenate) gold (I) trimer
Figure DE102013016487B4_0026

Gemäß dem Verfahren B wurde die angegebene Verbindung aus Chloro(1,4,5-triphenyl-imidazol-2-yliden)gold(I) (140 mg, 264 μmol) synthetisiert.
Weißer Feststoff: 125 mg (85 μmol, 96%); 1H NMR (600 MHz, CD2Cl2): δ = 6.86–6.91 (m, 4H), 7.04–7.11 (m, 5H), 7.13–7.17 (m, 3H), 7.21 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 7.5 Hz, 2H); 13C NMR (300 MHz, CD2Cl2): δ = 127.19 (d, 3C), 127.75 (d, 3C), 128.06 (d, 3C), 128.07 (d, 6C), 128.29 (d, 6C), 128.32 (d, 6C), 128.77 (d, 6C), 129.06 (d, 6C), 131.03 (s, 3C), 131.04 (s, 3C), 131.15 (d, 6C), 132.83 (s, 3C), 137.87 (s, 3C), 138.98 (s, 3C), 169.20 (s, 3C); IR (KBr disc): υ ~ = 3421, 3060, 1599, 1499, 1445, 1381, 1359, 1316, 1275, 1075, 1011, 912, 787, 764, 695, 646, 546 cm–1; HR-MS (FAB (+)): m/z = 1477.2745 ber. für C63H46N6Au3 [M+H+]+: 1477.2781. 3. (1-Phenyl-5,6-dihydroimidazo[5,1-a]isochinolin-3-ylidenat)gold(I)-trimer

Figure DE102013016487B4_0027
According to Method B, the indicated compound was synthesized from chloro (1,4,5-triphenyl-imidazol-2-ylidene) gold (I) (140 mg, 264 μmol).
White solid: 125 mg (85 μmol, 96%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 6.86-6.91 (m, 4H), 7.04-7.11 (m, 5H), 7.13-7.17 (m, 3H), 7.21 (t, J = 7.5 Hz , 1H), 7.29 (d, J = 7.5 Hz, 2H); 13 C NMR (300 MHz, CD 2 Cl 2 ): δ = 127.19 (d, 3C), 127.75 (d, 3C), 128.06 (d, 3C), 128.07 (d, 6C), 128.29 (d, 6C), 128.32 (d, 6C), 128.77 (d, 6C), 129.06 (d, 6C), 131.03 (s, 3C), 131.04 (s, 3C), 131.15 (d, 6C), 132.83 (s, 3C), 137.87 (s, 3C), 138.98 (s, 3C), 169.20 (s, 3C); IR (KBr disc): υ~ = 3421, 3060, 1599, 1499, 1445, 1381, 1359, 1316, 1275, 1075, 1011, 912, 787, 764, 695, 646, 546 cm -1 ; HR-MS (FAB (+)): m / z = 1477.2745 calcd for C 63 H 46 N 6 Au 3 [M + H + ] + : 1477.2781. 3. (1-phenyl-5,6-dihydroimidazo [5,1-a] isoquinolin-3-ylidenate) gold (I) trimer
Figure DE102013016487B4_0027

Gemäß dem Verfahren B wurde die angegebene Verbindung aus Chloro(1-phenyl-5,6-dihydroimidazo[5,1-a]isochinolin-3-ylidene)gold(I) (100 mg, 209 μmol) synthetisiert.
Weißer Feststoff: 87 mg (64 μmol, 95%); 1H NMR (600 MHz, CD2Cl2): δ = 3.05 (t, J = 6.3 Hz, 2H), 4.08 (t, J = 6.3 Hz, 2H), 7.03 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.42–7.49 (m, 3H), 7.88 (d, J = 7.2 Hz, 2H); 13C NMR (125 MHz, CD2Cl2): δ = 30.32 (t), 44.70 (t), 123.99 (d), 125.65 (s), 127.05 (d), 127.09 (d), 128.38 (d), 128.48 (d), 128.61 (s), 128.61 (d, 2C), 130.19 (d, 2C), 133.67 (s), 134.81 (s), 135.69 (s), 167.43 (s); IR (KBr disc): υ ~ = 3048, 2942, 2881, 1946, 1606, 1588, 1498, 1472, 1457, 1443, 1411, 1396, 1355, 1336, 1295, 1273, 1241, 1187, 1155, 1073, 1058, 1028, 1003, 996, 927, 869, 788, 766, 753, 733, 700, 679, 653, 623, 581, 536, 497, 474, 436 cm–1; HR-MS (FAB (+)): m/z = 1327.2332, ber. für C51H40N6Au3 [M+H+]+: 1327.2311. Allgemeines Verfahren C: Synthese von tetrasubstituierten Au-NHC-Komplexen

Figure DE102013016487B4_0028
According to Method B, the indicated compound was synthesized from chloro (1-phenyl-5,6-dihydroimidazo [5,1-a] isoquinolin-3-ylidenes) gold (I) (100 mg, 209 μmol).
White solid: 87 mg (64 μmol, 95%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 3.05 (t, J = 6.3 Hz, 2H), 4.08 (t, J = 6.3 Hz, 2H), 7.03 (t, J = 7.6 Hz, 1H) , 7.12 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.42-7.49 (m, 3H), 7.88 (d, J = 7.2 Hz, 2H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 30.32 (t), 44.70 (t), 123.99 (d), 125.65 (s), 127.05 (d), 127.09 (d), 128.38 (d), 128.48 (d), 128.61 (s), 128.61 (d, 2C), 130.19 (d, 2C), 133.67 (s), 134.81 (s), 135.69 (s), 167.43 (s); IR (KBr disc): υ~ = 3048, 2942, 2881, 1946, 1606, 1588, 1498, 1472, 1457, 1443, 1411, 1396, 1355, 1336, 1295, 1273, 1241, 1187, 1155, 1073, 1058 , 1028, 1003, 996, 927, 869, 788, 766, 753, 733, 700, 679, 653, 623, 581, 536, 497, 474, 436 cm -1 ; HR-MS (FAB (+)): m / z = 1327.2332, calcd for C 51 H 40 N 6 Au 3 [M + H + ] + : 1327.2311. General Procedure C: Synthesis of tetrasubstituted Au-NHC complexes
Figure DE102013016487B4_0028

In einem typischen Protokoll wurde das Au-NHC trimer in 3 ml Alkylhalogenid bei 80C für 16 Stunden gerührt. Anschließend wurde das Alkylhalogenid unter vermindertem Druck entfernt. Der erhaltene Feststoff wurde durch Säulenchromatographie an SiO2 (PE/EE 5:1) gereinigt. 1. Chloro(1-ethyl-2-isopropyl-4,5-diphenyl-imidazol-2-yliden)gold(I)

Figure DE102013016487B4_0029
In a typical protocol, the Au-NHC trimer was stirred in 3 ml of alkyl halide at 80 ° C for 16 hours. Subsequently, the alkyl halide was removed under reduced pressure. The resulting solid was purified by column chromatography on SiO 2 (PE / EA 5: 1). 1. Chloro (1-ethyl-2-isopropyl-4,5-diphenyl-imidazol-2-ylidene) gold (I)
Figure DE102013016487B4_0029

Gemäß dem Verfahren C wurde die angegebene Verbindung aus (1-Isopropyl-4,5-diphenyl-imidazol-2-yliden)gold(I)-trimer (100 mg, 73 μmol) und Iodoethan synthetisiert.
Weißer Feststoff: 127 mg (207 μmol, 95%); 1H NMR (300 MHz, CD2Cl2): δ = 1.32 (t, J = 7.3 Hz, 3H), 1.73 (d, J = 6.9 Hz, 6H), 4.22 (q, J = 7.3 Hz, 2H), 4.47 (sept, J = 6.9 Hz, 1H), 7.19–7.28 (m, 4H), 7.32–7.41 (m, 6H); 13C NMR (125 MHz, CD2Cl2): δ = 17.05 (q), 24.39 (q, 2C), 45.31 (t), 51.22 (d), 128.35 (s), 128.53 (d), 129.04 (d, 2C), 129.08 (d, 2C), 129.58 (d), 129.69 (s), 130.58 (s), 131.05 (d, 2C), 131.48 (d, 2C), 131.70 (s), 178.21 (s); IR (KBr disc): υ ~ = 3055, 2972, 2924, 2854, 1725, 1631, 1502, 1487, 1461, 1444, 1410, 1379, 1368, 1334, 1272, 1206, 1179, 1158, 1116, 1075, 1050, 1023, 964, 928, 892, 807, 766, 756, 701, 655, 591, 531, 507 cm–1; HR-MS (FAB (+)): m/z = 487.1420 ber. für C20H22N2Au [M-I]+: 487.1449. 2. Chloro(1-benzyl-2-isopropyl-4,5-diphenyl-imidazol-2-yliden)gold(I)

Figure DE102013016487B4_0030
According to Method C, the indicated compound was synthesized from (1-isopropyl-4,5-diphenyl-imidazol-2-ylidene) gold (I) trimer (100 mg, 73 μmol) and iodoethane.
White solid: 127 mg (207 μmol, 95%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.32 (t, J = 7.3 Hz, 3H), 1.73 (d, J = 6.9 Hz, 6H), 4.22 (q, J = 7.3 Hz, 2H), 4.47 (sept. J = 6.9Hz, 1H), 7.19-7.28 (m, 4H), 7.32-7.41 (m, 6H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 17.05 (q), 24.39 (q, 2C), 45.31 (t), 51.22 (d), 128.35 (s), 128.53 (d), 129.04 (i.e. , 2C), 129.08 (d, 2C), 129.58 (d), 129.69 (s), 130.58 (s), 131.05 (d, 2C), 131.48 (d, 2C), 131.70 (s), 178.21 (s); IR (KBr disc): υ ~ = 3055, 2972, 2924, 2854, 1725, 1631, 1502, 1487, 1461, 1444, 1410, 1379, 1368, 1334, 1272, 1206, 1179, 1158, 1116, 1075, 1050 , 1023, 964, 928, 892, 807, 766, 756, 701, 655, 591, 531, 507 cm -1 ; HR-MS (FAB (+)): m / z = 487.1420 calcd. For C 20 H 22 N 2 Au [MI - ] + : 487.1449. 2. Chloro (1-benzyl-2-isopropyl-4,5-diphenyl-imidazol-2-ylidene) gold (I)
Figure DE102013016487B4_0030

Gemäß dem Verfahren C wurde die angegebene Verbindung aus (1-Isopropyl-4,5-diphenyl-imidazol-2-yliden)gold(I)-trimer (100 mg, 73 μmol) und Benzylbromid synthetisiert.
Weißer Feststoff: 131 mg (208 μmol, 96%); 1H NMR (400 MHz, CD2Cl2): δ = 1.76 (d, J = 6.8 Hz, 6H), 4.53 (sept, J = 6.8 Hz, 1H), 5.45 (s, 2H), 6.99–7.05 (m, 4H), 7.19–7.27 (m, 7H), 7.28–7.41 (m, 4H); 13C NMR (100 MHz, CD2Cl2): δ = 24.43 (q, 2C), 51.58 (d), 53.84 (t, solvent overlay), 127.72 (d, 2C), 128.07 (s), 128.29 (d, 2C), 128.37 (d), 128.88 (d, 2C), 128.96 (d), 129.62 (d, 2C), 129.78 (s), 131.18 (d), 131.24 (d, 2C), 131.49 (d, 2C), 132.46 (s), 136.54 (s), 172.35 (s); IR (KBr disc): υ ~ = 3058, 2977, 2925, 1634, 1496, 1487, 1446, 1410, 1386, 1368 1335, 1253, 1202, 1180, 1157, 1117, 1076, 1051, 1024, 1014, 922, 832, 766, 736, 701, 654, 618, 576, 531, 458 cm–1; HR-MS (FAB (+)): m/z = 628.0738, ber. für C25H24N2AuBr [M]+: 628.0788. 3. Chloro(1-ethyl-2,4,5-triphenyl-imidazol-2-yliden)gold(I)

Figure DE102013016487B4_0031
According to Method C, the indicated compound was synthesized from (1-isopropyl-4,5-diphenyl-imidazol-2-ylidene) gold (I) trimer (100 mg, 73 μmol) and benzyl bromide.
White solid: 131 mg (208 μmol, 96%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.76 (d, J = 6.8 Hz, 6H), 4.53 (sept, J = 6.8 Hz, 1H), 5.45 (s, 2H), 6.99-7.05 ( m, 4H), 7.19-7.27 (m, 7H), 7.28-7.41 (m, 4H); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 24.43 (q, 2C), 51.58 (d), 53.84 (t, solvent overlay), 127.72 (d, 2C), 128.07 (s), 128.29 (i.e. , 2C), 128.37 (d), 128.88 (d, 2C), 128.96 (d), 129.62 (d, 2C), 129.78 (s), 131.18 (d), 131.24 (d, 2C), 131.49 (d, 2C ), 132.46 (s), 136.54 (s), 172.35 (s); IR (KBr disc): υ ~ = 3058, 2977, 2925, 1634, 1496, 1487, 1446, 1410, 1386, 1368 1335, 1253, 1202, 1180, 1157, 1117, 1076, 1051, 1024, 1014, 922, 832, 766, 736, 701, 654, 618, 576, 531, 458 cm -1 ; HR-MS (FAB (+)): m / z = 628.0738, calc'd for C 25 H 24 N 2 AuBr [M] +. 628.0788. 3. Chloro (1-ethyl-2,4,5-triphenyl-imidazol-2-ylidene) gold (I)
Figure DE102013016487B4_0031

Gemäß dem Verfahren C wurde die angegebene Verbindung aus (1,4,5-Triphenyl-imidazol-2-yliden)gold(I)-trimer (100 mg, 68 μmol) und Iodethan synthetisiert.
Weißer Feststoff: 121 mg (187 μmol, 92%); 1H NMR (300 MHz, CD2Cl2): δ = 1.37 (t, J = 7.2 Hz, 3H), 4.27 (q, J = 7.2 Hz, 2H), 6.91–6.96 (m, 2H), 7.08–7.14 (m, 2H), 7.19 (tt, J = 7.4, 1.2 Hz, 1H), 7.31–7.49 (m, 10H); 13C NMR (125 MHz, CD2Cl2): δ = 16.66 (q), 44.27 (t), 127.51, 127.64, 127.70, 128.20, 128.55, 128.99, 129.05, 129.09, 129.23, 129.64, 130.40, 130.89, 131.11, 131.63, 136.17 (s), 180.41 (s); IR (KBr disc): υ ~ = 3054, 2978, 2930, 1959, 1634, 1597, 1498, 1487, 1460, 1444, 1416, 1394, 1348, 1281, 1180, 1157, 1112, 1075, 1024, 918, 808, 795, 777, 752, 695, 649, 532 cm–1; HR-MS (FAB (+)): m/z = 521.1281 ber. für C23H20N2Au [M-I]+: 521.1292.
According to Method C, the indicated compound was synthesized from (1,4,5-triphenylimidazol-2-ylidene) gold (I) trimer (100 mg, 68 μmol) and iodoethane.
White solid: 121 mg (187 μmol, 92%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.37 (t, J = 7.2 Hz, 3H), 4.27 (q, J = 7.2 Hz, 2H), 6.91-6.96 (m, 2H), 7.08- 7.14 (m, 2H), 7.19 (t, J = 7.4, 1.2 Hz, 1H), 7.31-7.49 (m, 10H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 16.66 (q), 44.27 (t), 127.51, 127.64, 127.70, 128.20, 128.55, 128.99, 129.05, 129.09, 129.23, 129.64, 130.40, 130.89, 131.11 , 131.63, 136.17 (s), 180.41 (s); IR (KBr disc): υ ~ = 3054, 2978, 2930, 1959, 1634, 1597, 1498, 1487, 1460, 1444, 1416, 1394, 1348, 1281, 1180, 1157, 1112, 1075, 1024, 918, 808 , 795, 777, 752, 695, 649, 532 cm -1 ; HR-MS (FAB (+)): m / z = 521.1281 for C 23 H 20 N 2 Au [MI -] +:. 521.1292.

II. Rhodium ChemieII. Rhodium Chemistry

Allgemeines Verfahren D: Synthese von Rh Isocyanid Komplexen

Figure DE102013016487B4_0032
General Procedure D: Synthesis of Rh Isocyanide Complexes
Figure DE102013016487B4_0032

In einem typischen Protokoll wurden [RhCl2(cp*)]2 und das Isocyanid in DCM gelöst und bei Raumtemperatur für 2 Stunden gerührt. Anschließend wurde das Lösungsmittel unter vermindertem Druck abgezogen. Der erhaltene Feststoff war der analytisch reine Isocyanid-Komplex. 1. Dichloro(cp*)(Ph-TosMIC)rhodium(III)

Figure DE102013016487B4_0033
In a typical protocol, [RhCl 2 (cp *)] 2 and the isocyanide were dissolved in DCM and stirred at room temperature for 2 hours. Then the solvent was removed under reduced pressure. The resulting solid was the analytically pure isocyanide complex. 1. Dichloro (cp *) (Ph-TosMIC) rhodium (III)
Figure DE102013016487B4_0033

Gemäß dem Verfahren D wurde die angegebene Verbindung aus [RhCl2(cp*)]2 (250 mg, 431 μmol) und Ph-TosMIC (222 mg, 862 μmol) synthetisiert.
Orangener Feststoff: 472 mg (862 mmol, quantitativ); 1H NMR (300 MHz, CD2Cl2): δ = 1.80 (s, 15H), 2.43 (s, 3H), 6.02 (s, 1H), 7.25–7.37 (m, 6H), 7.41–7.46 (m, 1H), 7.56–7.59 (m, 2H); 13C NMR (75 MHz, CD2Cl2): δ = 9.68 (q, 5C), 21.98 (q), 78.89 (d), 101.52 (s, d: JC,Rh = 7.0, 5C), 127.08 (s), 128.50 (d, 2C), 129.31 (d, 2C), 130.16 (s), 130.69 (d, 2C), 130.84 (d, 2C), 131.21 (d), 147.46 (s), CCN fehlt; IR (KBr disc): υ ~ = 2918, 2182, 1696, 1595, 1522, 1495, 1456, 4375, 1334, 1157 1084 1025, 816, 782, 748, 700, 671, 639, 575, 549, 510, 480 cm–1; HR-MS (ESI (+)): m/z = 544.0588 ber. für C25H28ClNO2RhS [M-Cl]+: 544.0584. 2. Dichloro(cp*)(p-MeO-C6H4-TosMIC)rhodium(III)

Figure DE102013016487B4_0034
According to Method D, the indicated compound was synthesized from [RhCl 2 (cp *)] 2 (250 mg, 431 μmol) and Ph-TosMIC (222 mg, 862 μmol).
Orange solid: 472 mg (862 mmol, quantitative); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.80 (s, 15H), 2.43 (s, 3H), 6.02 (s, 1H), 7.25-7.37 (m, 6H), 7.41-7.46 (m , 1H), 7.56-7.59 (m, 2H); 13 C NMR (75 MHz, CD 2 Cl 2 ): δ = 9.68 (q, 5C), 21.98 (q), 78.89 (d), 101.52 (s, d: J c, Rh = 7.0, 5C), 127.08 ( s), 128.50 (d, 2C), 129.31 (d, 2C), 130.16 (s), 130.69 (d, 2C), 130.84 (d, 2C), 131.21 (d), 147.46 (s), C CN is absent; IR (KBr disc): υ~ = 2918, 2182, 1696, 1595, 1522, 1495, 1456, 4375, 1334, 1157 1084 1025, 816, 782, 748, 700, 671, 639, 575, 549, 510, 480 cm -1 ; HR-MS (ESI (+)): m / z = 544.0588 calcd. For C 25 H 28 ClNO 2 RhS [M-Cl - ] + : 544.0584. 2. Dichloro (cp *) (p-MeO-C 6 H 4 -TosMIC) rhodium (III)
Figure DE102013016487B4_0034

