DE102012200827A1 - Use of a polymer network as a cathode material for rechargeable batteries - Google Patents

Use of a polymer network as a cathode material for rechargeable batteries Download PDF

Info

Publication number
DE102012200827A1
DE102012200827A1 DE102012200827A DE102012200827A DE102012200827A1 DE 102012200827 A1 DE102012200827 A1 DE 102012200827A1 DE 102012200827 A DE102012200827 A DE 102012200827A DE 102012200827 A DE102012200827 A DE 102012200827A DE 102012200827 A1 DE102012200827 A1 DE 102012200827A1
Authority
DE
Germany
Prior art keywords
cathode material
network
polymer network
batteries
rechargeable batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102012200827A
Other languages
German (de)
Inventor
Ken Sakaushi
Jürgen Eckert
Georg Nickerl
Stefan Kaskel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Original Assignee
Technische Universitaet Dresden
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dresden, Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV filed Critical Technische Universitaet Dresden
Priority to DE102012200827A priority Critical patent/DE102012200827A1/en
Priority to PCT/EP2013/050796 priority patent/WO2013107798A1/en
Publication of DE102012200827A1 publication Critical patent/DE102012200827A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Die Erfindung bezieht sich auf das Gebiet der Chemie und der Energietechnik, insbesondere der Energiespeichertechnik, und betrifft die Verwendung eines Polymernetzwerkes als Kathodenmaterial, wie es insbesondere für organische wiederaufladbare Hochleistungsbatterien zur Anwendung kommen kann. Die Aufgabe der vorliegenden Erfindung besteht in der Verwendung eines Netzwerkes als Kathodenmaterial für wiederaufladbare Batterien, durch das die spezifische Energie der Batterien deutlich erhöht wird. Die Aufgabe wird gelöst durch die Verwendung eines Polymernetzwerkes als Kathodenmaterial für wiederaufladbare Batterien, wobei als Netzwerk ein amorphes bipolares poröses Polymernetzwerk auf der Basis von Triazin als Kathodenmaterial eingesetzt wird.The invention relates to the field of chemistry and energy technology, in particular the energy storage technology, and relates to the use of a polymer network as a cathode material, as it can be used in particular for organic rechargeable high-performance batteries. The object of the present invention is the use of a network as a cathode material for rechargeable batteries, by which the specific energy of the batteries is significantly increased. The object is achieved by the use of a polymer network as the cathode material for rechargeable batteries, wherein an amorphous bipolar porous polymer network based on triazine is used as the cathode material as a network.

Description

Die Erfindung bezieht sich auf das Gebiet der Chemie und der Energietechnik, insbesondere der Energiespeichertechnik, und betrifft die Verwendung eines Polymernetzwerkes als Kathodenmaterial, wie es insbesondere für organische wiederaufladbare Hochleistungsbatterien zur Anwendung kommen kann.The invention relates to the field of chemistry and energy technology, in particular the energy storage technology, and relates to the use of a polymer network as a cathode material, as it can be used in particular for organic rechargeable high-performance batteries.

Wiederaufladbare Batterien bestehen grundsätzlich aus Anode, Kathode und einem Elektrolyten.Rechargeable batteries basically consist of anode, cathode and an electrolyte.

Seit die grundlegenden Technologien für Li-Ionenbatterien erarbeitet worden sind ( Whittingham, M. S. et al: Science 192, 1126–1127 (1976) ), ist das Hauptaugenmerk der weiteren Forschung auf die Verbesserung der spezifischen Energie dieser Batterien auf das Kathodenmaterial gelegt worden ( Mizushima, K. et al: Mater. Res. Bull. 15, 783–789 (1980) , Barpanda, P. et al: Nature Mater. 10, 772–779 (2011) ).Since the basic technologies for Li-ion batteries have been developed ( Whittingham, MS et al: Science 192, 1126-1127 (1976) ), the main focus of further research has been placed on the improvement of the specific energy of these batteries on the cathode material ( Mizushima, K. et al: Mater. Res. Bull. 15, 783-789 (1980) . Barpanda, P. et al: Nature Mater. 10, 772-779 (2011) ).