Gemäß dem Verfahren D wurde die angegebene Verbindung aus [RhCl2(cp*)]2 (153 mg, 248 μmol) und p-MeO-C6H4-TosMIC (150 mg, 496 μmol) synthetisiert.
Orangener Feststoff: 303 mg (496 μmol, quantitativ); 1H NMR (300 MHz, CD2Cl2): δ = 1.80 (s, 15H), 2.44 (s, 3H), 3.80 (s, 3H), 5.91 (s, 3H), 6.86 (d, J = 8.8 Hz, 2H), 7.18 (d, J = 8.8 Hz, 2H) 7.33 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H); 13C NMR (125 MHz, CD2Cl2): δ = 9.64 (q, 5C), 21.95 (q), 55.81 (q), 78.45 (d), 101.41 (s, d: JC,Rh = 7.0, 5C), 114.63 (d, 2C), 129.97 (d, 2C), 130.19 (s), 130.53 (d, 2C), 130.78 (d, 2C), 132.16 (s), 147.28 (s), 161.97 (s), CCN fehlt; IR (KBr disc): υ ~ = 2914, 2180, 1608, 1595, 1514, 1453, 1376, 1333, 1309, 1293, 1257, 1180, 1155, 1083, 1025, 839, 815, 772, 712, 660, 596, 569, 519, 458 cm–1. 3. Dichloro(cp*)(methyl isocyano(phenyl)acetat)rhodium(III)

Figure DE102013016487B4_0035
According to Method D, the indicated compound was synthesized from [RhCl 2 (cp *)] 2 (153 mg, 248 μmol) and p-MeO-C 6 H 4 -TosMIC (150 mg, 496 μmol).
Orange solid: 303 mg (496 μmol, quantitative); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.80 (s, 15H), 2.44 (s, 3H), 3.80 (s, 3H), 5.91 (s, 3H), 6.86 (d, J = 8.8 Hz, 2H), 7.18 (d, J = 8.8 Hz, 2H) 7.33 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 9.64 (q, 5C), 21.95 (q), 55.81 (q), 78.45 (d), 101.41 (s, d: J c, Rh = 7.0, 5C), 114.63 (d, 2C), 129.97 (d, 2C), 130.19 (s), 130.53 (d, 2C), 130.78 (d, 2C), 132.16 (s), 147.28 (s), 161.97 (s) , C CN is missing; IR (KBr disc): υ ~ = 2914, 2180, 1608, 1595, 1514, 1453, 1376, 1333, 1309, 1293, 1257, 1180, 1155, 1083, 1025, 839, 815, 772, 712, 660, 596 , 569, 519, 458 cm -1 . 3. Dichloro (cp *) (methyl isocyano (phenyl) acetate) rhodium (III)
Figure DE102013016487B4_0035

Gemäß dem Verfahren D wurde die angegebene Verbindung aus [RhCl2(cp*)]2 (100 mg, 162 μmol) und Methylisocyano(phenyl)acetat (57 mg, 324 μmol) synthetisiert.
Orangener Feststoff: 157 mg (324 μmol, quantitativ); 1H NMR (400 MHz, CD2Cl2): δ = 1.76 (s, 15H), 3.81 (s, 3H), 5.74 (s, 1H), 7.44–7.49 (m, 3H), 7.49–7.53 (m, 2H); 13C NMR (100 MHz, CD2Cl2): δ = 9.49 (q, 5C), 54.43 (q), 63.00 (d), 100.76 (s, d: JC,Rh = 7.0, 5C), 127.19 (d, 2d), 129.81 (d, 2C), 130.36 (d), 131.45 (s), 166.07 (s), CCN fehlt; IR (KBr disc): υ ~ = 2987, 2909, 2201, 1755, 1634, 1455, 1375, 1255, 1161, 1081, 1024, 738, 700, 588 cm–1. 4. Dichloro(cp*)(diphenylmethyl isocyano)rhodium(III)

Figure DE102013016487B4_0036
According to Method D, the indicated compound was synthesized from [RhCl 2 (cp *)] 2 (100 mg, 162 μmol) and methyl isocyano (phenyl) acetate (57 mg, 324 μmol).
Orange solid: 157 mg (324 μmol, quantitative); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.76 (s, 15H), 3.81 (s, 3H), 5.74 (s, 1H), 7.44-7.49 (m, 3H), 7.49-7.53 (m , 2H); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 9.49 (q, 5C), 54.43 (q), 63.00 (d), 100.76 (s, d: J c, Rh = 7.0, 5C), 127.19 ( d, 2d), 129.81 (d, 2C), 130.36 (d), 131.45 (s), 166.07 (s), C CN absent; IR (KBr disc): υ~ = 2987, 2909, 2201, 1755, 1634, 1455, 1375, 1255, 1161, 1081, 1024, 738, 700, 588 cm -1 . 4. Dichloro (cp *) (diphenylmethyl isocyano) rhodium (III)
Figure DE102013016487B4_0036

Gemäß dem Verfahren D wurde die angegebene Verbindung aus [RhCl2(cp*)]2 (160 mg, 259 μmol) und Diphenylmethylisocyanid (100 mg, 517 μmol) synthetisiert.
Orangener Feststoff: 260 mg (517 μmol, quantitativ); 1H NMR (400 MHz, CD2Cl2): δ = 1.67 (s, 15H), 6.24 (s, 1H), 7.32–7.49 (m, 10H); 13C NMR (100 MHz, CD2Cl2): δ = 9.51 (q, 5C), 64.94 (d), 100.31 (s, d: JC,Rh = 7.0, 5C), 126.97 (d, 2C), 129.30 (s), 129.62 (d, 2C); 137.44; IR (KBr disc): υ ~ = 3035, 2986, 2915, 2199, 1631, 1494, 1452, 1377, 1157, 1080, 969, 855, 749, 703, 652, 612, 558, 466 cm–1; HR-MS (ESI (+)): m/z = 466.0810 ber. für C24H26ClNRh [M-Cl]+: 466.0809. Allgemeines Verfahren E: Synthese von Rh NHC Komplexen

Figure DE102013016487B4_0037
According to Method D, the indicated compound was synthesized from [RhCl 2 (cp *)] 2 (160 mg, 259 μmol) and diphenylmethyl isocyanide (100 mg, 517 μmol).
Orange solid: 260 mg (517 μmol, quantitative); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.67 (s, 15H), 6.24 (s, 1H), 7.32-7.49 (m, 10H); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 9.51 (q, 5C), 64.94 (d), 100.31 (s, d: J C, Rh = 7.0, 5C), 126.97 (d, 2C), 129.30 (s), 129.62 (d, 2C); 137.44; IR (KBr disc): υ~ = 3035, 2986, 2915, 2199, 1631, 1494, 1452, 1377, 1157, 1080, 969, 855, 749, 703, 652, 612, 558, 466 cm -1 ; HR-MS (ESI (+)): m / z = 466.0810 for C 24 H 26 ClNRh [M-Cl -] +:. 466.0809. General Procedure E: Synthesis of Rh NHC Complexes
Figure DE102013016487B4_0037

In einem typischen Protokoll wurden RhCl2(cp*)(Ar-TosMIC) (172 μmol), das Imin (172 μmol) und NEt3 (100 μl/μmol [Rh]) in 5 ml MeCN gelöst. Nach Rühren bei Raumtemperatur für 12 Stunden wurde die Lösung mit 20 ml Wasser gequencht, abgetrennt und die Wasserphase wurde mit DCM (3 × 10 ml) extrahiert. Die kombinierten organischen Phasen wurden mit MgSO4 getrocknet und das Lösungsmittel wurde unter vermindertem Druck abgezogen. Der erhaltene Feststoff wurde durch Umkristallisation in DCM/Et2O gereinigt. 1. Dichloro(cp*)(1-isopropyl-4,5-diphenyl-imidazol-2-yliden)rhodium(III)

Figure DE102013016487B4_0038
In a typical protocol, RhCl 2 (cp *) (Ar-TosMIC) (172 μmol), imine (172 μmol) and NEt 3 (100 μl / μmol [Rh]) were dissolved in 5 ml of MeCN. After stirring at room temperature for 12 hours, the solution was quenched with 20 mL of water, separated, and the water phase was extracted with DCM (3 × 10 mL). The combined organic phases were dried with MgSO 4 and the solvent was removed under reduced pressure. The resulting solid was purified by recrystallization in DCM / Et 2 O. 1. Dichloro (cp *) (1-isopropyl-4,5-diphenyl-imidazol-2-ylidene) rhodium (III)
Figure DE102013016487B4_0038

Gemäß dem Verfahren E wurde die angegebene Verbindung aus RhCl2(cp*)(Ph-TosMIC) (100 mg, 172 μmol) und N-Benzyliden-2-propylamin (26 mg, 172 μmol) synthetisiert.
Orangener Feststoff: 106 mg (153 μmol, 89%); 1H NMR (300 MHz, CD2Cl2): δ = 1.01 (d, J = 7.0 Hz, 3H), 1.179 (d, J = 7.0 Hz, 3H), 1.63 (s, 15H), 2.31 (s, 3H), 5.19 (sept, J = 7.0 Hz, 1H), 7.04 (d, J = 8.2 Hz, 2H), 7.15–7.21 (m, 2H), 7.24–7.29 (m, 3H), 7.35 (d, J = 8.2 Hz, 2H), 7.39 (dd, J = 7.9, 1.5 Hz, 2H), 7.45–7.56 (m, 3H), 11.99 (s, 1H); IR (KBr disc): υ ~ = 3058, 2975, 2918, 1632, 1507, 1489, 1457, 1369, 1352, 1232, 1176, 1087, 1026, 1010, 965, 812, 770, 707, 694, 634, 575, 508 cm–1; HR-MS (ESI (+)): m/z = 713.1461, ber. für C35H45ClN2O2RhSNa [M+Na+]+: 713.1452. 2. Dichloro(cp*)(5-(4-bromophenyl)-1-isopropyl-4-phenyl-imidazol-2-yliden)rhodium(III)

Figure DE102013016487B4_0039
According to Method E, the indicated compound was synthesized from RhCl 2 (cp *) (Ph-TosMIC) (100 mg, 172 μmol) and N-benzylidene-2-propylamine (26 mg, 172 μmol).
Orange solid: 106 mg (153 μmol, 89%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.01 (d, J = 7.0 Hz, 3H), 1.179 (d, J = 7.0 Hz, 3H), 1.63 (s, 15H), 2.31 (s, 3H), 5.19 (sept, J = 7.0 Hz, 1H), 7.04 (d, J = 8.2 Hz, 2H), 7.15-7.21 (m, 2H), 7.24-7.29 (m, 3H), 7.35 (d, J = 8.2 Hz, 2H), 7.39 (dd, J = 7.9, 1.5 Hz, 2H), 7.45-7.56 (m, 3H), 11.99 (s, 1H); IR (KBr disc): υ~ = 3058, 2975, 2918, 1632, 1507, 1489, 1457, 1369, 1352, 1232, 1176, 1087, 1026, 1010, 965, 812, 770, 707, 694, 634, 575 , 508 cm -1 ; HR-MS (ESI (+)): m / z = 713.1461, calc'd for C 35 H 45 ClN 2 O 2 RhSNa [M + Na +] +:. 713.1452. 2. Dichloro (cp *) (5- (4-bromophenyl) -1-isopropyl-4-phenyl-imidazol-2-ylidene) rhodium (III)
Figure DE102013016487B4_0039

Gemäß dem Verfahren E wurde die angegebene Verbindung aus RhCl2(cp*)(Ph-TosMIC) (100 mg, 172 μmol) und N-p-Bromobenzyliden-2-propylamin (26 mg, 172 μmol) synthetisiert.
Orangener Feststoff: 16 mg (21 μmol, 12%); 1H NMR (400 MHz, CD2Cl2): δ = 1.02 (d, J = 6.7 Hz, 3H), 1.19 (d, J = 7.2 Hz, 3H), 1.61 (s, 15H), 2.31 (s, 3H), 5.25–5.31 (m, 1H), 7.04 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 7.5 Hz, 2H), 7.26–7.34 (m, 5H), 7.37 (d, J = 8.0 Hz, 2H), 7.61–7.67 (m, 2H), 11.98 (s, 1H); 13C NMR (100 MHz, CD2Cl2): δ = 9.44 (q, 5C), 21.48 (q), 23.15 (q), 25.28 (q), 54.66 (d), 101.17 (s, d: JC,Rh = 5.5 Hz, 5C), 124.89 (s), 126.43 (d, 2C), 126.99 (d, 2C), 128.12 (d, 2C), 128.66 (s), 128.90 (d), 129.34 (s), 129.56 (s), 129.62 (d, 2C), 130.80 (s), 132.60 (d, 2C), 132.95 (s), 135.06 (d, 2C), 140.42 (s), 150.97 (s, d: JC,Rh = 55.3 Hz); IR (KBr disc): υ ~ = 2972, 2917, 1698, 1635, 1558, 1541, 1507, 1486, 1456, 1366, 1232, 1162, 1075, 1023, 1011, 965, 834, 770, 693, 633, 576, 509 cm–1; HR-MS (ESI (+)): m/z = 769.0771, ber. für C35H40N2O2RhS35Cl79Br [M+H+]+: 769.0732. 3. Dichloro(cp*)(1-benzyl-4,5-diphenyl-imidazol-2-yliden)rhodium(III)

Figure DE102013016487B4_0040
According to Method E, the indicated compound was synthesized from RhCl 2 (cp *) (Ph-TosMIC) (100 mg, 172 μmol) and Np-bromobenzylidene-2-propylamine (26 mg, 172 μmol).
Orange solid: 16 mg (21 μmol, 12%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.02 (d, J = 6.7 Hz, 3H), 1.19 (d, J = 7.2 Hz, 3H), 1.61 (s, 15H), 2.31 (s, 3H), 5.25-5.31 (m, 1H), 7.04 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 7.5 Hz, 2H), 7.26-7.34 (m, 5H), 7.37 (d, J = 8.0 Hz, 2H), 7.61-7.67 (m, 2H), 11.98 (s, 1H); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 9.44 (q, 5C), 21.48 (q), 23.15 (q), 25.28 (q), 54.66 (d), 101.17 (s, d: J C , Rh = 5.5Hz, 5C), 124.89 (s), 126.43 (d, 2C), 126.99 (d, 2C), 128.12 (d, 2C), 128.66 (s), 128.90 (d), 129.34 (s), 129.56 (s), 129.62 (d, 2C), 130.80 (s), 132.60 (d, 2C), 132.95 (s), 135.06 (d, 2C), 140.42 (s), 150.97 (s, d: J C, Rh = 55.3 Hz); IR (KBr disc): υ ~ = 2972, 2917, 1698, 1635, 1558, 1541, 1507, 1486, 1456, 1366, 1232, 1162, 1075, 1023, 1011, 965, 834, 770, 693, 633, 576 , 509 cm -1 ; HR-MS (ESI (+)):. M / z = 769.0771, calc'd for C 35 H 40 N 2 O 2 RhS 35 Cl Br 79 [M + H +] +: 769.0732. 3. Dichloro (cp *) (1-benzyl-4,5-diphenyl-imidazol-2-ylidene) rhodium (III)
Figure DE102013016487B4_0040

Gemäß dem Verfahren E wurde die angegebene Verbindung aus RhCl2(cp*)(Ph-TosMIC) (100 mg, 172 μmol) und N-Benzylidenbenzylamin (34 mg, 172 μmol) synthetisiert.
Orangener Feststoff: 92 mg (124 μmol, 72%); 1H NMR (300 MHz, CD2Cl2): δ = 1.63 (s, 15H), 2.40 (s, 3H), 4.70 (d, J = 14.3 Hz, 1H), 6.01 (d, J = 14.3 Hz, 1H), 6.26 (d, J = 7.6 Hz, 2H), 6.80–6.85 (m, 4H), 7.01 (t, J = 7.4 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.22 (t, J = 7.3 Hz, 2H), 7.29–7.34 (m, 6H), 7.57 (d, J = 8.2 Hz, 2H), 12.35 (s, 1H); 13C NMR (75 MHz, CD2Cl2): δ = 9.35 (q, 5C), 21.63 (q), 52.36 (t), 101.31 (s, d: JC,Rh = 5.5 Hz, 5C), 126.13 (d, 3C), 127.39 (d), 127.70 (d, 2C), 127.96 (d, 2C), 128.28 (d, 2C), 128.31 (d, 2C), 128.65 (s), 128.87 (s), 129.21 (d, 2C), 129.59 (d, 3C), 129.73 (s), 131.33 (d, 2C), 131.72 (s), 133.41 (s), 137.35 (s), 140.53 (s), 150.70 (s, d: JC,Rh = 54.7 Hz); IR (KBr disc): υ ~ = 3449, 3059, 2976, 2916, 1634, 1598, 1491, 1452, 1400, 1378, 1355, 1173, 1109, 1085, 1027, 1009, 974, 810, 763, 731, 699, 636, 575, 509 cm–1; HR-MS (ESI (+)): m/z = 739.1642, ber. für C39H41ClN2O2RhS [M+H+]+: 739.1627. 4. Dichloro(cp*)(1-ethylphenyl-4,5-diphenyl-imidazol-2-yliden)-rhodium(III)

Figure DE102013016487B4_0041
According to Method E, the indicated compound was synthesized from RhCl 2 (cp *) (Ph-TosMIC) (100 mg, 172 μmol) and N-benzylidenbenzylamine (34 mg, 172 μmol).
Orange solid: 92 mg (124 μmol, 72%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.63 (s, 15H), 2.40 (s, 3H), 4.70 (d, J = 14.3 Hz, 1H), 6.01 (d, J = 14.3 Hz, 1H), 6.26 (d, J = 7.6 Hz, 2H), 6.80-6.85 (m, 4H), 7.01 (t, J = 7.4 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.22 ( t, J = 7.3 Hz, 2H), 7.29-7.34 (m, 6H), 7.57 (d, J = 8.2 Hz, 2H), 12.35 (s, 1H); 13 C NMR (75 MHz, CD 2 Cl 2 ): δ = 9.35 (q, 5C), 21.63 (q), 52.36 (t), 101.31 (s, d: J c, Rh = 5.5 Hz, 5C), 126.13 (d, 3C), 127.39 (d), 127.70 (d, 2C), 127.96 (d, 2C), 128.28 (d, 2C), 128.31 (d, 2C), 128.65 (s), 128.87 (s), 129.21 (d, 2C), 129.59 (d, 3C), 129.73 (s), 131.33 (d, 2C), 131.72 (s), 133.41 (s), 137.35 (s), 140.53 (s), 150.70 (s, d : J C, Rh = 54.7 Hz); IR (KBr disc): υ ~ = 3449, 3059, 2976, 2916, 1634, 1598, 1491, 1452, 1400, 1378, 1355, 1173, 1109, 1085, 1027, 1009, 974, 810, 763, 731, 699 , 636, 575, 509 cm -1 ; HR-MS (ESI (+)): m / z = 739.1642, calc. For C 39 H 41 ClN 2 O 2 RhS [M + H + ] + : 739.1627. 4. Dichloro (cp *) (1-ethylphenyl-4,5-diphenyl-imidazol-2-ylidene) rhodium (III)
Figure DE102013016487B4_0041

Gemäß dem Verfahren E wurde die angegebene Verbindung aus RhCl2(cp*)(Ph-TosMIC) (100 mg, 172 μmol) und N-Benzyliden-2-phenylethylamin (36 mg, 172 μmol) synthetisiert.
Orangener Feststoff: 90 mg (119 μmol, 69%); 1H NMR (600 MHz, CD2Cl2): δ = 1.55 (s, 15H), 1.76 (s, 1H), 2.33 (s, 3H), 2.89 (s, 1H), 3.91 (s, 1H), 4.55 (s, 1H), 6.89 (d, J = 6.8 Hz, 2H), 7.11–7.16 (m, 5H), 7.32–7.35 (m, 5H), 7.44 (d, J = 6.7 Hz, 2H), 7.59–7.63 (m, 5H), 12.23 (s, 1H); 13C NMR (150 MHz, CD2Cl2): δ = 9.26 (q, 5C), 21.54 (q), 37.69 (t), 50.59 (t), 101.14 (s, d: JC,Rh = 5.4 Hz, 5C), 126.53 (d), 126.83 (s), 126.85 (d, 2C), 128.33 (d), 128.74 (s), 128.78 (d, 2C), 128.92 (s), 129.50 (d, 3C), 129.62 (d, 2C), 130.05 (d, 3C), 130.46 (s), 131.59 (d, 2C), 132.73 (s), 138.56 (s), 140.63 (s), 166.66 (s, d: JC,Rh = 54.6 Hz); IR (KBr disc): υ ~ = 3058, 3027, 2916, 1634, 1600, 1491, 1452, 1400, 1377, 1174, 1110, 1086, 1028, 1010, 964, 812, 765, 703, 637, 575, 508 cm–1; HR-MS (ESI (+)): m/z = 753.1832, ber. für C40H43ClN2O2RhS [M+H+]+: 753.1783. 5. Dichloro(cp*)(1-phenyl-5,6-dihydroimidazo[5,1-a]isochinolin-3-yliden)-rhodium(III)

Figure DE102013016487B4_0042
According to Method E, the indicated compound was synthesized from RhCl 2 (cp *) (Ph-TosMIC) (100 mg, 172 μmol) and N-benzylidene-2-phenylethylamine (36 mg, 172 μmol).
Orange solid: 90 mg (119 μmol, 69%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 1.55 (s, 15H), 1.76 (s, 1H), 2.33 (s, 3H), 2.89 (s, 1H), 3.91 (s, 1H), 4.55 (s, 1H), 6.89 (d, J = 6.8Hz, 2H), 7.11-7.16 (m, 5H), 7.32-7.35 (m, 5H), 7.44 (d, J = 6.7Hz, 2H), 7.59 -7.63 (m, 5H), 12.23 (s, 1H); 13 C NMR (150 MHz, CD 2 Cl 2 ): δ = 9.26 (q, 5C), 21.54 (q), 37.69 (t), 50.59 (t), 101.14 (s, d: J C, Rh = 5.4 Hz , 5C), 126.53 (d), 126.83 (s), 126.85 (d, 2C), 128.33 (d), 128.74 (s), 128.78 (d, 2C), 128.92 (s), 129.50 (d, 3C), 129.62 (d, 2C), 130.05 (d, 3C), 130.46 (s), 131.59 (d, 2C), 132.73 (s), 138.56 (s), 140.63 (s), 166.66 (s, d: J c, Rh = 54.6 Hz); IR (KBr disc): υ~ = 3058, 3027, 2916, 1634, 1600, 1491, 1452, 1400, 1377, 1174, 1110, 1086, 1028, 1010, 964, 812, 765, 703, 637, 575, 508 cm -1 ; HR-MS (ESI (+)): m / z = 753.1832, calcd. For C 40 H 43 ClN 2 O 2 RhS [M + H + ] + : 753.1783. 5. Dichloro (cp *) (1-phenyl-5,6-dihydroimidazo [5,1-a] isoquinolin-3-ylidene) rhodium (III)
Figure DE102013016487B4_0042

Gemäß dem Verfahren E wurde die angegebene Verbindung aus RhCl2(cp*)(Ph-TosMIC) (100 mg, 172 μmol) und 3,4-Dihydroisochinolin (23 mg, 172 μmol) synthetisiert.
Orangener Feststoff: 102 mg (150 μmol, 87%); 1H NMR (400 MHz, CD2Cl2): δ = 1.61 (s, 15H), 2.26 (s, 3H), 3.14 (t, J = 5.8 Hz, 2H), 4.49–4.58 (m, 2H), 7.02 (d, J = 7.8 Hz, 2H), 7.12 (t, J = 7.6 Hz, 1H), 7.25 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.49–7.51 (m, 7H), 11.26 (s, 1H) ppm; 13C NMR (100 MHz, CD2Cl2): δ = 9.48 (q, 5C), 21.48 (q), 30.39 (t), 45.61 (t), 101.04 (s, d: JC,Rh = 5.6 Hz, 5C), 124.24 (d), 126.50 (s), 126.67 (d, 3C), 127.50 (d), 128.22 (d, 2C), 128.71 (d, 3C), 128.77 (s), 128.97 (d), 129.54 (s), 129.71 (s), 129.81 (d, 2C), 129.86 (s), 134.50 (s), 140.37 (s), 165.05 (s, d: JC,Rh = 54.4 Hz); IR (KBr disc): υ ~ = 3445, 3058, 2972, 2914, 1649, 1482, 1451, 1381, 1177, 1086, 1033, 813, 767, 727, 703, 681, 637, 575, 508 cm–1; HR-MS (ESI (+)): m/z = 675.1333, ber. für C34H37ClN2O2RhS [M+H+]+: 675.1314. 6. Dichloro(cp*)(1-cyclohexyl-4,5-diphenyl-imidazol-2-yliden)-rhodium(III)

Figure DE102013016487B4_0043
According to Method E, the indicated compound was synthesized from RhCl 2 (cp *) (Ph-TosMIC) (100 mg, 172 μmol) and 3,4-dihydroisoquinoline (23 mg, 172 μmol).
Orange solid: 102 mg (150 μmol, 87%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.61 (s, 15H), 2.26 (s, 3H), 3.14 (t, J = 5.8 Hz, 2H), 4.49-4.58 (m, 2H), 7.02 (d, J = 7.8 Hz, 2H), 7.12 (t, J = 7.6 Hz, 1H), 7.25 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.37 ( d, J = 7.8Hz, 1H), 7.49-7.51 (m, 7H), 11.26 (s, 1H) ppm; 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 9.48 (q, 5C), 21.48 (q), 30.39 (t), 45.61 (t), 101.04 (s, d: J C, Rh = 5.6 Hz , 5C), 124.24 (d), 126.50 (s), 126.67 (d, 3C), 127.50 (d), 128.22 (d, 2C), 128.71 (d, 3C), 128.77 (s), 128.97 (d), 129.54 (s), 129.71 (s), 129.81 (d, 2C), 129.86 (s), 134.50 (s), 140.37 (s), 165.05 (s, d: J C, Rh = 54.4 Hz); IR (KBr disc): υ~ = 3445, 3058, 2972, 2914, 1649, 1482, 1451, 1381, 1177, 1086, 1033, 813, 767, 727, 703, 681, 637, 575, 508 cm -1 ; HR-MS (ESI (+)): m / z = 675.1333, calc'd for C 34 H 37 ClN 2 O 2 RhS [M + H +] +:. 675.1314. 6. Dichloro (cp *) (1-cyclohexyl-4,5-diphenyl-imidazol-2-ylidene) rhodium (III)
Figure DE102013016487B4_0043

Gemäß dem Verfahren E wurde die angegebene Verbindung aus RhCl2(cp*)(Ph-TosMIC) (100 mg, 172 μmol) und N-Benzyliden-cyclohexylamin (32 mg, 172 μmol) synthetisiert.
Orangener Feststoff: 82 mg (113 μmol, 66%); 1H NMR (400 MHz, CD2Cl2): δ = 1.16–1.53 (m, 8H), 1.64 (s, 15H), 2.31 (s, 3H), 4.83 (t, J = 12.1 Hz), 7.03 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 6.9 Hz, 2H), 7.25–7.38 (m, 7H), 7.47–7.56 (m, 3H), 12.09 (s, 1H); 13C NMR (100 MHz, CD2Cl2): δ = 9.45 (q, 5C), 21.49 (q), 25.74 (t), 26.93 (t), 33.37 (t), 35.23 (t), 62.94 (d), 101.14 (s, d: JC,Rh = 5.4 Hz, 5C), 126.29 (d, 2C), 126.91 (d, 2C), 128.11 (d, 2C), 128.62 (s), 129.01 (s), 129.15 (d, 2C), 129.47 (d, 3C), 130.36 (d), 130.84 (s), 132.46 (s), 133.40 (d, 2C), 140.33 (s), 151.04 (s), 165.16 (s, d: JC,Rh = 55.3 Hz); IR (KBr disc): υ ~ = 3058, 2930, 2857, 1635, 1558, 1541, 1508, 1489, 1456, 1362, 1174, 1113, 1086, 1026, 1012, 996, 964, 894, 811, 790, 769, 753, 707, 634, 600, 576, 509, 420 cm–1; m/z = 731.1940, ber. für C38H45ClN2O2RhS [M+H+]+: 731.1940. 7. Dichloro(cp*)(1-(2-methoxyethyl)-4,5-diphenyl-imidazol-2-yliden)-rhodium(III)

Figure DE102013016487B4_0044
According to Method E, the indicated compound was synthesized from RhCl 2 (cp *) (Ph-TosMIC) (100 mg, 172 μmol) and N-benzylidene-cyclohexylamine (32 mg, 172 μmol).
Orange solid: 82 mg (113 μmol, 66%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.16-1.53 (m, 8H), 1.64 (s, 15H), 2.31 (s, 3H), 4.83 (t, J = 12.1 Hz), 7.03 ( d, J = 7.9Hz, 2H), 7.18 (d, J = 6.9Hz, 2H), 7.25-7.38 (m, 7H), 7.47-7.56 (m, 3H), 12.09 (s, 1H); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 9.45 (q, 5C), 21.49 (q), 25.74 (t), 26.93 (t), 33.37 (t), 35.23 (t), 62.94 (i.e. ), 101.14 (s, d: J C, Rh = 5.4 Hz, 5C), 126.29 (d, 2C), 126.91 (d, 2C), 128.11 (d, 2C), 128.62 (s), 129.01 (s), 129.15 (d, 2C), 129.47 (d, 3C), 130.36 (d), 130.84 (s), 132.46 (s), 133.40 (d, 2C), 140.33 (s), 151.04 (s), 165.16 (s, d: J C, Rh = 55.3 Hz); IR (KBr disc): υ~ = 3058, 2930, 2857, 1635, 1558, 1541, 1508, 1489, 1456, 1362, 1174, 1113, 1086, 1026, 1012, 996, 964, 894, 811, 790, 769 , 753, 707, 634, 600, 576, 509, 420 cm -1 ; m / z = 731.1940, calc'd for C 38 H 45 ClN 2 O 2 RhS [M + H +] +:. 731.1940. 7. Dichloro (cp *) (1- (2-methoxyethyl) -4,5-diphenyl-imidazol-2-ylidene) rhodium (III)
Figure DE102013016487B4_0044

Gemäß dem Verfahren E wurde die angegebene Verbindung aus RhCl2(cp*)(Ph-TosMIC) (100 mg, 172 μmol) und N-Benzyliden-cyclohexylamin (28 mg, 172 μmol) synthetisiert.
Orangener Feststoff: 85 mg (120 μmol, 70%); 1H NMR (300 MHz, CD2Cl2): δ = 1.58 (s, 15H), 2.31 (s, 3H), 2.94 (s, 3H), 2.99–3.03 (m, 1H), 3.21–3.28 (m, 1H), 4.08 (quin, J = 6.7 Hz, 1H), 4.34–4.43 (m, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.26–7.25 (m, 7H), 7.50–7.53 (m, 5H), 11.97 (s, 1H); 13C NMR (75 MHz, CD2Cl2): δ = 9.25 (q, 5C), 21.50 (q), 47.58 (t), 58.69 (q), 72.25 (t), 101.20 (s, d: JC,Rh = 5.5 Hz, 5C), 126.52 (d, 3C), 126.92 (d, 2C), 128.26 (d, 2C), 128.72 (s), 128.88 (s), 129.43 (s), 129.56 (d, 2C), 129.68 (d, 3C), 130.21 (s), 131.35 (s), 131.68 (d, 2C), 133.33 (s), 140.52 (s), 166.93 (s, d: JC,Rh = 55.2 Hz) ppm; IR (KBr disc): υ ~ = 3035, 2974, 2917, 1635, 1595, 1507, 1490, 1447, 1375, 1319, 1261, 1171, 1123, 1087, 1025, 1011, 963, 806, 769, 694, 633, 595, 576, 537, 508, 473 cm–1; HR-MS (ESI (+)): m/z = 671.1832, ber. für C35H40N2O3RhS [M-Cl]+: 671.1815.
According to Method E, the indicated compound was synthesized from RhCl 2 (cp *) (Ph-TosMIC) (100 mg, 172 μmol) and N-benzylidene-cyclohexylamine (28 mg, 172 μmol).
Orange solid: 85 mg (120 μmol, 70%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.58 (s, 15H), 2.31 (s, 3H), 2.94 (s, 3H), 2.99-3.03 (m, 1H), 3.21-3.28 (m , 1H), 4.08 (quin, J = 6.7 Hz, 1H), 4.34-4.43 (m, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.26-7.25 (m, 7H), 7.50-7.53 ( m, 5H), 11.97 (s, 1H); 13 C NMR (75 MHz, CD 2 Cl 2 ): δ = 9.25 (q, 5C), 21.50 (q), 47.58 (t), 58.69 (q), 72.25 (t), 101.20 (s, d: J C , Rh = 5.5Hz, 5C), 126.52 (d, 3C), 126.92 (d, 2C), 128.26 (d, 2C), 128.72 (s), 128.88 (s), 129.43 (s), 129.56 (d, 2C ), 129.68 (d, 3C), 130.21 (s), 131.35 (s), 131.68 (d, 2C), 133.33 (s), 140.52 (s), 166.93 (s, d: J c, Rh = 55.2 Hz) ppm; IR (KBr disc): υ~ = 3035, 2974, 2917, 1635, 1595, 1507, 1490, 1447, 1375, 1319, 1261, 1171, 1123, 1087, 1025, 1011, 963, 806, 769, 694, 633 , 595, 576, 537, 508, 473 cm -1 ; HR-MS (ESI (+)): m / z = 671.1832, calc'd for C 35 H 40 N 2 O 3 RhS [M-Cl -] +:. 671.1815.

III. Iridium Chemie III. Iridium chemistry

Allgemeines Verfahren F: Synthese von Ir-Isocyanid-Komplexes

Figure DE102013016487B4_0045
General Procedure F: Synthesis of Ir Isocyanide Complex
Figure DE102013016487B4_0045

In einem typischen Protokoll wurden [IrCl2(cp*)]2 und das Isocyanid in DCM gelöst und bei Raumtemperatur für 2 Stunden gerührt. Anschließend wurde das Produkt durch Umkristallisation in DCM/Et2O gereinigt. 1. Dichloro(cp*)(Ph-TosMIC)iridium(III)

Figure DE102013016487B4_0046
In a typical protocol, [IrCl 2 (cp *)] 2 and the isocyanide were dissolved in DCM and stirred at room temperature for 2 hours. Subsequently, the product was purified by recrystallization in DCM / Et 2 O. 1. Dichloro (cp *) (Ph-TosMIC) iridium (III)
Figure DE102013016487B4_0046

Gemäß dem Verfahren F wurde die angegebene Verbindung aus [IrCl2(cp*)]2 (1.26 g, 1.59 mmol) und Ph-TosMIC (819 mg, 3.17 mmol) synthetisiert.
Orangener Feststoff: 1.35 g (2.02 mmol, 64%); 1H NMR (300 MHz, CD2Cl2): δ = 1.84 (q, 15H), 2.43 (s, 3H), 6.10 (s, 1H), 7.26–7.30 (m, 3H), 7.32–7.38 (m, 3H), 7.41–7.47 (m, 1H), 7.54–7.59 (t, J = 8.40 Hz, 2H); 13C NMR (75 MHz, CD2Cl2): δ = 9.38 (q, 5C), 22.09 (q), 79.01 (d), 96.29 (s, 5C), 127.73 (s), 128.62 (d), 129.73 (d, 3C), 130.45 (s), 130.64 (s), 130.95 (d, 3C), 131.23 (d, 2C), 147.40 (s), CCN is missing; IR (KBr disc): υ ~ = 3444, 2887, 2168, 1633, 1595, 1493, 1455, 1382, 1333, 1185, 1155, 1083, 1030, 818, 780, 723, 697, 670, 628, 574, 557, 508, 480, 438 cm–1; HR-MS (ESI (+)): m/z = 671.1832, ber. für C35H40N2O3IrS [M-Cl]+: 671.1815. 2. Dichloro(cp*)(p-MeO-C6H4-TosMIC)iridium(III)

Figure DE102013016487B4_0047
According to Method F, the indicated compound was synthesized from [IrCl 2 (cp *)] 2 (1.26 g, 1.59 mmol) and Ph-TosMIC (819 mg, 3.17 mmol).
Orange solid: 1.35 g (2.02 mmol, 64%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.84 (q, 15H), 2.43 (s, 3H), 6.10 (s, 1H), 7.26-7.30 (m, 3H), 7.32-7.38 (m , 3H), 7.41-7.47 (m, 1H), 7.54-7.59 (t, J = 8.40 Hz, 2H); 13 C NMR (75 MHz, CD 2 Cl 2 ): δ = 9.38 (q, 5C), 22.09 (q), 79.01 (d), 96.29 (s, 5C), 127.73 (s), 128.62 (d), 129.73 (d, 3C), 130.45 (s), 130.64 (s), 130.95 (d, 3C), 131.23 (d, 2C), 147.40 (s), CN is missing; IR (KBr disc): υ~ = 3444, 2887, 2168, 1633, 1595, 1493, 1455, 1382, 1333, 1185, 1155, 1083, 1030, 818, 780, 723, 697, 670, 628, 574, 557 , 508, 480, 438 cm -1 ; HR-MS (ESI (+)): m / z = 671.1832, calc'd for C 35 H 40 N 2 O 3 IrS [M-Cl -] +:. 671.1815. 2. Dichloro (cp *) (p-MeO-C 6 H 4 -TosMIC) iridium (III)
Figure DE102013016487B4_0047

Gemäß dem Verfahren F wurde die angegebene Verbindung aus [IrCl2(cp*)]2 (100 mg, 126 μmol) und p-MeO-C6H4-TosMIC (76 mg, 252 μmol) synthetisiert.
Gelber Feststoff: 135 mg (193 μmol, 77%); 1H NMR (400 MHz, CD2Cl2): δ = 1.84 (s, 15H), 2.44 (s, 3H), 3.80 (s, 3H), 6.02 (s, 1H), 6.86 (d, J = 8.8 Hz, 2H), 7.19 (d, J = 8.8 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H); 13C NMR (100 MHz, CD2Cl2): δ = 9.23 (q, 5C), 21. 69 (q), 55.83 (q), 78.54 (d) 96.04 (s, 5C), 114.62 (d, 2C), 119.20 (s), 129.95 (d, 2C), 130.42 (s), 130.49 (d, 2C), 130.79 (d, 2C), 147.13 (s), 161.94 (s), CCN nicht detektierbar; IR (KBr disc): υ ~ = 2981, 2919, 2164, 1604, 1595, 1513, 1451, 1381, 1335, 1309, 1290, 1257, 1179, 1154, 1083, 1029, 836, 814, 772, 709, 676, 660, 620, 600, 566, 518, 473 cm–1; HR-MS (ESI (+)): m/z = 664.1271, ber. für C26H30ClNO3IrS [M-Cl]+: 664.1264. 3. Dichloro(cp*)(methyl isocyano(phenyl)acetat)iridium(III)