Die hohen Kosten der gegenwärtigen Li-Ionenbatterien sind ein weiteres Problem, insbesondere beim Einsatz solcher Batterien in Elektroautos oder für Energiespeicherzwecke. Daher sind organische Materialien als Elektrodenmaterialien in den Blickpunkt der Forschungen gerückt, insbesondere aufgrund ihrer geringen Kosten. Als Kathoden auf Polymerbasis sind solche aus Polyacetylen bekannt ( Nigrey, P. J. et al: J. Electrochem. Soc. 128, 1651–1654 (1981) ). Verbesserte Eigenschaften konnten mit radikalischen Polymermaterialien erreicht werden ( Nishide, H. et al: Electrochim. Acta 50, 827–831 (2004) ).The high cost of current Li-ion batteries is another problem, especially in the use of such batteries in electric cars or for energy storage purposes. Therefore, organic materials as electrode materials have come into the focus of research, especially because of their low cost. As polymer-based cathodes, those made of polyacetylene are known (US Pat. Nigrey, PJ et al .: J. Electrochem. Soc. 128, 1651-1654 (1981) ). Improved properties could be achieved with free-radical polymer materials ( Nishide, H. et al: Electrochim. Acta 50, 827-831 (2004) ).

Weiterhin sind amorphe kovalente triazin-basierte Netzwerke (ACTF-1 – amorphous covalent triazin-based framework) bekannt. Die Poren des Netzwerkes mit einer Größe von ~1.5 nm sind von schichtähnlichen Strukturen (sheet-like structure) umgeben. Diese Netzwerke liegen als definiertes Netzwerk aus einer schichtartigen Struktur vor, jedoch ohne ein dreidimensionales regelmäßiges Netzwerk zu bilden ( Kuhn, P. et al: Macromolecules 42, 319–326 (2009) ).Furthermore, amorphous covalent triazine-based networks (ACTF-1 - amorphous covalent triazine-based framework) are known. The pores of the network with a size of ~ 1.5 nm are surrounded by sheet-like structures. These networks exist as a defined network of a layered structure, but without forming a three-dimensional regular network ( Kuhn, P. et al: Macromolecules 42, 319-326 (2009) ).

Nachteilig bei den bekannten Lösungen des Standes der Technik ist, dass die spezifische Energie der Batterien immer noch nicht ausreichend hoch ist.A disadvantage of the known solutions of the prior art is that the specific energy of the batteries is still not sufficiently high.

Die Aufgabe der vorliegenden Erfindung besteht in der Verwendung eines Netzwerkes als Kathodenmaterial für wiederaufladbare Batterien, durch das die spezifische Energie der Batterien deutlich erhöht wird.The object of the present invention is the use of a network as a cathode material for rechargeable batteries, by which the specific energy of the batteries is significantly increased.

Die Aufgabe wird durch die in den Ansprüchen angegebene Erfindung. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.The object is achieved by the invention specified in the claims. Advantageous embodiments are the subject of the dependent claims.

Erfindungsgemäß wird ein Polymernetzwerk als Kathodenmaterial für wiederaufladbare Batterien verwendet, wobei als Netzwerk ein amorphes bipolares poröses Polymernetzwerk auf der Basis von Triazin als Kathodenmaterial eingesetzt wird.According to the invention, a polymer network is used as the cathode material for rechargeable batteries, with the network used being an amorphous bipolar porous polymer network based on triazine as the cathode material.

Vorteilhafterweise werden Anionen des Elektrolytmaterials und Li+-Ionen für das Kathodenmaterial verwendet.Advantageously, anions of the electrolyte material and Li + ions are used for the cathode material.

Ebenfalls vorteilhafterweise wird das Netzwerk als Kathodenmaterial und Lithium als Anodenmaterial verwendet.Also advantageously, the network is used as the cathode material and lithium as the anode material.

Und weiterhin vorteilhafterweise wird als Elektrolyt 1M LiPF6 im Volumenverhältnis Ethylencarbonat: Dimetylencarbonat von 1:1 verwendet. And furthermore advantageously 1M LiPF 6 in the volume ratio ethylene carbonate: dimetylene carbonate of 1: 1 is used as the electrolyte.

Mit der erfindungsgemäßen Lösung ist es erstmals möglich, die spezifische Energie von wiederaufladbaren Batterien unter Verwendung eines Netzwerkes aus einem amorphen bipolaren porösen Polymernetzwerk auf der Basis von Triazin als Kathodenmaterial deutlich zu erhöhen.With the solution according to the invention, it is now possible to significantly increase the specific energy of rechargeable batteries using a network of an amorphous bipolar porous polymer network based on triazine as the cathode material.

Dies wird im Wesentlichen durch die Verwendung des speziellen Kathodenmaterials erreicht.This is achieved essentially by the use of the special cathode material.