Figure DE102013016487B4_0048
According to Method F, the indicated compound was synthesized from [IrCl 2 (cp *)] 2 (100 mg, 126 μmol) and p-MeO-C 6 H 4 -TosMIC (76 mg, 252 μmol).
Yellow solid: 135 mg (193 μmol, 77%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.84 (s, 15H), 2.44 (s, 3H), 3.80 (s, 3H), 6.02 (s, 1H), 6.86 (d, J = 8.8 Hz, 2H), 7.19 (d, J = 8.8 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 9.23 (q, 5C), 21. 69 (q), 55.83 (q), 78.54 (d) 96.04 (s, 5C), 114.62 (d, 2C ), 119.20 (s), 129.95 (d, 2C), 130.42 (s), 130.49 (d, 2C), 130.79 (d, 2C), 147.13 (s), 161.94 (s), C CN not detectable; IR (KBr disc): υ ~ = 2981, 2919, 2164, 1604, 1595, 1513, 1451, 1381, 1335, 1309, 1290, 1257, 1179, 1154, 1083, 1029, 836, 814, 772, 709, 676 , 660, 620, 600, 566, 518, 473 cm -1 ; HR-MS (ESI (+)): m / z = 664.1271, calc'd for C 26 H 30 ClNO 3 IrS [M-Cl -] +:. 664.1264. 3. Dichloro (cp *) (methyl isocyano (phenyl) acetate) iridium (III)
Figure DE102013016487B4_0048

Gemäß dem Verfahren F wurde die angegebene Verbindung aus [IrCl2(cp*)]2 (100 mg, 126 μmol) und Methylisocyano(phenyl)acetat (44 mg, 252 μmol) synthetisiert.
Gelber Feststoff: 136 mg (237 μmol, 94%); 1H NMR (300 MHz, CD2Cl2): δ = 1.80 (q, 15H), 3.80 (s, 3H), 5.80 (s, 1H), 7.42–7.55 (m, 5H); 13C NMR (75 MHz, CD2Cl2): δ = 9.15 (q, 5C), 54.36 (q), 63.01 (d), 95.09 (s, 5C) 127.18 (d, 2C), 129.78 (d, 2C), 130.24 (d), 132.12 (s), 166.51 (s),; IR (KBr disc): υ ~ = 2956, 2917, 2883, 2190, 1754, 1632, 1494, 1453, 1380, 1340, 1254, 1218, 1080, 1031, 981, 867, 791, 750, 701, 622, 559, 488, 436 cm–1; HR-MS (ESI (+)): m/z = 664.1264, calc. for C26H30ClNO3IrS [M-Cl]+: 671.1815. Allgemeines Verfahren G: Synthese von Ir NHC Komplexen

Figure DE102013016487B4_0049
According to Method F, the indicated compound was synthesized from [IrCl 2 (cp *)] 2 (100 mg, 126 μmol) and methyl isocyano (phenyl) acetate (44 mg, 252 μmol).
Yellow solid: 136 mg (237 μmol, 94%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.80 (q, 15H), 3.80 (s, 3H), 5.80 (s, 1H), 7.42-7.55 (m, 5H); 13 C NMR (75 MHz, CD 2 Cl 2 ): δ = 9.15 (q, 5C), 54.36 (q), 63.01 (d), 95.09 (s, 5C) 127.18 (d, 2C), 129.78 (d, 2C ), 130.24 (d), 132.12 (s), 166.51 (s); IR (KBr disc): υ ~ = 2956, 2917, 2883, 2190, 1754, 1632, 1494, 1453, 1380, 1340, 1254, 1218, 1080, 1031, 981, 867, 791, 750, 701, 622, 559 , 488, 436 cm -1 ; HR-MS (ESI (+)): m / z = 664.1264, calc. for C 26 H 30 ClNO 3 IrS [M-Cl - ] + : 671.1815. General Procedure G: Synthesis of Ir NHC Complexes
Figure DE102013016487B4_0049

In einem typischen Protokoll wurden IrCl2(cp*)(Ar-TosMIC) (173 μmol), das Imin (173 μmol) und NEt3 (100 μl/μmol [Ir]) in 5 ml MeCN gelöst. Nach Rühren bei Raumtemperatur für 12 Stunden wurde die Lösung mit 20 ml Wasser gequencht, abgetrennt und die Wasserphase wurde mit DCM (3 × 10 ml) extrahiert. Die kombinierten organischen Phasen wurden mit MgSO4 getrocknet und das Lösungsmittel wurde unter reduziertem Druck abgezogen. Der erhaltene Feststoff wurde durch Umkristallisation in DCM/Et2O gereinigt. 1. Dichloro(cp*)(1-isopropyl-4,5-diphenyl-imidazol-2-yliden)-iridium(III)

Figure DE102013016487B4_0050
In a typical protocol, IrCl 2 (cp *) (Ar-TosMIC) (173 μmol), imine (173 μmol) and NEt 3 (100 μl / μmol [Ir]) were dissolved in 5 ml of MeCN. After stirring at room temperature for 12 hours, the solution was quenched with 20 mL of water, separated, and the water phase was extracted with DCM (3 × 10 mL). The combined organic phases were dried with MgSO 4 and the solvent was removed under reduced pressure. The resulting solid was purified by recrystallization in DCM / Et 2 O. 1. Dichloro (cp *) (1-isopropyl-4,5-diphenyl-imidazol-2-ylidene) -iridium (III)
Figure DE102013016487B4_0050

Gemäß dem Verfahren G wurde die angegebene Verbindung aus IrCl2(cp*)(Ph-TosMIC) (100 mg, 149 μmol) und N-Benzyliden-2-propylamin (22 mg, 149 μmol) synthetisiert.
Gelber Feststoff: 64 mg (82 μmol, 55%); 1H NMR (400 MHz, CD2Cl2): δ = 1.17 (d, J = 6.7 Hz, 3H), 1.19 (d, J = 7.1 Hz, 3H), 1.64 (s, 15H), 2.34 (s, 3H), 5.18 (sept, J = 6.8 Hz, 1H), 7.07 (d, J = 7.8 Hz, 2H), 7.17 (d, J = 7.5 Hz, 2H), 7.22–7.29 (m, 3H), 7.33 (d, J = 7.6 Hz, 2H), 7.43 (d, J = 7.6 Hz, 2H), 7.48–7.56 (m, 3H), 12.07 (s, 1H); 13C NMR (100 MHz, CD2Cl2): δ = 9.09 (q, 5C), 21.46 (q), 23.31 (q), 25.69 (q), 66.22 (d), 94.87 (s, 5C), 126.39 (d, 2C), 127.01 (d, 2C), 127.97 (d, 2C), 128.61 (s), 129.19 (d, 3C), 129.41 (d, 3C), 130.34 (s), 130.52 (s), 131.33 (s), 131.78 (s), 133.63 (d, 2C), 140.24 (s), 147.37 (s); IR (KBr disc): υ ~ = 3443, 2977, 2918, 1631, 1557, 1539, 1490, 1459, 1381, 1285, 1178, 1090, 1032, 813, 770, 705, 641, 578, 513 cm–1; HR-MS (ESI (+)): m/z = 781.2211, ber. für C35H41ClN2O2IrS [M+H+]+: 781.2201. 2. Dichloro(cp*)(5-(4-bromophenyl)-1-isopropyl-4-phenyl-imidazol-2-yliden)-iridium(III)

Figure DE102013016487B4_0051
According to Method G, the indicated compound was synthesized from IrCl 2 (cp *) (Ph-TosMIC) (100 mg, 149 μmol) and N-benzylidene-2-propylamine (22 mg, 149 μmol).
Yellow solid: 64 mg (82 μmol, 55%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.17 (d, J = 6.7 Hz, 3H), 1.19 (d, J = 7.1 Hz, 3H), 1.64 (s, 15H), 2.34 (s, 3H), 5.18 (sept, J = 6.8 Hz, 1H), 7.07 (d, J = 7.8 Hz, 2H), 7.17 (d, J = 7.5 Hz, 2H), 7.22-7.29 (m, 3H), 7.33 ( d, J = 7.6 Hz, 2H), 7.43 (d, J = 7.6 Hz, 2H), 7.48-7.56 (m, 3H), 12.07 (s, 1H); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 9.09 (q, 5C), 21.46 (q), 23.31 (q), 25.69 (q), 66.22 (d), 94.87 (s, 5C), 126.39 (d, 2C), 127.01 (d, 2C), 127.97 (d, 2C), 128.61 (s), 129.19 (d, 3C), 129.41 (d, 3C), 130.34 (s), 130.52 (s), 131.33 (s), 131.78 (s), 133.63 (d, 2C), 140.24 (s), 147.37 (s); IR (KBr disc): υ~ = 3443, 2977, 2918, 1631, 1557, 1539, 1490, 1459, 1381, 1285, 1178, 1090, 1032, 813, 770, 705, 641, 578, 513 cm -1 ; HR-MS (ESI (+)): m / z = 781.2211, calc'd for C 35 H 41 ClN 2 O 2 IrS [M + H +] +:. 781.2201. 2. Dichloro (cp *) (5- (4-bromophenyl) -1-isopropyl-4-phenyl-imidazol-2-ylidene) -iridium (III)
Figure DE102013016487B4_0051

Gemäß dem Verfahren G wurde die angegebene Verbindung aus IrCl2(cp*)(Ph-TosMIC) (100 mg, 149 μmol) und N-p-Bromobenzyliden-2-propylamin (34 mg, 149 μmol) synthetisiert.
Gelber Feststoff: 56 mg (65 μmol, 44%); 1H NMR (600 MHz, CD2Cl2): δ = 1.14 (d, J = 6.7 Hz, 3H), 1.21 (d, J = 7.0 Hz, 3H), 1.63 (s, 15H), 2.33 (s, 3H), 5.21 (sept, J = 6.7 Hz, 1H), 7.07 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.7 Hz, 2H), 7.26–7.32 (m, 5H), 7.35 (d, J = 7.6 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 12.10 (s, 1H); 13C NMR (150 MHz, CD2Cl2): δ = 9.09 (q, 5C), 21.47 (q), 23.44 (q), 25.76 (q), 54.08 (d) 94.91 (s, 5C), 124.87 (s), 126.53 (d, 2C), 127.00 (d, 2C), 127.98 (d, 2C), 128.70 (s), 128.84 (s), 129.55 (d, 2C), 129.89 (s), 132.14 (s), 132.58 (d, 2C), 135.28 (d, 3C), 140.30 (s), 148.13 (s), 151.11 (s); IR (KBr disc): υ ~ = 3442, 2977, 2917, 1631, 1601, 1503, 1486, 1458, 1366, 1349, 1298, 1234, 1172, 1124, 1088, 1075, 1034, 1011, 966, 913, 835, 803, 770, 725, 694, 640, 579, 538, 514, 499, 478 cm–1; HR-MS (ESI (+)): m/z = 859.1319, ber. für C35H40ClIrN2O2S79Br [M+H+]+: 859.1298. 3. Dichloro(cp*)(1-isopropyl-4-(4-methoxyphenyl)-5-phenyl-imidazol-2-yliden)-iridium(III)

Figure DE102013016487B4_0052
According to Method G, the indicated compound was synthesized from IrCl 2 (cp *) (Ph-TosMIC) (100 mg, 149 μmol) and Np-bromobenzylidene-2-propylamine (34 mg, 149 μmol).
Yellow solid: 56 mg (65 μmol, 44%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 1.14 (d, J = 6.7 Hz, 3H), 1.21 (d, J = 7.0 Hz, 3H), 1.63 (s, 15H), 2.33 (s, 3H), 5.21 (sept, J = 6.7 Hz, 1H), 7.07 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.7 Hz, 2H), 7.26-7.32 (m, 5H), 7.35 ( d, J = 7.6 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 12.10 (s, 1H); 13 C NMR (150 MHz, CD 2 Cl 2 ): δ = 9.09 (q, 5C), 21.47 (q), 23.44 (q), 25.76 (q), 54.08 (d) 94.91 (s, 5C), 124.87 ( s), 126.53 (d, 2C), 127.00 (d, 2C), 127.98 (d, 2C), 128.70 (s), 128.84 (s), 129.55 (d, 2C), 129.89 (s), 132.14 (s) , 132.58 (d, 2C), 135.28 (d, 3C), 140.30 (s), 148.13 (s), 151.11 (s); IR (KBr disc): υ~ = 3442, 2977, 2917, 1631, 1601, 1503, 1486, 1458, 1366, 1349, 1298, 1234, 1172, 1124, 1088, 1075, 1034, 1011, 966, 913, 835 , 803, 770, 725, 694, 640, 579, 538, 514, 499, 478 cm -1 ; HR-MS (ESI (+)): m / z = 859.1319, calc'd for C 35 H 40 O 2 S 2 ClIrN 79 Br [M + H +] +:. 859.1298. 3. Dichloro (cp *) (1-isopropyl-4- (4-methoxyphenyl) -5-phenyl-imidazol-2-ylidene) -iridium (III)
Figure DE102013016487B4_0052

Gemäß dem Verfahren G wurde die angegebene Verbindung aus IrCl2(cp*)(p-MeOC6H4-TosMIC) (100 mg, 143 μmol) und N-Benzyliden-2-propylamin (21 mg, 143 μmol) synthetisiert.
Gelber Feststoff: 14 mg (11 μmol, 8%); 1H NMR (500 MHz, CD2Cl2): δ = 1.10 (d, J = 6.8 Hz, 3H), 1.17 (d, J = 6.8 Hz, 3H), 1.63 (s, 15H), 2.34 (s, 3H), 3.75 (s, 3H), 5.15 (sept, J = 6.8 Hz, 1H), 6.79 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.8 Hz, 2H), 7.31 (d, J = 7.6 Hz, 2H), 7.41 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.46–7.55 (m, 3H), 11.95 (s, 1H); 13C NMR (125 MHz, CD2Cl2): δ = 8.91 (q, 5C), 21.29 (q), 23.11 (q), 25.49 (q), 53.73 (d), 55.63 (q), 94.62 (s, 5C), 114.59 (d, 2C), 121.29 (s), 126.79 (d, 2C), 127.63 (d, 2C), 127.77 (d, 2C), 128.96 (d, 2C), 130.02 (d), 130.05 (s), 130.54 (s), 131.54 (s), 133.56 (d, 2C), 140.02 (s), 146.37 (s), 150.95 (s), 159.84 (s). 4. Dichloro(cp*)(1-benzyl-4,5-diphenyl-imidazol-2-yliden)iridium(III)

Figure DE102013016487B4_0053
According to Method G, the indicated compound was synthesized from IrCl 2 (cp *) (p-MeOC 6 H 4 -TosMIC) (100 mg, 143 μmol) and N-benzylidene-2-propylamine (21 mg, 143 μmol).
Yellow solid: 14 mg (11 μmol, 8%); 1 H NMR (500 MHz, CD 2 Cl 2 ): δ = 1.10 (d, J = 6.8 Hz, 3H), 1.17 (d, J = 6.8 Hz, 3H), 1.63 (s, 15H), 2.34 (s, 3H), 3.75 (s, 3H), 5.15 (sept, J = 6.8 Hz, 1H), 6.79 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.8 Hz, 2H), 7.31 (d, J = 7.6 Hz, 2H), 7.41 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.46-7.55 (m, 3H), 11.95 (s, 1H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 8.91 (q, 5C), 21.29 (q), 23.11 (q), 25.49 (q), 53.73 (d), 55.63 (q), 94.62 (s , 5C), 114.59 (d, 2C), 121.29 (s), 126.79 (d, 2C), 127.63 (d, 2C), 127.77 (d, 2C), 128.96 (d, 2C), 130.02 (d), 130.05 (s), 130.54 (s), 131.54 (s), 133.56 (d, 2C), 140.02 (s), 146.37 (s), 150.95 (s), 159.84 (s). 4. Dichloro (cp *) (1-benzyl-4,5-diphenyl-imidazol-2-ylidene) iridium (III)
Figure DE102013016487B4_0053

Gemäß dem Verfahren G wurde die angegebene Verbindung aus IrCl2(cp*)(Ph-TosMIC) (100 mg, 149 μmol) und N-Benzylidenebenzylamin (29 mg, 149 μmol) synthetisiert.
Gelber Feststoff: 96 mg (116 μmol, 78%); 1H NMR (600 MHz, CD2Cl2): δ = 1.66 (s, 15H), 2.42 (s, 3H), 4.70 (d, J = 14.4 Hz, 1H), 5.90 (d, J = 14.5 Hz, 1H), 6.34 (d, J = 7.6 Hz, 2H), 6.84 (q, J = 8.0 Hz, 4H), 7.01 (t, J = 7.4 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 7.21 (t, J = 7.7 Hz, 2H), 7.26–7.34 (m, 6H), 7.51 (d, J = 8.0 Hz, 2H), 12.47 (s, 1H) ppm; 13C NMR (150 MHz, CD2Cl2): δ = 9.04 (q, 5C), 21.59 (q), 51.97 (t), 95.07 (s, 5C), 126.25 (d, 3C), 127.38 (d), 127.74 (d, 2C), 127.96 (d, 2C), 128.10 (d, 2C), 128.29 (d, 2C), 128.82 (d), 129.19 (d, 2C), 129.25 (s), 129.53 (d, 2C), 129.66 (s), 130.81 (s), 131.42 (d, 2C), 132.36 (s), 137.66 (s), 140.43 (s), 148.29 (s), 150.83 (s); IR (KBr disc): υ ~ = 3439, 3059, 2917, 1635, 1559, 1540, 1507, 1490, 1456, 1378, 1354, 1171, 1089, 1028, 1011, 976, 956, 808, 760, 731, 696, 640, 578, 514, 419 cm–1; HR-MS (ESI (+)): m/z = 673.1983, ber. für C32H33ClIrN2 [M-Ts]+: 673.1962. 5. Dichloro(cp*)(1-ethylphenyl-4,5-diphenyl-imidazol-2-yliden)-iridium(III)

Figure DE102013016487B4_0054
According to Method G, the indicated compound was synthesized from IrCl 2 (cp *) (Ph-TosMIC) (100 mg, 149 μmol) and N-benzylidenebenzylamine (29 mg, 149 μmol).
Yellow solid: 96 mg (116 μmol, 78%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 1.66 (s, 15H), 2.42 (s, 3H), 4.70 (d, J = 14.4 Hz, 1H), 5.90 (d, J = 14.5 Hz, 1H), 6.34 (d, J = 7.6 Hz, 2H), 6.84 (q, J = 8.0 Hz, 4H), 7.01 (t, J = 7.4 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H) , 7.21 (t, J = 7.7Hz, 2H), 7.26-7.34 (m, 6H), 7.51 (d, J = 8.0Hz, 2H), 12.47 (s, 1H) ppm; 13 C NMR (150 MHz, CD 2 Cl 2 ): δ = 9.04 (q, 5C), 21.59 (q), 51.97 (t), 95.07 (s, 5C), 126.25 (d, 3C), 127.38 (d) , 127.74 (d, 2C), 127.96 (d, 2C), 128.10 (d, 2C), 128.29 (d, 2C), 128.82 (d), 129.19 (d, 2C), 129.25 (s), 129.53 (d, 2C), 129.66 (s), 130.81 (s), 131.42 (d, 2C), 132.36 (s), 137.66 (s), 140.43 (s), 148.29 (s), 150.83 (s); IR (KBr disc): υ~ = 3439, 3059, 2917, 1635, 1559, 1540, 1507, 1490, 1456, 1378, 1354, 1171, 1089, 1028, 1011, 976, 956, 808, 760, 731, 696 , 640, 578, 514, 419 cm -1 ; HR-MS (ESI (+)): m / z = 673.1983, calc'd for C 32 H 33 ClIrN 2 [M-Ts -] +:. 673.1962. 5. Dichloro (cp *) (1-ethylphenyl-4,5-diphenyl-imidazol-2-ylidene) -iridium (III)
Figure DE102013016487B4_0054

Gemäß dem Verfahren G wurde die angegebene Verbindung aus IrCl2(cp*)(Ph-TosMIC) (100 mg, 149 μmol) und N-Benzylidene-2-phenylethylamin (31 mg, 149 μmol) synthetisiert.
Gelber Feststoff: 80 mg (95 μmol, 64%); 1H NMR (400 MHz, CD2Cl2): δ = 1.55 (s, 15H), 2.35 (s, 3H), 2.92 (s, 1H), 3.89 (s, 1H), 4.46 (s, 1H), 6.86 (d, J = 6.7 Hz, 2H), 7.11–7.15 (m, 5H), 7.30–7.33 (m, 5H), 7.46 (d, J = 5.9 Hz, 2H), 7.56–7.62 (m, 5H), 12.33 (s, 1H); 13C NMR (100 MHz, CD2Cl2): δ = 8.90 (q, 5C), 21.52 (q), 50.34 (t), 94.87 (s, 5C), 126.65 (d, 2C), 126.80 (d), 126.82 (d), 128.17 (d, 2C), 128.76 (s), 128.78 (d, 3C), 128.86 (s), 129.50 (d, 3C), 129.54 (d, 2C), 129.63 (s), 130.03 (d, 3C), 130.40 (s), 130.70 (s), 131.63 (d, 2C), 139.00 (s), 140.48 (s), 148.54 (s); IR (KBr disc): υ ~ = 3059, 3025, 2957, 2917, 1633, 1600, 1490, 1451, 1397, 1377, 1358, 1315, 1171, 1108, 1089, 1030, 1010, 963, 924, 844, 806, 767, 738, 699, 642, 599, 578, 513 cm–1; HR-MS (ESI (+)): m/z = 843.2377, ber. für C40H43IrN2O2S35Cl [M+H+]+: 843.2358. 6. Dichloro(cp*)(1-phenyl-5,6-dihydroimidazo[5,1-a]isochinolin-3-yliden)iridium(III)

Figure DE102013016487B4_0055
According to Method G, the indicated compound was synthesized from IrCl 2 (cp *) (Ph-TosMIC) (100 mg, 149 μmol) and N-benzylidenes-2-phenylethylamine (31 mg, 149 μmol).
Yellow solid: 80 mg (95 μmol, 64%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 1.55 (s, 15H), 2.35 (s, 3H), 2.92 (s, 1H), 3.89 (s, 1H), 4.46 (s, 1H), 6.86 (d, J = 6.7Hz, 2H), 7.11-7.15 (m, 5H), 7.30-7.33 (m, 5H), 7.46 (d, J = 5.9Hz, 2H), 7.56-7.62 (m, 5H) , 12.33 (s, 1H); 13 C NMR (100 MHz, CD 2 Cl 2 ): δ = 8.90 (q, 5C), 21.52 (q), 50.34 (t), 94.87 (s, 5C), 126.65 (d, 2C), 126.80 (d) , 126.82 (d), 128.17 (d, 2C), 128.76 (s), 128.78 (d, 3C), 128.86 (s), 129.50 (d, 3C), 129.54 (d, 2C), 129.63 (s), 130.03 (d, 3C), 130.40 (s), 130.70 (s), 131.63 (d, 2C), 139.00 (s), 140.48 (s), 148.54 (s); IR (KBr disc): υ~ = 3059, 3025, 2957, 2917, 1633, 1600, 1490, 1451, 1397, 1377, 1358, 1315, 1171, 1108, 1089, 1030, 1010, 963, 924, 844, 806 , 767, 738, 699, 642, 599, 578, 513 cm -1 ; HR-MS (ESI (+)): m / z = 843.2377, calcd. For C 40 H 43 IrN 2 O 2 S 35 Cl [M + H + ] + : 843.2358. 6. Dichloro (cp *) (1-phenyl-5,6-dihydroimidazo [5,1-a] isoquinolin-3-ylidene) iridium (III)
Figure DE102013016487B4_0055

Gemäß dem Verfahren G wurde die angegebene Verbindung aus IrCl2(cp*)(Ph-TosMIC) (100 mg, 149 μmol) und 3,4-Dihydroisochinolin (20 mg, 149 μmol) synthetisiert.
Grüner Feststoff: 64 mg (84 μmol, 56%); 1H NMR (600 MHz, CD2Cl2): δ = 1.64 (s, 15H), 2.29 (s, 3H), 3.11–3.15 (m, 2H), 4.44–4.53 (m, 2H), 7.05 (d, J = 7.9 Hz, 2H), 7.12 (t, J = 7.6, 1H), 7.24 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.45–7.52 (m, 7H), 11.18 (s, 1H); 13C NMR (150 MHz, CD2Cl2): δ = 9.17 (q, 5C), 21.45 (q), 30.48 (t), 45.39 (t), 94.80 (s, 5C), 124.33 (d), 126.45 (s), 126.58 (s), 126.76 (d, 3C), 127.46 (d), 128.04 (d, 2C), 128.76 (d), 128.81 (d, 2C), 128.95 (d), 129.74 (s), 129.78 (d, 2C), 129.84 (s), 134.69 (s), 140.20 (s), 146.97 (s), 151.39 (s); IR (KBr disc): υ ~ = 3060, 2962, 2917, 1635, 1482, 1452, 1380, 1341, 1175, 1091, 1037, 1015, 924, 813, 766, 726, 701, 641, 578, 513, 438 cm–1; HR-MS (ESI (+)): m/z = 765.1907, ber. für C34H37IrN2O2S35Cl [M+H+]+: 765.1888. 7. Dichloro(cp*)(1-cyclohexyl-4,5-diphenyl-imidazol-2-yliden)-iridium(III)

Figure DE102013016487B4_0056
According to Method G, the indicated compound was synthesized from IrCl 2 (cp *) (Ph-TosMIC) (100 mg, 149 μmol) and 3,4-dihydroisoquinoline (20 mg, 149 μmol).
Green solid: 64 mg (84 μmol, 56%); 1 H NMR (600 MHz, CD 2 Cl 2 ): δ = 1.64 (s, 15H), 2.29 (s, 3H), 3.11-3.15 (m, 2H), 4.44-4.53 (m, 2H), 7.05 (i.e. , J = 7.9 Hz, 2H), 7.12 (t, J = 7.6, 1H), 7.24 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.45-7.52 (m, 7H), 11.18 (s, 1H); 13 C NMR (150 MHz, CD 2 Cl 2 ): δ = 9.17 (q, 5C), 21.45 (q), 30.48 (t), 45.39 (t), 94.80 (s, 5C), 124.33 (d), 126.45 (s), 126.58 (s), 126.76 (d, 3C), 127.46 (d), 128.04 (d, 2C), 128.76 (d), 128.81 (d, 2C), 128.95 (d), 129.74 (s), 129.78 (d, 2C), 129.84 (s), 134.69 (s), 140.20 (s), 146.97 (s), 151.39 (s); IR (KBr disc): υ~ = 3060, 2962, 2917, 1635, 1482, 1452, 1380, 1341, 1175, 1091, 1037, 1015, 924, 813, 766, 726, 701, 641, 578, 513, 438 cm -1 ; HR-MS (ESI (+)): m / z = 765.1907, calc. For C 34 H 37 IrN 2 O 2 S 35 Cl [M + H + ] + : 765.1888. 7. Dichloro (cp *) (1-cyclohexyl-4,5-diphenyl-imidazol-2-ylidene) -iridium (III)
Figure DE102013016487B4_0056

Gemäß dem Verfahren G wurde die angegebene Verbindung aus IrCl2(cp*)(Ph-TosMIC) (100 mg, 149 μmol) und N-Benzyliden-cyclohexylamin (28 mg, 149 μmol) synthetisiert.
Gelber Feststoff: 65 mg (79 μmol, 53%); 1H NMR (300 MHz, CD2Cl2): δ = 1.11–1.48 (m, 8H), 1.65 (s, 15H), 1.72–1.74 (m, 2H), 2.12 (s, 1H), 2.34 (s, 3H), 4.71 (s, 1H), 7.05 (s, 1H), 7.07 (s, 1H), 7.15–716 (m, 1H), 7.17–7.18 (m, 1H), 7.23–7.30 (m, 5H), 7.39 (d, J = 1.65 Hz, 1H), 7.42 (d, J = 1.26 Hz, 1H), 7.48–7.50 (m, 1H), 7.52–7.58 (m, 2H), 12.22 (s, 1H); IR (KBr disc): υ ~ = 3443, 3057, 2929, 2857, 1631, 1598, 1489, 1458, 1362, 1263, 1177, 1112, 1088, 1030, 965, 898, 792, 770, 703, 640, 578, 514, 481, 421 cm–1; HR-MS (ESI (+)): m/z = 843.2341, ber. für C38H44ClIrN2NaO2S [M+Na+]+: 843.2326. 8. Dichloro(cp*)(1-(2-methoxyethyl)-4,5-diphenyl-imidazol-2-yliden)-iridium(III)

Figure DE102013016487B4_0057
According to Method G, the indicated compound was synthesized from IrCl 2 (cp *) (Ph-TosMIC) (100 mg, 149 μmol) and N-benzylidene-cyclohexylamine (28 mg, 149 μmol).
Yellow solid: 65 mg (79 μmol, 53%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.11-1.48 (m, 8H), 1.65 (s, 15H), 1.72-1.74 (m, 2H), 2.12 (s, 1H), 2.34 (s , 3H), 4.71 (s, 1H), 7.05 (s, 1H), 7.07 (s, 1H), 7.15-716 (m, 1H), 7.17-7.18 (m, 1H), 7.23-7.30 (m, 5H ), 7.39 (d, J = 1.65 Hz, 1H), 7.42 (d, J = 1.26 Hz, 1H), 7.48-7.50 (m, 1H), 7.52-7.58 (m, 2H), 12.22 (s, 1H) ; IR (KBr disc): υ~ = 3443, 3057, 2929, 2857, 1631, 1598, 1489, 1458, 1362, 1263, 1177, 1112, 1088, 1030, 965, 898, 792, 770, 703, 640, 578 , 514, 481, 421 cm -1 ; HR-MS (ESI (+)): m / z = 843.2341, calcd. For C 38 H 44 ClIrN 2 NaO 2 S [M + Na + ] + : 843.2326. 8. Dichloro (cp *) (1- (2-methoxyethyl) -4,5-diphenyl-imidazol-2-ylidene) -iridium (III)
Figure DE102013016487B4_0057

Gemäß dem Verfahren G wurde die angegebene Verbindung aus IrCl2(cp*)(Ph-TosMIC) (100 mg, 149 μmol) und N-Benzyliden-2-hydroxyethylamin (25 mg, 149 μmol) synthetisiert.
Gelber Feststoff: 92 mg (116 μmol, 78%); 1H NMR (300 MHz, CD2Cl2): δ = 1.59 (s, 15H), 2.34 (s, 3H), 2.96 (s, 3H), 3.05–3.12 (m, 1H), 3.24–3.31 (m, 1H), 4.01–4.10 (m, 1H), 4.33–4.42 (m, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.22–7.38 (m, 7H), 7.47–7.55 (m, 5H), 12.03 (s, 1H); 13C NMR (75 MHz, CD2Cl2): δ = 8.89 (q, 5C), 21.48 (q), 47.29 (t), 58.74 (q), 72.33 (t), 94.94 (s, 5C), 126.65 (d, 2C), 126.88 (d, 2C), 128.12 (d, 2C), 128.73 (s), 128.83 (s), 129.48 (d, 3C), 129.70 (d, 3C), 130.19 (s), 130.51 (s), 131.67 (d, 2C), 132.08 (s), 140.42 (s), 148.80 (s), 151.05 (s); IR (KBr disc): υ ~ = 3058, 2976, 2919, 1632, 1596, 1490, 1460, 1377, 1316, 1173, 1121, 1090, 1030, 1011, 964, 808, 768, 700, 640, 598, 578, 513, 477 cm–1; HR-MS (ESI (+)): m/z = 819.2002, ber. für C35H40ClIrN2NaO3S [M+Na+]+: 819.1975.
According to Method G, the indicated compound was synthesized from IrCl 2 (cp *) (Ph-TosMIC) (100 mg, 149 μmol) and N-benzylidene-2-hydroxyethylamine (25 mg, 149 μmol).
Yellow solid: 92 mg (116 μmol, 78%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.59 (s, 15H), 2.34 (s, 3H), 2.96 (s, 3H), 3.05-3.12 (m, 1H), 3.24-3.31 (m , 1H), 4.01-4.10 (m, 1H), 4.33-4.42 (m, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.22-7.38 (m, 7H), 7.47-7.55 (m, 5H ), 12.03 (s, 1H); 13 C NMR (75 MHz, CD 2 Cl 2 ): δ = 8.89 (q, 5C), 21.48 (q), 47.29 (t), 58.74 (q), 72.33 (t), 94.94 (s, 5C), 126.65 (d, 2C), 126.88 (d, 2C), 128.12 (d, 2C), 128.73 (s), 128.83 (s), 129.48 (d, 3C), 129.70 (d, 3C), 130.19 (s), 130.51 (s), 131.67 (d, 2C), 132.08 (s), 140.42 (s), 148.80 (s), 151.05 (s); IR (KBr disc): υ~ = 3058, 2976, 2919, 1632, 1596, 1490, 1460, 1377, 1316, 1173, 1121, 1090, 1030, 1011, 964, 808, 768, 700, 640, 598, 578 , 513, 477 cm -1 ; HR-MS (ESI (+)): m / z = 819.2002, calc'd for C 35 H 40 NaO 3 S 2 ClIrN [M + Na +] +:. 819.1975.

IV. Ruthenium ChemieIV. Ruthenium chemistry

Allgemeines Verfahren H: Synthese von Ru Isocyanid-Komplexen

Figure DE102013016487B4_0058
General Procedure H: Synthesis of Ru Isocyanide Complexes
Figure DE102013016487B4_0058

In einem typischen Protokoll wurden [RuCl26-p-cymene)]2 und das Isocyanid in DCM gelöst und bei Raumtemperatur für 14 Stunden gerührt. Anschließend wurde das Lösungsmittel unter vermindertem Druck abgezogen. Der erhaltene Feststoff war der analytisch reine Isocyanid-Komplex. 1. Dichloro(η5-p-cymene)(Ph-TosMIC)ruthenium(II)

Figure DE102013016487B4_0059
In a typical protocol, [RuCl 26 -p-cymene)] 2 and the isocyanide were dissolved in DCM and stirred at room temperature for 14 hours. Then the solvent was removed under reduced pressure. The resulting solid was the analytically pure isocyanide complex. 1. Dichloro (η 5 -p-cymene) (Ph-TosMIC) ruthenium (II)
Figure DE102013016487B4_0059

Gemäß dem Verfahren H wurde die angegebene Verbindung aus [RuCl26-p-cymene)]2 (200 mg, 327 μmol) und Ph-TosMIC (177 mg, 654 μmol) synthetisiert.
Orangener Feststoff: 377 mg (654 μmol, quantitativ); 1H NMR (300 MHz, CD2Cl2): δ = 1.28 (d, J = 6.9 Hz, 3H), 1.28 (d, J = 6.9 Hz, 3H), 2.28 (s, 3H), 2.42 (s, 3H), 2.88 (sept, J = 6.9 Hz, 1H), 5.55 (d, J = 6.4 Hz, 2H), 5.73 (d, 2H, J = 6.4 Hz), 6.08 (s, 1H), 7.25–7.37 (m, 6H), 7.38–7.46 (m, 1H), 7.54–7.60 (m, 2H); 13C NMR (75 MHz, CD2Cl2): = 19.01 (q), 21.95 (q), 22.53 (q), 22.57 (q), 31.63 (d), 89.84 (d, 2C), 89.94 (d, 2C), 90.02 (d), 109.02 (s), 109.81 (s), 128.59 (d, 2C), 129.19 (d, 2C), 130.42 (d, 2C), 130.82 (d, 2C), 131.06 (s), 147.25 (s), 156.94 (s); IR (KBr disc): υ ~ = 3450, 3063, 2964, 2921, 2871, 2166, 1628, 1596, 1494, 1456, 1332, 1307, 1294, 1177, 1155, 1084, 698, 671, 575, 509 cm–1; HR-MS (ESI (+)): m/z = 542.0492, ber. für C25H27ClNO2RuS [M-Cl]+: 542.0495. 2. Dichloro(η6-p-cymene)(p-MeO-C6H4-TosMIC)ruthenium(II)

Figure DE102013016487B4_0060
According to Method H, the indicated compound was synthesized from [RuCl 26 -p-cymene)] 2 (200 mg, 327 μmol) and Ph-TosMIC (177 mg, 654 μmol).
Orange solid: 377 mg (654 μmol, quantitative); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.28 (d, J = 6.9 Hz, 3H), 1.28 (d, J = 6.9 Hz, 3H), 2.28 (s, 3H), 2.42 (s, 3H), 2.88 (sept, J = 6.9 Hz, 1H), 5.55 (d, J = 6.4 Hz, 2H), 5.73 (d, 2H, J = 6.4 Hz), 6.08 (s, 1H), 7.25-7.37 ( m, 6H), 7.38-7.46 (m, 1H), 7.54-7.60 (m, 2H); 13 C NMR (75 MHz, CD 2 Cl 2 ): = 19.01 (q), 21.95 (q), 22.53 (q), 22.57 (q), 31.63 (d), 89.84 (d, 2C), 89.94 (d, 2C), 90.02 (d), 109.02 (s), 109.81 (s), 128.59 (d, 2C), 129.19 (d, 2C), 130.42 (d, 2C), 130.82 (d, 2C), 131.06 (s) , 147.25 (s), 156.94 (s); IR (KBr disc): υ~ = 3450, 3063, 2964, 2921, 2871, 2166, 1628, 1596, 1494, 1456, 1332, 1307, 1294, 1177, 1155, 1084, 698, 671, 575, 509 cm - 1 ; HR-MS (ESI (+)): m / z = 542.0492, calcd for C 25 H 27 ClNO 2 RuS [M-Cl - ] + : 542.0495. 2. Dichloro (η 6 -p-cymene) (p-MeO-C 6 H 4 -TosMIC) ruthenium (II)
Figure DE102013016487B4_0060

Gemäß dem Verfahren H wurde die angegebene Verbindung aus [RuCl26-p-cymene)]2 (100 mg, 163 μmol) und Ph-TosMIC (98 mg, 326 μmol) synthetisiert.
Orangener Feststoff: 198 mg (326 μmol, quantitativ); 1H NMR (500 MHz, CD2Cl2): δ = 1.27 (d, J = 6.9, 6H), 2.27 (s, 3H), 2.43 (s, 3H), 2.86 (sept, J = 6.9 Hz, 1H), 3.79 (s, 3H) 5.55 (d, J = 5.4 Hz, 2H), 5.72 (d, J = 5.4 Hz, 2H), 6.03 (s, 1H), 6.84 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H); 13C NMR (125 MHz, CD2Cl2): δ = 18.98 (q), 21.93 (q), 22.48 (q), 22.53 (q), 31.57 (d), 55.79 (q), 78.53 (d), 89.74 (d), 89.83 (d), 89.85 (d), 89.86 (d), 108.91 (s), 109.58 (s), 114.52 (d, 2C), 119.15 (s), 130.05 (d, 2C), 130.38 (d, 2C), 130.49 (s), 130.78 (d, 2C), 147.10 (s), 152.72 (s), 161.86 (s); IR (KBr disc): υ ~ = 3039, 2962, 2930, 2901, 2167, 1608, 1596, 1540, 1513, 1457, 1389, 1331, 1309, 1291, 1253, 1180, 1153, 1085, 1057, 1033, 838, 811, 765, 712, 660, 635, 602, 568, 519, 454 cm–1; HR-MS (ESI (+)): m/z = 630.0185, ber. für C26H29Cl2NO3RuSNa [M+Na+–]+: 630.0186. 3. Dichloro(η6-p-cymene)(methyl isocyano(phenyl)acetat)ruthenium(II)