Die Wirkungsweise der erfindungsgemäßen Lösung ist folgende. Aufgrund der chemischen und bipolaren Struktur des Polymernetzwerkes ändert sich während des Ladens und Entladens der Kathode ihrer Ladungszustand durch einen kontinuierlichen, linearen bipolaren Redoxmechanismus. Der neutrale Zustand des Triazinrings überbrückt linear und kontinuierlich seinen oxidierten Zustand und den reduzierten Zustand durch den kontinuierlichen linearen Übergang der bipolaren Redoxmechanismen in Verbindung mit Anionen und Li+-Ionen entsprechend. Dementsprechend liegen sowohl Anionen als auch Li+-Ionen vor, die beide für die erfindungsgemäß erreichte Erhöhung der spezifischen Energie benötigt werden.The mode of action of the solution according to the invention is as follows. Due to the chemical and bipolar structure of the polymer network, its charge state changes during charging and discharging of the cathode due to a continuous, linear bipolar redox mechanism. The neutral state of the triazine ring linearly and continuously bridges its oxidized state and its reduced state by the continuous linear transition of the bipolar redox mechanisms in conjunction with anions and Li + ions. Accordingly, both anions and Li + ions are present, both of which are needed for the specific energy increase achieved according to the invention.

Beispielsweise kann der Entladungsprozess von 4,5 auf 1,5 V gegenüber Li mit LiPF6 als Elektrolyt (PF6 ist das Anion) so beschrieben werden:
Die erste Reaktion führt zu: [C3N3 +x(PF6 )x] + xLi → (C3N3) + xLi+(PF6 ) (4.5–3.0 V gegen Li) und die zweite Reaktion führt in einem kontinuierlichen und linearen Übergang vom oxidierten Zustand in den reduzierten Zustand: (C3N3) + xLi → [C3N3 –x(Li+)x] (3.0–1.5 V gegen Li).
For example, the discharge process from 4.5 to 1.5 V versus Li with LiPF 6 as electrolyte (PF 6 - is the anion) can be described as follows:
The first reaction leads to: [C 3 N 3 + x (PF 6 - ) x ] + x Li → (C 3 N 3 ) + x Li + (PF 6 - ) (4.5-3.0 V vs. Li) and the second reaction results in a continuous and linear transition from the oxidized state to the reduced state: (C 3 N 3 ) + x Li → [C 3 N 3 -x (Li + ) x ] (3.0-1.5 V vs. Li).

Die erfindungsgemäße Lösung zeigt eine hohe mechanische Stabilität auf, ebenso wie ein großes Arbeitspotential aufgrund eines schnellen Ionentransportes und einer großen Kathodenoberfläche.The solution according to the invention has a high mechanical stability, as well as a high work potential due to fast ion transport and a large cathode surface.

Nachfolgend wird die Erfindung an einem Ausführungsbeispiel näher erläutert.The invention will be explained in more detail using an exemplary embodiment.

Beispiel 1example 1

Ein Netzwerk bestehend aus Triazinringen (C3N3) in amorpher Struktur wird zu einer Kathode verarbeitet. Dazu werden 70 Ma.-% amorphes CTF-1, 20 Ma.-% Ruß als leitfähiges Additiv und 10 Ma.-% Carboxymethylcellulose als Binder gemischt und mit einer Al-Folie als Stromabnehmer umhüllt. Das Polymernetzwerk wurde gemäß dem bekannten Verfahren nach P. Kuhn et al: Angew. Chem. Int. Ed. 47, 3450–3453 (2008) hergestellt. Das ACTF-1 wurde synthetisiert, indem eine Mischung aus p-Dicyanobenzen und ZnCl2 in einem Verhältnis von p-Dicyanobenzen/ZnCl2 von 0,1 in einem Quarzgefäß auf 400 °C aufgeheizt wurde. Eine Anode aus kommerziellem Li-Metall wird zusammen mit der Kathode elektrisch verbunden und in eine Swagelock-Zelle eingebaut, um die elektrochemischen Eigenschaften zu prüfen. Dazu werden die Anode und Kathode in der Zelle mit 1M LiPF6 als Elektrolyten positioniert. Glasfasern trennen die Kathode von der Anode. Die Zelle wird in einen Raum mit einer Ar-Atmosphäre überführt und in einem VMP3 (multichannel potentiostatic-galvanostatic system) geprüft.A network consisting of triazine rings (C 3 N 3 ) in amorphous structure is processed to a cathode. For this purpose, 70% by weight of amorphous CTF-1, 20% by weight of carbon black as conductive additive and 10% by weight of carboxymethylcellulose as binder are mixed and coated with an aluminum foil as current collector. The polymer network was recovered according to the known method Kuhn, P. et al: Angew. Chem. Int. Ed. 47, 3450-3453 (2008) produced. The ACTF-1 was synthesized by heating a mixture of p-dicyanobenzene and ZnCl 2 in a ratio of p-dicyanobenzene / ZnCl 2 from 0.1 in a quartz vessel to 400 ° C. An anode of commercial Li metal is electrically connected together with the cathode and incorporated into a swagelock cell to test the electrochemical properties. For this purpose, the anode and cathode are positioned in the cell with 1M LiPF 6 as the electrolyte. Glass fibers separate the cathode from the anode. The cell is transferred to a room with an Ar atmosphere and tested in a VMP3 (multichannel potentiostatic-galvanostatic system).

Die erreichte spezifische Energie beträgt 1,084 Wh kg–1 bei einer spezifischen Kraft von 13,238 W kg–1 bezogen auf die Kathodenmasse. Dies ist eine deutliche Verbesserung der spezifischen Energie gegenüber typischen Werten von 600 Wh kg–1 und für die spezifische Kraft von 500–2000 W kg–1 für Kathodenmaterialien nach dem Stand der Technik.The specific energy reached is 1.084 Wh kg -1 with a specific force of 13.238 W kg -1 relative to the cathode mass. This is a significant improvement in specific energy over typical values of 600 Wh kg -1 and for the specific force of 500-2000 W kg -1 for prior art cathode materials.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte Nicht-PatentliteraturCited non-patent literature

  • Whittingham, M. S. et al: Science 192, 1126–1127 (1976) [0003] Whittingham, MS et al: Science 192, 1126-1127 (1976) [0003]
  • Mizushima, K. et al: Mater. Res. Bull. 15, 783–789 (1980) [0003] Mizushima, K. et al: Mater. Res. Bull. 15, 783-789 (1980) [0003]
  • Barpanda, P. et al: Nature Mater. 10, 772–779 (2011) [0003] Barpanda, P. et al: Nature Mater. 10, 772-779 (2011) [0003]
  • Nigrey, P. J. et al: J. Electrochem. Soc. 128, 1651–1654 (1981) [0004] Nigrey, PJ et al .: J. Electrochem. Soc. 128, 1651-1654 (1981) [0004]
  • Nishide, H. et al: Electrochim. Acta 50, 827–831 (2004) [0004] Nishide, H. et al: Electrochim. Acta 50, 827-831 (2004) [0004]
  • Kuhn, P. et al: Macromolecules 42, 319–326 (2009) [0005] Kuhn, P. et al: Macromolecules 42, 319-326 (2009) [0005]
  • P. Kuhn et al: Angew. Chem. Int. Ed. 47, 3450–3453 (2008) [0019] Kuhn, P. et al: Angew. Chem. Int. Ed. 47, 3450-3453 (2008) [0019]

Claims (4)

Verwendung eines Polymernetzwerkes als Kathodenmaterial für wiederaufladbare Batterien, wobei als Netzwerk ein amorphes bipolares poröses Polymernetzwerk auf der Basis von Triazin als Kathodenmaterial eingesetzt wird.Use of a polymer network as a cathode material for rechargeable batteries, using as network an amorphous bipolar porous polymer network based on triazine as the cathode material. Verwendung nach Anspruch 1 von Anionen des Elektrolytmaterials und Li+-Ionen für das Kathodenmaterial.Use according to claim 1 of anions of the electrolyte material and Li + ions for the cathode material. Verwendung nach Anspruch 1 des Netzwerkes als Kathodenmaterial und Lithium als Anodenmaterial.Use according to claim 1 of the network as cathode material and lithium as anode material. Verwendung nach Anspruch 1 des Elektrolytes 1M LiPF6 im Volumenverhältnis Ethylencarbonat: Dimetylencarbonat von 1:1. Use according to claim 1 of the electrolyte 1M LiPF 6 in the volume ratio of ethylene carbonate: dimetylene carbonate of 1: 1.
DE102012200827A 2012-01-20 2012-01-20 Use of a polymer network as a cathode material for rechargeable batteries Ceased DE102012200827A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102012200827A DE102012200827A1 (en) 2012-01-20 2012-01-20 Use of a polymer network as a cathode material for rechargeable batteries
PCT/EP2013/050796 WO2013107798A1 (en) 2012-01-20 2013-01-17 Use of a polymer network as a cathode material for rechargeable batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012200827A DE102012200827A1 (en) 2012-01-20 2012-01-20 Use of a polymer network as a cathode material for rechargeable batteries

Publications (1)

Publication Number Publication Date
DE102012200827A1 true DE102012200827A1 (en) 2013-07-25