Figure DE102013016487B4_0061
According to Method H, the indicated compound was synthesized from [RuCl 26 -p-cymene)] 2 (100 mg, 163 μmol) and Ph-TosMIC (98 mg, 326 μmol).
Orange solid: 198 mg (326 μmol, quantitative); 1 H NMR (500 MHz, CD 2 Cl 2 ): δ = 1.27 (d, J = 6.9, 6H), 2.27 (s, 3H), 2.43 (s, 3H), 2.86 (sept, J = 6.9 Hz, 1H ), 3.79 (s, 3H) 5.55 (d, J = 5.4 Hz, 2H), 5.72 (d, J = 5.4 Hz, 2H), 6.03 (s, 1H), 6.84 (d, J = 8.5 Hz, 2H) , 7.20 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 18.98 (q), 21.93 (q), 22.48 (q), 22.53 (q), 31.57 (d), 55.79 (q), 78.53 (d), 89.74 (d), 89.83 (d), 89.85 (d), 89.86 (d), 108.91 (s), 109.58 (s), 114.52 (d, 2C), 119.15 (s), 130.05 (d, 2C), 130.38 (d, 2C), 130.49 (s), 130.78 (d, 2C), 147.10 (s), 152.72 (s), 161.86 (s); IR (KBr disc): υ ~ = 3039, 2962, 2930, 2901, 2167, 1608, 1596, 1540, 1513, 1457, 1389, 1331, 1309, 1291, 1253, 1180, 1153, 1085, 1057, 1033, 838 , 811, 765, 712, 660, 635, 602, 568, 519, 454 cm -1 ; HR-MS (ESI (+)): m / z = 630.0185, calc'd for C 26 H 29 Cl 2 NO 3 Rušná [M + Na + -] +. 630.0186. 3. Dichloro (η 6 -p-cymene) (methyl isocyano (phenyl) acetate) ruthenium (II)
Figure DE102013016487B4_0061

Gemäß dem Verfahren H wurde die angegebene Verbindung aus [RuCl26-p-cymene)]2 (100 mg, 163 μmol) und Methylisocyano(phenyl)acetat (57 mg, 326 μmol) synthetisiert.
Orangener Feststoff: 157 mg (326 μmol, quantitativ); 1H NMR (300 MHz, CD2Cl2): δ = 1.25 (d, J = 6.9, 6H,), 2.24 (s, 3H), 2.85 (sept, J = 6.9 Hz, 1H), 3.79 (s, 3H) 5.44 (d, J = 6.0 Hz, 1H), 5.50 (d, J = 6.0 Hz, 1H), 5.65 (d, J = 6.0 Hz, 1H), 5.67 (d, J = 6.0 Hz, 2H,), 5.83 (s, 1H), 7.40–7.46 (m, 3H), 7.48–7.54 (m, 2H); 13C NMR (125 MHz, CD2Cl2): δ = 18.87 (q), 22.45 (q), 22.48 (q), 31.51 (d), 62.96 (q), 80.77 (d), 81.49 (s), 88.28 (d), 88.63 (d), 89.23 (d), 89.49 (d), 108.59 (s), 108.63 (s), 127.14 (d, 2C), 129.61 (d, 2C), 130.08 (d), 131.94 (s), 166.61 (s); IR (KBr disc): υ ~ = 3051, 2960, 2188, 1753, 1633, 1495, 1455, 1384, 1255, 1216, 1168, 1035, 866, 735, 698, 517 cm–1; HR-MS (FAB (+)): m/z = 446.0450, ber. für C20H23ClNO2Ru [M-Cl]+: 446.0461. 4. Dichloro(η6-p-cymene)(diphenylmethyl isocyano)ruthenium(II)

Figure DE102013016487B4_0062
According to Method H, the indicated compound was synthesized from [RuCl 26 -p-cymene)] 2 (100 mg, 163 μmol) and methyl isocyano (phenyl) acetate (57 mg, 326 μmol).
Orange solid: 157 mg (326 μmol, quantitative); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.25 (d, J = 6.9, 6H,), 2.24 (s, 3H), 2.85 (sept, J = 6.9 Hz, 1H), 3.79 (s, 3H) 5.44 (d, J = 6.0 Hz, 1H), 5.50 (d, J = 6.0 Hz, 1H), 5.65 (d, J = 6.0 Hz, 1H), 5.67 (d, J = 6.0 Hz, 2H,) , 5.83 (s, 1H), 7.40-7.46 (m, 3H), 7.48-7.54 (m, 2H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 18.87 (q), 22.45 (q), 22.48 (q), 31.51 (d), 62.96 (q), 80.77 (d), 81.49 (s), 88.28 (d), 88.63 (d), 89.23 (d), 89.49 (d), 108.59 (s), 108.63 (s), 127.14 (d, 2C), 129.61 (d, 2C), 130.08 (d), 131.94 (s), 166.61 (s); IR (KBr disc): υ~ = 3051, 2960, 2188, 1753, 1633, 1495, 1455, 1384, 1255, 1216, 1168, 1035, 866, 735, 698, 517 cm -1 ; HR-MS (FAB (+)): m / z = 446.0450, calcd. For C 20 H 23 ClNO 2 Ru [M-Cl - ] + : 446.0461. 4. Dichloro (η 6 -p-cymene) (diphenylmethyl isocyano) ruthenium (II)
Figure DE102013016487B4_0062

Gemäß dem Verfahren H wurde die angegebene Verbindung aus [RuCl26-p-cymene)]2 (159 mg, 259 μmol) und Diphenylmethylisocyanid (100 mg, 517 μmol) synthetisiert.
Orangener Feststoff: 259 mg (517 μmol, quantitativ); 1H NMR (500 MHz, CD2Cl2): δ = 1.67 (d, J = 7.0 Hz, 6C), 2.21 (s, 3H), 2.67 (sept, J = 7.0 Hz, 1H), 5.41 (d, J = 6.1 Hz, 2H), 5.56 (d, J = 6.1 Hz, 2H), 6.31 (s, 1H), 7.33–7.47 (m, 9H); 13C NMR (125 MHz, CD2Cl2): δ = 18.88 (q), 22.48 (q, 2C), 31.64 (d), 64.84 (d), 88.34 (d, 2C), 88.43 (d, 2C), 107.77 (s), 108.37 (s), 126.93 (d, 2C), 129.11 (s), 129.51 (d, 2C), 137.89 (s); IR (KBr disc): υ ~ = 3059, 2965, 2186, 1631, 1540, 1494, 1455, 1382, 1031, 861, 804, 745, 702, 653, 611, 560, 451 cm–1; HR-MS (ESI (+)): m/z = 464.0749, ber. für C24H25ClNRu [M-Cl]+: 464.0719. Allgemeines Verfahren I: Synthese von Ru NHC Komplexen

Figure DE102013016487B4_0063
According to Method H, the indicated compound was synthesized from [RuCl 26 -p-cymene)] 2 (159 mg, 259 μmol) and diphenylmethyl isocyanide (100 mg, 517 μmol).
Orange solid: 259 mg (517 μmol, quantitative); 1 H NMR (500 MHz, CD 2 Cl 2 ): δ = 1.67 (d, J = 7.0 Hz, 6C), 2.21 (s, 3H), 2.67 (sept, J = 7.0 Hz, 1H), 5.41 (d, J = 6.1 Hz, 2H), 5.56 (d, J = 6.1 Hz, 2H), 6.31 (s, 1H), 7.33-7.47 (m, 9H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 18.88 (q), 22.48 (q, 2C), 31.64 (d), 64.84 (d), 88.34 (d, 2C), 88.43 (d, 2C) , 107.77 (s), 108.37 (s), 126.93 (d, 2C), 129.11 (s), 129.51 (d, 2C), 137.89 (s); IR (KBr disc): υ~ = 3059, 2965, 2186, 1631, 1540, 1494, 1455, 1382, 1031, 861, 804, 745, 702, 653, 611, 560, 451 cm -1 ; HR-MS (ESI (+)): m / z = 464.0749, calc'd for C 24 H 25 ClNRu [M-Cl -] +:. 464.0719. General Procedure I: Synthesis of Ru NHC Complexes
Figure DE102013016487B4_0063

In einem typischen Protokoll wurden RuCl26-p-cymene)(Ar-TosMIC) (173 μmol), das Imin (173 μmol) und NEt3 (100 μl/μmol [Ru]) in 5 ml DCM gelöst. Nach Rühren bei Raumtemperatur für 12 Stunden wurde die Lösung mit 20 ml Wasser gequencht, abgetrennt und die Wasserphase wurde mit DCM (3 × 10 ml) extrahiert. Die kombinierten organischen Phasen wurden mit MgSO4 getrocknet und das Lösungsmittel wurde bei vermindertem Druck abgezogen. Der erhaltene Feststoff wurde durch Umkristallisation in DCM/Et2O gereinigt. 1. Dichloro(η6-p-cymene)(1-isopropyl-4,5-diphenyl-imidazol-2-yliden)ruthenium(II)

Figure DE102013016487B4_0064
In a typical protocol, RuCl 26 -p-cymene) (Ar-TosMIC) (173 μmol), the imine (173 μmol), and NEt 3 (100 μl / μmol [Ru]) were dissolved in 5 ml of DCM. After stirring at room temperature for 12 hours, the solution was quenched with 20 mL of water, separated, and the water phase was extracted with DCM (3 × 10 mL). The combined organic phases were dried with MgSO 4 and the solvent was removed under reduced pressure. The resulting solid was purified by recrystallization in DCM / Et 2 O. 1. Dichloro (η 6 -p-cymene) (1-isopropyl-4,5-diphenyl-imidazol-2-ylidene) ruthenium (II)
Figure DE102013016487B4_0064

Gemäß dem Verfahren I wurde die angegebene Verbindung aus RuCl26-p-cymene)(Ph-TosMIC) (894 mg, 1.51 mmol) und N-Benzylidene-2-propylamin (222 mg, 1.51 mmol) synthetisiert.
Gelber Feststoff: 950 mg (1.38 mmol, 91%); 1H NMR (300 MHz, CD2Cl2): δ = 1.11 (d, J = 6.8 Hz, 3H), 1.24 (d, J = 6.8 Hz, 3H), 1.26 (d, J = 7.1 Hz, 3H), 1.34 (d, J = 7.1 Hz, 3H), 2.07 (s, 3H), 2.36 (s, 3H) 2.70 (sept, J = 6.9 Hz, 1H), 5.26 (d, J = 6.1 Hz, 1H), 5.38 (d, J = 6.1 Hz, 1H), 5.44 (sept, J = 7.1 Hz, 1H), 5.45 (d, J = 6.1 Hz, 1H), 7.11–7.17 (m, 4H), 7.45 (d, J = 7.45 Hz, 2H), 7.48–7.56 (m, 5H), 12.97 (s, 1H); 13C NMR (125 MHz, CD2Cl2): δ = 17.8 (q), 20.5 (q), 20.6 (q), 22.5 (q), 22.9 (q), 23.5 (q), 30.2 (d), 88.0 (d), 89.7 (d, 2C), 91.3 (d), 94.1 (d, 2C), 125.4 (s), 125.5 (d, 2C), 125.8 (d), 127.4 (d), 127.5 (d), 128.3 (d, 2C), 128.4 (d), 128.5 (d), 129.3 (d), 130.0 (d), 130.7 (d), 130.8 (d), 132.8 (s), 139.3 (d); IR (KBr disc): υ ~ = 3427, 2966, 2930, 1626, 1595, 1490, 1469, 1444, 1368, 1345, 1261, 1152, 1089, 1025, 1009, 806, 782, 702, 639, 577 cm–1; HR-MS (ESI (+)): m/z = 689.1547, ber. für C35H40ClN2O2RuS [M+H+]+: 689.1542. 2. Dichloro(η6-p-cymene)(1-cyclohexyl-4,5-diphenyl-imidazol-2-yliden)ruthenium(II)

Figure DE102013016487B4_0065
According to Method I, the indicated compound was synthesized from RuCl 26 -p-cymene) (Ph-TosMIC) (894 mg, 1.51 mmol) and N-benzylidenes-2-propylamine (222 mg, 1.51 mmol).
Yellow solid: 950 mg (1.38 mmol, 91%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.11 (d, J = 6.8 Hz, 3H), 1.24 (d, J = 6.8 Hz, 3H), 1.26 (d, J = 7.1 Hz, 3H) , 1.34 (d, J = 7.1 Hz, 3H), 2.07 (s, 3H), 2.36 (s, 3H) 2.70 (sept, J = 6.9 Hz, 1H), 5.26 (d, J = 6.1 Hz, 1H), 5.38 (d, J = 6.1 Hz, 1H), 5.44 (sept, J = 7.1 Hz, 1H), 5.45 (d, J = 6.1 Hz, 1H), 7.11-7.17 (m, 4H), 7.45 (d, J = 7.45 Hz, 2H), 7.48-7.56 (m, 5H), 12.97 (s, 1H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 17.8 (q), 20.5 (q), 20.6 (q), 22.5 (q), 22.9 (q), 23.5 (q), 30.2 (d), 88.0 (d), 89.7 (d, 2C), 91.3 (d), 94.1 (d, 2C), 125.4 (s), 125.5 (d, 2C), 125.8 (d), 127.4 (d), 127.5 (d) , 128.3 (d, 2C), 128.4 (d), 128.5 (d), 129.3 (d), 130.0 (d), 130.7 (d), 130.8 (d), 132.8 (s), 139.3 (d); IR (KBr disc): υ~ = 3427, 2966, 2930, 1626, 1595, 1490, 1469, 1444, 1368, 1345, 1261, 1152, 1089, 1025, 1009, 806, 782, 702, 639, 577 cm - 1 ; HR-MS (ESI (+)): m / z = 689.1547, calc'd for C 35 H 40 ClN 2 O 2 RuS [M + H +] +:. 689.1542. 2. Dichloro (η 6 -p-cymene) (1-cyclohexyl-4,5-diphenyl-imidazol-2-ylidene) ruthenium (II)
Figure DE102013016487B4_0065

Gemäß dem Verfahren I wurde die angegebene Verbindung aus RuCl26-p-cymene)(Ph-TosMIC) (100 mg, 173 μmol) und N-Benzylidencyclohexylamin (33 mg, 173 μmol) synthetisiert.
Beiger Feststoff: 82 mg (113 μmol, 65%); 1H NMR (300 MHz, CD2Cl2): δ = 0.73 (qt, J = 13.0, 3.5 Hz, 1H), 1.12 (d, J = 6.9 Hz, 3H), 1.26 (d, J = 6.9 Hz, 3H), 1.26–1.38 (m, 1H), 1.42–1.79 (m, 6H), 1.89 (d, J = 11.3 Hz, 1H), 2.09 (s, 3H), 2.35 (s, 3H), 3.72 (sept, J = 6.9 Hz, 1H), 5.01 (tt, J = 12.1, 3.0 Hz, 1H), 5.26 (d, J = 6.3 Hz, 1H), 5.35 (d, J = 6.3 Hz, 1H), 5.45 (d, J = 6.3 Hz, 2H), 7.08–7.16 (m, 4H), 7.19–7.27 (m, 3H), 7.41 (d, J = 8.2 Hz, 2H), 7.44–7.60 (m, 6H), 13.04 (s, 1H); 13C NMR (125 MHz, CD2Cl2): δ = 17.9 (t), 20.6 (q, 2C), 22.6 (q), 25.0 (q), 25.5 (t), 26.5 (t), 30.2 (t), 33.4 (d), 34.3 (d), 62.4 (d), 88.4 (d), 89.6 (d), 91.2 (d), 94.1 (d), 102.3 (d), 109.8 (d), 125.4 (d), 125.5 (d, 2C), 127.4 (d), 127.5 (d, 2C), 128.2 (d), 128.4 (d, 3C), 129.3 (d), 130.2 (d), 130.7 (d), 131.0 (d), 132.8 (d), 139.3 (d), 151.3 (d), 167.8 (d); IR (KBr disc): υ ~ = 3425, 3057, 2931, 2856, 1967, 1628, 1595, 1540, 1507, 1490, 1468, 1456, 1444, 1362, 1331, 1208, 1154, 1113, 1088, 1025, 1010, 994, 962, 924, 895, 847, 807, 789, 768, 752, 705, 669, 639, 603, 576, 512, 482, 419 cm–1; HR-MS (ESI (+)): m/z = 729.1888, ber. für C38H44ClN2O2RuS [M+H+]+: 729.1888. 3. Dichloro(η6-p-cymene)(1-phenylethyl-4,5-diphenyl-imidazol-2-yliden)ruthenium(II)

Figure DE102013016487B4_0066
According to Method I, the indicated compound was synthesized from RuCl 26 -p-cymene) (Ph-TosMIC) (100 mg, 173 μmol) and N-benzylidenecyclohexylamine (33 mg, 173 μmol).
Beige solid: 82 mg (113 μmol, 65%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 0.73 (qt, J = 13.0, 3.5 Hz, 1H), 1.12 (d, J = 6.9 Hz, 3H), 1.26 (d, J = 6.9 Hz, 3H), 1.26-1.38 (m, 1H), 1.42-1.79 (m, 6H), 1.89 (d, J = 11.3Hz, 1H), 2.09 (s, 3H), 2.35 (s, 3H), 3.72 (sept , J = 6.9 Hz, 1H), 5.01 (tt, J = 12.1, 3.0 Hz, 1H), 5.26 (d, J = 6.3 Hz, 1H), 5.35 (d, J = 6.3 Hz, 1H), 5.45 (i.e. , J = 6.3 Hz, 2H), 7.08-7.16 (m, 4H), 7.19-7.27 (m, 3H), 7.41 (d, J = 8.2 Hz, 2H), 7.44-7.60 (m, 6H), 13.04 ( s, 1H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 17.9 (t), 20.6 (q, 2C), 22.6 (q), 25.0 (q), 25.5 (t), 26.5 (t), 30.2 (t ), 33.4 (d), 34.3 (d), 62.4 (d), 88.4 (d), 89.6 (d), 91.2 (d), 94.1 (d), 102.3 (d), 109.8 (d), 125.4 (i.e. ), 125.5 (d, 2C), 127.4 (d), 127.5 (d, 2C), 128.2 (d), 128.4 (d, 3C), 129.3 (d), 130.2 (d), 130.7 (d), 131.0 ( d), 132.8 (d), 139.3 (d), 151.3 (d), 167.8 (d); IR (KBr disc): υ~ = 3425, 3057, 2931, 2856, 1967, 1628, 1595, 1540, 1507, 1490, 1468, 1456, 1444, 1362, 1331, 1208, 1154, 1113, 1088, 1025, 1010 , 994,962,924,895,847,807,789,768,752,705,669,639,603,576,528,419 cm -1 ; HR-MS (ESI (+)): m / z = 729.1888, calc'd for C 38 H 44 ClN 2 O 2 RuS [M + H +] +:. 729.1888. 3. Dichloro (η 6 -p-cymene) (1-phenylethyl-4,5-diphenyl-imidazol-2-ylidene) ruthenium (II)
Figure DE102013016487B4_0066