Family

ID=48083107

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012200827A Ceased DE102012200827A1 (en) 2012-01-20 2012-01-20 Use of a polymer network as a cathode material for rechargeable batteries

Country Status (2)

Country Link
DE (1) DE102012200827A1 (en)
WO (1) WO2013107798A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019110450B3 (en) 2019-04-23 2020-06-10 Humboldt-Universität Zu Berlin Anode and process for its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3249282T1 (en) * 1981-12-28 1984-12-13 Chevron Research Co., San Francisco, Calif. Batteries made using electroactive polymers
DE69033581T2 (en) * 1989-09-01 2001-04-12 Hydro Quebec Rechargeable electrochemical generator with solid state polymers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2911723A1 (en) * 2007-01-19 2008-07-25 Arkema France Electrode, for electrochemical energy storage system, which is useful as a battery for a computer, a server/a portable telephone, or a supercapacitor, comprises a triazinic polynitroxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3249282T1 (en) * 1981-12-28 1984-12-13 Chevron Research Co., San Francisco, Calif. Batteries made using electroactive polymers
DE69033581T2 (en) * 1989-09-01 2001-04-12 Hydro Quebec Rechargeable electrochemical generator with solid state polymers

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Barpanda, P. et al: Nature Mater. 10, 772-779 (2011)
Kuhn, P. et al: Macromolecules 42, 319-326 (2009)
Mizushima, K. et al: Mater. Res. Bull. 15, 783-789 (1980)
Nigrey, P. J. et al: J. Electrochem. Soc. 128, 1651-1654 (1981)
Nishide, H. et al: Electrochim. Acta 50, 827-831 (2004)
P. Kuhn et al: Angew. Chem. Int. Ed. 47, 3450-3453 (2008)
Whittingham, M. S. et al: Science 192, 1126-1127 (1976)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019110450B3 (en) 2019-04-23 2020-06-10 Humboldt-Universität Zu Berlin Anode and process for its manufacture
WO2020216408A1 (en) 2019-04-23 2020-10-29 Humboldt-Universität Zu Berlin Rechargeable lithium-ion battery anode, and method for producing a rechargeable lithium-ion battery anode

Also Published As

Publication number Publication date
WO2013107798A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
EP3208869B1 (en) Rechargeable electrochemical cell
DE102015222553B4 (en) Cathode for solid-state lithium battery and accumulator using same
WO2015165701A2 (en) Galvanic element and method for the production thereof
DE102012005348A1 (en) Graphene-based separator for lithium-ion batteries
DE102014206829A1 (en) Galvanic element
DE102010018731A1 (en) Lithium-sulfur battery
DE102011114756A1 (en) Lithium Ion Battery
EP2573845B1 (en) Structural active material for battery electrodes
EP3734724B1 (en) Rechargeable battery cell
DE102015201409A1 (en) Composite separator and this comprehensive lithium ion battery and method for producing the composite separator
DE102011017105A1 (en) Lithium-ion battery with high voltage
DE102011109137A1 (en) Lithium-ion battery, useful for operating plug in hybrid vehicle, comprises a positive electrode, a negative electrode and a separator, where the positive and negative electrodes comprise an electrode material containing an active material
DE102014226390A1 (en) Composite anode and this comprehensive lithium ion battery and method for producing the composite anode
DE102014226396A1 (en) Composite cathode and this comprehensive lithium-ion battery and method for producing the composite cathode
WO2015067474A2 (en) Electrochemical cell and method for the production thereof
DE102012005426A1 (en) Graphene in lithium ion batteries
EP3311440B1 (en) Sodium-sulfur battery, method for its operation, and use of phosphorus polysulfide as electrolyte additive in sodium-sulfur batteries
DE102011109813A1 (en) Lithium ion battery and method for producing a lithium ion battery
DE102014221279A1 (en) Composite electrode and this comprehensive lithium-ion battery and use of the lithium-ion battery in a motor vehicle
DE102012200827A1 (en) Use of a polymer network as a cathode material for rechargeable batteries
DE102016215070A1 (en) Electrode for solid-state cell with embedded conductivity additive
DE102011075202B4 (en) Layer arrangement
DE102018210443A1 (en) Electrode for battery cells, battery cell containing them and their use
DE102011117262A1 (en) Use of comb polymers in lithium ion batteries
DE102011003016A1 (en) Electrode for lithium-ion batteries and their manufacture

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: PATENTANWAELTE RAUSCHENBACH, DE

Representative=s name: RAUSCHENBACH PATENTANWAELTE GBR, DE

R016 Response to examination communication
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final