Gemäß dem Verfahren I wurde die angegebene Verbindung aus RuCl26-p-cymene)(Ph-TosMIC) (100 mg, 173 μmol) und N-Benzylidene-2-phenylethylamin (37 mg, 173 μmol) synthetisiert.
Grüner Feststoff: 45 mg (60 μmol, 35%); 1H NMR (300 MHz, CD2Cl2): δ = 1.00 (d, J = 6.9 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.95 (s, 3H), 2.25 (s, 3H), 2.37 (td, J = 12.2, 5.0 Hz, 1H), 2.58 (sept, J = 6.9 Hz, 1H), 2.73–2.85 (m, 1H), 4.17 (td, J = 12.2, 5.0 Hz, 1H), 4.53 (td, J = 12.2, 5.0 Hz, 1H), 5.11 (d, J = 6.1 Hz, 1H), 5.21–5.23 (m, 1H, solvent overlay), 5.29 (d, J = 6.1 Hz, 1H), 5.30 (d, J = 6.1 Hz, 1H), 6.79 (d, J = 7.4 Hz, 2H), 7.01–7.15 (m, 6H), 7.19–7.29 (m, 5H), 7.41 (d, J = 7.9 Hz, 2H), 7.43–7.48 (m, 3H), 7.52–7.55 (m, 2H), 12.83 (s, 1H); 13C NMR (125 MHz, CD2Cl2): δ = 17.8 (q), 20.6 (q), 30.2 (d), 36.7 (t, 2C), 50.2 (t, 2C), 88.4 (d,), 89.6 (d), 91.7 (d), 93.7 (s), 102.8 (s), 110.7 (d), 125.6 (s), 125.7 (d), 126.1 (d), 127.5 (d, 2C), 127.7 (d), 128.1 (s, 2C), 128.1 (d, 2C), 128.4 (d, 2C), 128.6 (d, 2C), 129.1 (d, 2C), 129.3 (d), 129.9 (d), 130.6 (d, 2C), 131.1 (d); IR (KBr disc): υ ~ = 3058, 3027, 2963, 1955, 1634, 1599, 1542, 1491, 1454, 1391, 1360, 1155, 1089, 1031, 1009, 963, 847, 812, 766, 700, 639, 577, 511, 419 cm–1; HR-MS (ESI (+)): m/z = 773.1549 ber. für C40H41ClN2O2RuSNa [M+Na+]+: 773.1520. 4. Dichloro(η6-p-cymene)(1-phenyl-5,6-dihydroimidazo[5,1-a]isochinolin-3-yliden)-ruthenium(II)

Figure DE102013016487B4_0067
According to Method I, the indicated compound was synthesized from RuCl 26 -p-cymene) (Ph-TosMIC) (100 mg, 173 μmol) and N-benzylidenes-2-phenylethylamine (37 mg, 173 μmol).
Green solid: 45 mg (60 μmol, 35%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ = 1.00 (d, J = 6.9 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.95 (s, 3H), 2.25 (s, 3H), 2.37 (td, J = 12.2, 5.0 Hz, 1H), 2.58 (sept, J = 6.9 Hz, 1H), 2.73-2.85 (m, 1H), 4.17 (td, J = 12.2, 5.0 Hz, 1H ), 4.53 (td, J = 12.2, 5.0 Hz, 1H), 5.11 (d, J = 6.1 Hz, 1H), 5.21-5.23 (m, 1H, solvent overlay), 5.29 (d, J = 6.1 Hz, 1H ), 5.30 (d, J = 6.1 Hz, 1H), 6.79 (d, J = 7.4 Hz, 2H), 7.01-7.15 (m, 6H), 7.19-7.29 (m, 5H), 7.41 (d, J = 7.9Hz, 2H), 7.43-7.48 (m, 3H), 7.52-7.55 (m, 2H), 12.83 (s, 1H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 17.8 (q), 20.6 (q), 30.2 (d), 36.7 (t, 2C), 50.2 (t, 2C), 88.4 (d,), 89.6 (d), 91.7 (d), 93.7 (s), 102.8 (s), 110.7 (d), 125.6 (s), 125.7 (d), 126.1 (d), 127.5 (d, 2C), 127.7 (i.e. ), 128.1 (s, 2C), 128.1 (d, 2C), 128.4 (d, 2C), 128.6 (d, 2C), 129.1 (d, 2C), 129.3 (d), 129.9 (d), 130.6 (i.e. , 2C), 131.1 (d); IR (KBr disc): υ ~ = 3058, 3027, 2963, 1955, 1634, 1599, 1542, 1491, 1454, 1391, 1360, 1155, 1089, 1031, 1009, 963, 847, 812, 766, 700, 639, 577, 511, 419 cm -1 ; HR-MS (ESI (+)): m / z = 773.1549 calc. For C 40 H 41 ClN 2 O 2 RuSNa [M + Na + ] + : 773.1520. 4. Dichloro (η 6 -p-cymene) (1-phenyl-5,6-dihydroimidazo [5,1-a] isoquinolin-3-ylidene) ruthenium (II)
Figure DE102013016487B4_0067

Gemäß dem Verfahren I wurde die angegebene Verbindung aus RuCl26-p-cymene)(Ph-TosMIC) (100 mg, 173 μmol) und 3,4-Dihydroisochinolin (23 mg, 173 μmol) synthetisiert.
Orange-brauner Feststoff: 88 mg (131 μmol, 76%); 1H NMR (300 MHz, CD2Cl2): δ 1.11 (d, J = 6.8 Hz, 3H), 1.23 (d, J = 6.8 Hz, 3H), 2.15 (s, 3H), 2.28 (s, 3H), 2.64 (sept, J = 6.8 Hz, 1H), 3.10–3.19 (m, 2H), 4.24–4.36 (m, 1H), 4.71–4.83 (m, 1H), 5.42 (m, 1H, solvent overlay), 5.42 (dd, J = 6.2, 1.0 Hz, 1H), 5.47 (dd, J = 6.2, 1.0 Hz, 1H), 5.51 (dd, J = 6.2, 1.0 Hz, 1H), 7.04 (d, J = 7.04 Hz, 2H), 7.12 (td, J = 7.5, 1.2 Hz, 1H), 7.24 (td, J = 7.5, 1.2 Hz, 1H), 7.30–7.39 (m, 3H), 7.42 (d, J = 7.42 Hz, 1H), 7.44–7.58 (m, 5H) 12.25 (s, 1H); 13C NMR (125 MHz, CD2Cl2): δ = 18.0 (q), 20.6 (q), 21.1 (q), 22.0 (q), 23.5 (d), 30.0 (t), 30.4 (d), 45.0 (d), 87.7 (d), 89.9 (d), 92.6 (d), 93.0 (d), 104.0 (d), 109.7 (d), 123.2 (d), 125.7 (d, 2C), 125.9 (d), 126.5 (d), 127.1 (d), 127.3 (d, 2C), 127.7 (d, 2C), 127.9 (d), 128.0 (d), 128.8 (d), 128.9 (d, 2C), 129.1 (d), 133.6 (d), 139.1 (d), 150.6 (d), 167.3 (d); IR (KBr disc): υ ~ = 3439, 3060, 2963, 2873, 2121, 1636, 1598, 1576, 1559, 1540, 1502, 1481, 1451, 1388, 1341, 1273, 1155, 1129, 1104, 1088, 1034, 1009, 967, 924, 855, 811, 764, 749, 726, 699, 639, 601, 577, 511, 477, 419 cm–1; HR-MS (ESI (+)): m/z = 673.1248, ber. für C34H36ClN2O2RuS [M+H+]+: 673.1248. 5. Dichloro(η6-p-cymene)(5-(4-bromophenyl)-1-isopropyl-4-phenyl-imidazol-2-yliden)ruthenium(II)

Figure DE102013016487B4_0068
According to Method I, the indicated compound was synthesized from RuCl 26 -p-cymene) (Ph-TosMIC) (100 mg, 173 μmol) and 3,4-dihydroisoquinoline (23 mg, 173 μmol).
Orange-brown solid: 88 mg (131 μmol, 76%); 1 H NMR (300 MHz, CD 2 Cl 2 ): δ 1.11 (d, J = 6.8 Hz, 3H), 1.23 (d, J = 6.8 Hz, 3H), 2.15 (s, 3H), 2.28 (s, 3H ), 2.64 (sept, J = 6.8 Hz, 1H), 3.10-3.19 (m, 2H), 4.24-4.36 (m, 1H), 4.71-4.83 (m, 1H), 5.42 (m, 1H, solvent overlay) , 5.42 (dd, J = 6.2, 1.0 Hz, 1H), 5.47 (dd, J = 6.2, 1.0 Hz, 1H), 5.51 (dd, J = 6.2, 1.0 Hz, 1H), 7.04 (d, J = 7.04 Hz, 2H), 7.12 (td, J = 7.5, 1.2 Hz, 1H), 7.24 (td, J = 7.5, 1.2 Hz, 1H), 7.30-7.39 (m, 3H), 7.42 (d, J = 7.42 Hz , 1H), 7.44-7.58 (m, 5H) 12.25 (s, 1H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 18.0 (q), 20.6 (q), 21.1 (q), 22.0 (q), 23.5 (d), 30.0 (t), 30.4 (d), 45.0 (d), 87.7 (d), 89.9 (d), 92.6 (d), 93.0 (d), 104.0 (d), 109.7 (d), 123.2 (d), 125.7 (d, 2C), 125.9 (i.e. ), 126.5 (d), 127.1 (d), 127.3 (d, 2C), 127.7 (d, 2C), 127.9 (d), 128.0 (d), 128.8 (d), 128.9 (d, 2C), 129.1 ( d), 133.6 (d), 139.1 (d), 150.6 (d), 167.3 (d); IR (KBr disc): υ~ = 3439, 3060, 2963, 2873, 2121, 1636, 1598, 1576, 1559, 1540, 1502, 1481, 1451, 1388, 1341, 1273, 1155, 1129, 1104, 1088, 1034 , 1009, 967, 924, 855, 811, 764, 749, 726, 699, 639, 601, 577, 511, 477, 419 cm -1 ; HR-MS (ESI (+)): m / z = 673.1248, calc. For C 34 H 36 ClN 2 O 2 RuS [M + H + ] + : 673.1248. 5. Dichloro (η 6 -p-cymene) (5- (4-bromophenyl) -1-isopropyl-4-phenyl-imidazol-2-ylidene) ruthenium (II)
Figure DE102013016487B4_0068

Gemäß dem Verfahren I wurde die angegebene Verbindung aus RuCl26-p-cymene)(Ph-TosMIC) (100 mg, 173 μmol) und N-p-Bromobenzylidene-2-propylamin (39 mg, 173 μmol) synthetisiert.
Beiger Feststoff: 55 mg (71 μmol, 42%); 1H NMR (400 MHz, CD2Cl2): δ = 0.98 (d, J = 6.8 Hz, 3H), 1.13 (d, J = 6.8 Hz, 3H), 1.15 (d, J = 7.0 Hz, 3H), 1.24 (d, J = 7.4 Hz, 3H) 1.95 (s, 3H), 2.25 (s, 3H), 2.69 (sept, J = 2.58, 1H), 5.13 (d, J = 6.2 Hz, 1H), 5.22 (d, J = 5.0 Hz, 1H), 5.26 (d, J = 6.2 Hz, 1H), 5.30–5.40 (m, 2H, solvent overlay), 7.00–7.07 (m, 4H), 7.12–7.20 (m, 3H), 7.27 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 12.91 (s, 1H); 13C NMR (125 MHz, CD2Cl2): δ 17.8 (q), 20.5 (q), 20.6 (q), 22.9 (q), 23.5 (q), 24.0 (q), 30.2 (d), 87.9 (d), 89.8 (d, 2C), 91.2 (d, 2C), 94.2 (d), 123.8 (d), 125.5 (d, 2C), 125.8 (d, 2C), 127.5 (d, 2C), 127.7 (d), 128.0 (d), 128.5 (d), 128.6 (d), 129.0 (d), 129.3 (d), 131.2 (d, 2C), 131.6 (d), 134.4 (d, 2C); IR (KBr disc): υ ~ = IR (KBr disc): = 3439, 3057, 2967, 2932, 2873, 1967, 1628, 1601, 1506, 1487, 1469, 1390, 1367, 1345, 1297, 1232, 1153, 1122, 1088, 1075, 1032, 1010, 963, 835, 806, 769, 728, 695, 639, 576, 513, 477, 418 cm–1; HR-MS (ESI (+)): m/z = 767.0652, ber. für C35H39BrClN2O2RuS [M+H+]+: 767.0652. 6. Dichloro(η6-p-cymene)(1-isopropyl-4-(4-methoxyphenyl)-5-phenyl-imidazol-2-yliden)ruthenium(II)

Figure DE102013016487B4_0069
According to Method I, the indicated compound was synthesized from RuCl 26 -p-cymene) (Ph-TosMIC) (100 mg, 173 μmol) and Np-bromobenzylidene-2-propylamine (39 mg, 173 μmol).
Beige solid: 55 mg (71 μmol, 42%); 1 H NMR (400 MHz, CD 2 Cl 2 ): δ = 0.98 (d, J = 6.8 Hz, 3H), 1.13 (d, J = 6.8 Hz, 3H), 1.15 (d, J = 7.0 Hz, 3H) , 1.24 (d, J = 7.4 Hz, 3H) 1.95 (s, 3H), 2.25 (s, 3H), 2.69 (sept, J = 2.58, 1H), 5.13 (d, J = 6.2 Hz, 1H), 5.22 (d, J = 5.0 Hz, 1H), 5.26 (d, J = 6.2 Hz, 1H), 5.30-5.40 (m, 2H, solvent overlay), 7.00-7.07 (m, 4H), 7.12-7.20 (m, 3H), 7.27 (d, J = 8.2Hz, 2H), 7.35 (d, J = 8.0Hz, 2H), 7.55 (d, J = 8.2Hz, 2H), 12.91 (s, 1H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ 17.8 (q), 20.5 (q), 20.6 (q), 22.9 (q), 23.5 (q), 24.0 (q), 30.2 (d), 87.9 (d), 89.8 (d, 2C), 91.2 (d, 2C), 94.2 (d), 123.8 (d), 125.5 (d, 2C), 125.8 (d, 2C), 127.5 (d, 2C), 127.7 (d), 128.0 (d), 128.5 (d), 128.6 (d), 129.0 (d), 129.3 (d), 131.2 (d, 2C), 131.6 (d), 134.4 (d, 2C); IR (KBr disc): ν = IR (KBr disc): = 3439, 3057, 2967, 2932, 2873, 1967, 1628, 1601, 1506, 1487, 1469, 1390, 1367, 1345, 1297, 1232, 1153, 1122, 1088, 1075, 1032, 1010, 963, 835, 806, 769, 728, 695, 639, 576, 513, 477, 418 cm -1 ; HR-MS (ESI (+)): m / z = 767.0652, calc'd for C 35 H 39 BrClN 2 O 2 RuS [M + H +] +:. 767.0652. 6. Dichloro (η 6 -p-cymene) (1-isopropyl-4- (4-methoxyphenyl) -5-phenyl-imidazol-2-ylidene) ruthenium (II)
Figure DE102013016487B4_0069

Gemäß dem Verfahren I wurde die angegebene Verbindung aus RuCl26-p-cymene)(MeO-C6H4-TosMIC) (100 mg, 165 μmol) und N-Benzyliden-2-propylamin (24 mg, 165 μmol) synthetisiert.
Beiger Feststoff: 64 mg (89 μmol, 54%); 1H NMR (500 MHz, CD2Cl2): δ = 1.10 (d, J = 6.9 Hz, 3H), 1.24 (d, J = 7.2 Hz, 3H), 1.24 (d, J = 6.9 Hz, 3H), 1.33 (d, J = 7.2 Hz, 3H), 2.06 (s, 3H), 2.36 (s, 3H), 2.60 (sept, J = 6.9, 1H), 3.73 (s, 3H), 5.24 (d, J = 6.0 Hz, 1H), 5.36 (d, J = 6.0 Hz, 1H), 5.41 (sept, J = 7.2 Hz, 1H), 5.44 (d, J = 6.0 Hz, 1H), 6.77 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 7.45 (d, J = 7.9 Hz, 2H), 7.48–7.54 (m, 4H), 12.84 (s, 1H); 13C NMR (125 MHz, CD2Cl2): δ = 18.49 (q), 21.17 (q), 21.37 (q), 23.21 (q), 23.56 (q), 24.64 (q), 30.86 (d), 54.33 (d), 55.58 (q), 88.53 (d), 90.34 (d), 91.96 (d), 94.80 (d), 102.82 (s), 110.51 (s), 114.52 (d, 2C), 121.57 (s), 126.16 (d, 2C), 126.53 (s), 127.52 (d, 2C), 128.21 (d, 2C), 128.92 (d), 129.20 (d), 129.93 (d), 130.37 (s), 130.86 (s), 131.48 (s), 133.56 (d), 139.99 (s), 152.20 (s), 159.63 (s), 167.16 (s); IR (KBr disc): υ ~ = IR (KBr disc): = 2966, 1611, 1517, 1495, 1465, 1346, 1300, 1251, 1180, 1152, 1088, 1029, 961, 835, 776, 708, 638, 577, 513 cm–1; HR-MS (ESI (+)): m/z = 741.1486, ber. für C36H41ClN2O3RuSNa [M+Na+]+: 741.1471
According to Method I, the indicated compound was prepared from RuCl 26 -p-cymene) (MeO-C 6 H 4 -TosMIC) (100 mg, 165 μmol) and N-benzylidene-2-propylamine (24 mg, 165 μmol ).
Beige solid: 64 mg (89 μmol, 54%); 1 H NMR (500 MHz, CD 2 Cl 2 ): δ = 1.10 (d, J = 6.9 Hz, 3H), 1.24 (d, J = 7.2 Hz, 3H), 1.24 (d, J = 6.9 Hz, 3H) , 1.33 (d, J = 7.2 Hz, 3H), 2.06 (s, 3H), 2.36 (s, 3H), 2.60 (sept, J = 6.9, 1H), 3.73 (s, 3H), 5.24 (d, J = 6.0 Hz, 1H), 5.36 (d, J = 6.0 Hz, 1H), 5.41 (sept, J = 7.2 Hz, 1H), 5.44 (d, J = 6.0 Hz, 1H), 6.77 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 7.45 (d, J = 7.9 Hz, 2H), 7.48-7.54 (m, 4H), 12.84 (s, 1H); 13 C NMR (125 MHz, CD 2 Cl 2 ): δ = 18.49 (q), 21.17 (q), 21.37 (q), 23.21 (q), 23.56 (q), 24.64 (q), 30.86 (d), 54.33 (d), 55.58 (q), 88.53 (d), 90.34 (d), 91.96 (d), 94.80 (d), 102.82 (s), 110.51 (s), 114.52 (d, 2C), 121.57 (s 126.16 (d, 2C), 126.53 (s), 127.52 (d, 2C), 128.21 (d, 2C), 128.92 (d), 129.20 (d), 129.93 (d), 130.37 (s), 130.86 ( s), 131.48 (s), 133.56 (d), 139.99 (s), 152.20 (s), 159.63 (s), 167.16 (s); IR (KBr disc): υ ~ = IR (KBr disc): = 2966, 1611, 1517, 1495, 1465, 1346, 1300, 1251, 1180, 1152, 1088, 1029, 961, 835, 776, 708, 638, 577, 513 cm -1 ; HR-MS (ESI (+)): m / z = 741.1486, calc'd for C 36 H 41 ClN 2 O 3 Rušná [M + Na +] +:. 741.1471

Claims (13)

Verfahren zur Herstellung von Metall-N-heterocyclischen Carben-Komplexen (Metall-NHC-Komplexen) mittels modularer Dreikomponenten-Templatsynthese, umfassend die Umsetzung einer Metallligandverbindung MLmL'n mit der Formel (II), eines CH-aziden Isocyanids mit der allgemeinen Formel (III) und eines Imins mit der allgemeinen Formel (IV).
Figure DE102013016487B4_0070
wobei M aus Au, Rh, Ir oder Ru ausgewählt ist, L und L' ein für das jeweilige Metall geeigneter Ligand sind, welcher durch die Koordination auch m und n, die Anzahl der Liganden, vorgibt, wobei m und n jeweils 0, 1, 2, 3 oder 4 sind, Ar aus einer un-, mono- oder disubstituierten Phenylgruppe ausgewählt ist, wobei die Substituenten unabhängig voneinander aus der Gruppe α, bestehend aus einem Wasserstoffatom, einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest, einem (C1-C15)-Thioalkylrest, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome aufweisen kann, einem (C1-C15)-Alkoxyrest, einer Trifluormethylgruppe, Brom, Chlor und Fluor ausgewählt sind, Ar' aus einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest oder aus einer un-, mono- oder disubstituierten Phenylgruppe ausgewählt ist, wobei die Substituenten unabhängig voneinander aus der Gruppe α, bestehend aus einem Wasserstoffatom, einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest, einem (C1-C15)-Thioalkylrest, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome aufweisen kann, einem (C1-C15)-Alkoxyrest, einer Trifluormethylgruppe, Brom, Chlor und Fluor ausgewählt sind, R aus einem geradkettigen oder verzweigtkettigen, unsubstituierten oder substituierten (C1-C15)-Alkylrest, wobei die Substituenten terminale Phenylreste sein können und die Alkylreste durch Etherverbindungen verknüpft sein können, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome, wie beispielsweise O oder S, aufweisen kann, einer un-, mono- oder disubstituierten Phenyl- oder Benzylgruppe ausgewählt sind, wobei die Substituenten unabhängig voneinander aus der Gruppe α ausgewählt sind, oder R für einen Alkylenlinker steht, an dem wiederum endständig eine Gruppe gemäß Formel (I) hängt, oder R für einen Alkylenlinker steht, an dem endständig eine Phosphan-Einheit vorliegt, die gegebenenfalls Metall-koordiniert sein kann, oder Ar' und R zusammen unter Ringschluß für eine 3,4-Dihydroisochinolin-Einheit stehen, und EWG für eine elektronenziehende Gruppe steht, wodurch Metall-Imidazol-2-yliden-Komplexe gemäß der allgemeinen Formel (I) erhalten werden.
A process for the preparation of metal-N-heterocyclic carbene complexes (metal-NHC complexes) by modular three-component template synthesis, comprising reacting a metal ligand compound ML m L ' n with the formula (II), a CH-acidic isocyanide with the general Formula (III) and an imine having the general formula (IV).
Figure DE102013016487B4_0070
wherein M is selected from Au, Rh, Ir or Ru, L and L 'are a ligand suitable for the respective metal, which by coordination also gives m and n, the number of ligands, where m and n are each 0, 1 , 2, 3 or 4, Ar is selected from an unsubstituted, monosubstituted or disubstituted phenyl group, the substituents independently of one another selected from the group consisting of a hydrogen atom, a straight-chain or branched-chain (C 1 -C 15 ) -alkyl radical , a (C 1 -C 15 ) thioalkyl radical, a (C 3 -C 15 ) cycloalkyl radical, the one or may have a plurality of heteroatoms, a (C 1 -C 15 ) alkoxy, a trifluoromethyl group, bromine, chlorine and fluorine are selected, Ar 'from a straight-chain or branched-chain (C 1 -C 15 ) alkyl radical or from a non-, mono is selected from the group consisting of a hydrogen atom, a straight-chain or branched-chain (C 1 -C 15 ) -alkyl radical, a (C 1 -C 15 ) -thioalkyl radical, a (C C 3 -C 15 ) -cycloalkyl radical which may have one or more heteroatoms, a (C 1 -C 15 ) -alkoxy radical, a trifluoromethyl group, bromine, chlorine and fluorine, R is selected from a straight-chain or branched-chain, unsubstituted or substituted (C C 1 -C 15 ) -alkyl radical, where the substituents may be terminal phenyl radicals and the alkyl radicals may be linked by ether compounds, a (C 3 -C 15 ) -cycloalkyl radical containing one or more heteroatoms, such as O, or S, may be selected from an unsubstituted, monosubstituted, or disubstituted phenyl or benzyl group, the substituents being selected independently of one another from the group α, or R being an alkylene linker to which terminally a group according to formula (II) I), or R is an alkylene linker terminally attached to a phosphine moiety which may optionally be metal coordinated, or Ar 'and R together ring-seal a 3,4-dihydroisoquinoline moiety, and EWG for is an electron-withdrawing group, whereby metal-imidazol-2-ylidene complexes according to the general formula (I) are obtained.
Verfahren gemäß Anspruch 1, wobei die Metallligand-Ausgangsverbindung (II) aus (THT)AuCl, (DMS)AuCl, (RhCl2(cp*)]-Dimer, (IrCl2(cp*)]-Dimer, [RuCl2(cymene)]-Dimer, [RuCl2(benzol)]-Dimer oder [RuCl2(toluol)]-Dimer ausgewählt ist.Process according to claim 1, wherein the metal ligand starting compound (II) consists of (THT) AuCl, (DMS) AuCl, (RhCl 2 (cp *)) - dimer, (IrCl 2 (cp *)) - dimer, [RuCl 2 ( cymene)] - dimer, [RuCl 2 (benzene)] - dimer or [RuCl 2 (toluene)] - dimer is selected. Verfahren gemäß Anspruch 1, wobei M für Au steht.The method of claim 1, wherein M is Au. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei M für Au steht und die Synthese in einer Eintopfreaktion durchgeführt wird.A process according to any one of claims 1 to 3, wherein M is Au and the synthesis is carried out in a one-pot reaction. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei, wenn M für Rh oder Ir steht, zunächst die Verbindungen (II) und (III) umgesetzt werden und anschließend die erzeugten Rhodium- bzw. Iridium-Isocyanid-Komplexe mit dem Imin (IV) unter Zugabe einer Aminbase, vorzugsweise Triethylamin, umgesetzt werden.A process according to any one of claims 1 to 3, wherein when M is Rh or Ir, first the compounds (II) and (III) are reacted and then the generated rhodium or iridium isocyanide complexes with the imine (IV) with the addition of an amine base, preferably triethylamine. Verfahren gemäß einem der Ansprüche 1 bis 5, wobei das Lösungsmittel aus Aceton, Acetonitril, Benzol, Toluol, Tetrachlorkohlenstoff, Chlorbenzol, Chloroform, Cyclohexan, 1,2-Dichlorethan, Diethylether, Diethylenglycoldimethylester, DM (1,2-Dimethoxyethan), Dimethylformamid, Dimethylsulfoxid, Dioxan, Essigester, Hexamethylphosphoramid, Hexamethylphosphortriamid, Pentan, Hexan, Cyclohexan, Methyl-tert-Butylether, N-Methyl-2-pyrrolidinon, Nitromethan, Petrolether, Tetrahydrofuran, Toluol oder Xylolen ausgewählt ist.A process according to any one of claims 1 to 5, wherein the solvent is acetone, acetonitrile, benzene, toluene, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, 1,2-dichloroethane, diethyl ether, diethylene glycol dimethyl ester, DM (1,2-dimethoxyethane), dimethylformamide, Dimethyl sulfoxide, dioxane, ethyl acetate, hexamethyl phosphoramide, hexamethyl phosphoric triamide, pentane, hexane, cyclohexane, methyl tert-butyl ether, N-methyl-2-pyrrolidinone, nitromethane, petroleum ether, tetrahydrofuran, toluene or xylenes. Metall-N-heterocyclische Carben-Komplexe (Metall-NHC-Komplexe) gemäß der allgemeinen Formel (I):
Figure DE102013016487B4_0071
worin M aus Au, Rh, Ir oder Ru ausgewählt ist, L und L' ein für das jeweilige Metall geeigneter Ligand sind, welcher durch die Koordination auch m und n, die Anzahl der Liganden, vorgibt, wobei m und n jeweils 0, 1, 2, 3 oder 4 sind, Ar aus einer un-, mono- oder disubstituierten Phenylgruppe ausgewählt ist, wobei die Substituenten unabhängig voneinander aus der Gruppe α, bestehend aus einem Wasserstoffatom, einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest, einem (C1-C15)-Thioalkylrest, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome aufweisen kann, einem (C1-C15)-Alkoxyrest, einer Trifluormethylgruppe, Brom, Chlor und Fluor sind, Ar' aus einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest oder aus einer un-, mono- oder disubstituierten Phenylgruppe ausgewählt ist, wobei die Substituenten unabhängig voneinander aus der Gruppe α, bestehend aus einem Wasserstoffatom, einem geradkettigen oder verzweigtkettigen (C1-C15)-Alkylrest, einem (C1-C15)-Thioalkylrest, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome aufweisen kann, einem (C1-C15)-Alkoxyrest, einer Trifluormethylgruppe, Brom, Chlor und Fluor ausgewählt sind, R aus einem geradkettigen oder verzweigtkettigen, unsubstituierten oder substituierten (C1-C15)-Alkylrest, wobei die Substituenten terminale Phenylreste sein können und die Alkylreste durch Etherverbindungen verknüpft sein können, einem (C3-C15)-Cycloalkylrest, der ein oder mehrere Heteroatome, wie beispielsweise O oder S, aufweisen kann, einer un-, mono- oder disubstituierten Phenyl- oder Benzylgruppe ausgewählt ist, wobei die Substituenten unabhängig voneinander aus der Gruppe α ausgewählt sind, oder R für einen Alkylenlinker steht, an dem wiederum endständig eine Gruppe gemäß Formel (I) hängt, oder R für einen Alkylenlinker steht, an dem endständig eine Phosphan-Einheit vorliegt, die gegebenenfalls Metall-koordiniert sein kann, oder Ar' und R zusammen unter Ringschluß für eine 3,4-Dihydroisochinolin-Einheit stehen.
Metal-N-heterocyclic carbene complexes (metal NHC complexes) according to the general formula (I):
Figure DE102013016487B4_0071
wherein M is selected from Au, Rh, Ir or Ru, L and L 'are a ligand suitable for the respective metal, which by coordination also gives m and n, the number of ligands, where m and n are each 0, 1 , 2, 3 or 4, Ar is selected from an unsubstituted, monosubstituted or disubstituted phenyl group, the substituents independently of one another selected from the group consisting of a hydrogen atom, a straight-chain or branched-chain (C 1 -C 15 ) -alkyl radical one (C 1 -C 15 ) -thioalkyl radical, a (C 3 -C 15 ) -cycloalkyl radical which may have one or more heteroatoms, a (C 1 -C 15 ) -alkoxy radical, a trifluoromethyl group, bromine, chlorine and fluorine, Ar 'is selected from a straight-chain or branched-chain (C 1 -C 15 ) -alkyl radical or from an unsubstituted, monosubstituted or disubstituted phenyl group, where the substituents independently of one another are selected from the group consisting of a hydrogen atom, a straight-chain or branched-chain ( C 1 -C 15 ) -alkyl radical, a (C 1 -C 15 ) -thioalkyl radical, a (C 3 -C 15 ) -cycloalkyl radical which may have one or more heteroatoms, a (C 1 -C 15 ) -alkoxy radical, R is selected from a straight-chain or branched-chain, unsubstituted or substituted (C 1 -C 15 ) -alkyl radical, where the substituents may be terminal phenyl radicals and the alkyl radicals may be linked by ether compounds, a (C 3 -C 15 ) -Cycl oalkyl radical which may have one or more heteroatoms, such as O or S, an unsubstituted, mono- or disubstituted phenyl or benzyl group is selected, wherein the substituents are independently selected from the group α, or R is an alkylene linker in which in turn terminally hangs a group according to formula (I), or R stands for an alkylene linker at the terminal of which there is a phosphane unit which may optionally be metal-coordinated, or Ar 'and R together ring-closed for a 3, 4-dihydroisoquinoline unit.
Metall-N-heterocyclische Carben-Komplexe (Metall-NHC-Komplexe) gemäß Anspruch 7, welche die folgenden Strukturen aufweisen:
Figure DE102013016487B4_0072
Metal-N-heterocyclic carbene complexes (metal NHC complexes) according to claim 7, which have the following structures:
Figure DE102013016487B4_0072
Metall-N-heterocyclische Carben-Komplexe (Metall-NHC-Komplexe) gemäß Anspruch 7, welche die folgenden Strukturen aufweisen, wobei M für Rh oder Ir steht:
Figure DE102013016487B4_0073
Metal-N-heterocyclic carbene complexes (metal NHC complexes) according to claim 7, which have the following structures, wherein M is Rh or Ir:
Figure DE102013016487B4_0073
Metall-N-heterocyclische Carben-Komplexe (Metall-NHC-Komplexe) gemäß Anspruch 7, welche die folgenden Strukturen aufweisen:
Figure DE102013016487B4_0074
Metal-N-heterocyclic carbene complexes (metal NHC complexes) according to claim 7, which have the following structures:
Figure DE102013016487B4_0074
Verfahren gemäß einem der vorhergehenden Ansprüche 1 bis 6, wobei Gold-Imidazol-2-yliden-Komplexe gemäß der allgemeinen Formel (I) mit Base, vorzugsweise Triethylamin, umgesetzt werden, wodurch Gold-NHC Trimere erhalten werden.A process according to any of the preceding claims 1 to 6, wherein gold imidazol-2-ylidene complexes according to the general formula (I) are reacted with base, preferably triethylamine, to give gold-NHC trimers. Verfahren gemäß Anspruch 11, wobei die folgenden Gold-NHC Trimere hergestellt werden:
Figure DE102013016487B4_0075
Figure DE102013016487B4_0076
Process according to claim 11, wherein the following gold NHC trimers are prepared:
Figure DE102013016487B4_0075
Figure DE102013016487B4_0076
Verwendung der Metall-N-heterocyclischen Carben-Komplexe (Metall-NHC-Komplexe) gemäß einem der Ansprüche 7 bis 10 oder hergestellt gemäß dem Verfahren nach einem der Ansprüche 1 bis 6 als Katalysator, insbesondere zur Phenolsynthese.Use of the metal-N-heterocyclic carbene complexes (metal-NHC complexes) according to any one of claims 7 to 10 or prepared according to the method of any one of claims 1 to 6 as a catalyst, in particular for phenol synthesis.
DE102013016487.7A 2013-10-02 2013-10-02 Process for the preparation of metal-N-heterocyclic carbene complexes Expired - Fee Related DE102013016487B8 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102013016487.7A DE102013016487B8 (en) 2013-10-02 2013-10-02 Process for the preparation of metal-N-heterocyclic carbene complexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013016487.7A DE102013016487B8 (en) 2013-10-02 2013-10-02 Process for the preparation of metal-N-heterocyclic carbene complexes

Publications (3)

Publication Number Publication Date
DE102013016487A1 DE102013016487A1 (en) 2015-04-02
DE102013016487B4 true DE102013016487B4 (en) 2016-01-28
DE102013016487B8 DE102013016487B8 (en) 2016-04-14

Family

ID=52672851

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013016487.7A Expired - Fee Related DE102013016487B8 (en) 2013-10-02 2013-10-02 Process for the preparation of metal-N-heterocyclic carbene complexes

Country Status (1)

Country Link
DE (1) DE102013016487B8 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483356A (en) * 2019-08-28 2019-11-22 上海克琴科技有限公司 A kind of synthetic method for the retinene that copper complex promotes

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HAHN, F.E. [et al.]: Template Synthesis of a Coordinated Tetracarbene Ligand with Crown Ether Topology. In: Angew. Chem. Int. Ed. 2005, Vol. 44, S. 3759-3763. *
HAHN, F.E. [et al.]: Template Synthesis of Benzannulated N-Heterocyclic Carbene Ligands. In: Chem. Eur. J. 2003, Vol. 9, No. 3, S. 704-712. *
HASHMI, S.K. [et al.], New and Easily Accesible Nitrogen Acyclic Gold(I) Carbenes: Structure and Application in the Gold-Catalyzed Phenol Synthesis as well as the Hydration of Alkynes. In: Adv. Synth. Catal. 2010, Vol. 352, S. 1315-1337 *
RIEGER, D. [et al.]: A novel reaction of the cyano ligand opening an organometallic route to 4-amino imidazoles [...]. In: Inorg. Chim. Acta, Vol. 222, 1994, S. 275-290. *
VAN LEUSEN, A.M. [et al.]: Base-Induced Cycloaddition of Sulfonylmethyl Isocyanides to C,N Double Bonds [...].: In: J. Org. Chem, Vol. 42, No. 7, 1977, S. 1153-1159. *

Also Published As

Publication number Publication date
DE102013016487A1 (en) 2015-04-02
DE102013016487B8 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
EP1993728B1 (en) Process for preparing transition metal-carbene complexes
EP0721953B1 (en) Metal complexes containing heterocyclic carbenes
EP0104375B1 (en) Phosphorus-containing biphenyl derivatives and their use in asymmetric hydrogenation and enatioselective hydrogen shifts
DE69634639T2 (en) PROCESS FOR PRODUCING OPTICAL ACTIVE COMPOUNDS
EP2260047B1 (en) Method for manufacturing ruthenium carbene complexes
DE2456937B2 (en) Optically active bis-phosphine compounds and their use
DE102006043704A1 (en) New metathesis catalysts
Usón et al. A new route for the synthesis of binuclear organometallic and inorganic palladium (II) complexes
WO1997034875A1 (en) Process for preparing heterocyclic carbenes
EP2459579A2 (en) Phosphine borane compounds comprising imidazol groups and method for producing phosphine borane compounds comprising imidazol groups
DE60218807T2 (en) Ruthenium complexes and their use for the production of alcohols
DE102011106849A1 (en) Process for the synthesis of N-N linked and around the N-N bond of rotation-inhibited bis-N-heterocyclic carbenes and their use as ligands for metal complexes
WO2009101162A1 (en) Imidazole group-containing phosphorus compounds
EP0583433A1 (en) Diphosphine ligands
DE19548399A1 (en) Ruthenium complexes with a chiral, bidentate phosphinoxazoline ligand for the enantioselective transfer hydrogenation of prochiral ketones
EP0419409B1 (en) Iridium complexes, process for their preparation and their use
DE102013016487B4 (en) Process for the preparation of metal-N-heterocyclic carbene complexes
DE3153690C2 (en)
EP0909762B1 (en) Binuclear Iridium(I) phosphine complexes and their use as catalysts for the asymmetric hydroamination of olefins
EP0915076B1 (en) Process for the preparation of trans-(R,R)-actinol
EP2678344B1 (en) Cyclopropenylidene-stabilised phosphenium cations
DE3537715C2 (en)
EP2220100B1 (en) Chiral cycloplatinized complexes, method for the production thereof and their use in medicine and catalysts
WO2003076451A1 (en) Ferrocenyl ligands and the use thereof in catalysis
EP1119574B1 (en) Substituted isophosphindolines and their use

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: HASHMI, A. STEPHEN K., PROF. DR., DE

Free format text: FORMER OWNER: RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG, 69117 HEIDELBERG, DE

R082 Change of representative

Representative=s name: MUELLER-BORE & PARTNER PATENTANWAELTE PARTG MB, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee