DE102011113432A1 - Turbine für einen Abgasturbolader - Google Patents

Turbine für einen Abgasturbolader Download PDF

Info

Publication number
DE102011113432A1
DE102011113432A1 DE102011113432A DE102011113432A DE102011113432A1 DE 102011113432 A1 DE102011113432 A1 DE 102011113432A1 DE 102011113432 A DE102011113432 A DE 102011113432A DE 102011113432 A DE102011113432 A DE 102011113432A DE 102011113432 A1 DE102011113432 A1 DE 102011113432A1
Authority
DE
Germany
Prior art keywords
turbine
wheel
adjusting
elements
adjustable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102011113432A
Other languages
English (en)
Inventor
Dipl.-Ing. Sumser Siegfried
Dipl.-Ing. Stiller Michael
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to DE102011113432A priority Critical patent/DE102011113432A1/de
Publication of DE102011113432A1 publication Critical patent/DE102011113432A1/de
Priority to PCT/EP2012/002998 priority patent/WO2013037437A2/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/143Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path the shiftable member being a wall, or part thereof of a radial diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Die Erfindung betrifft eine Turbine (10) für einen Abgasturbolader einer Verbrennungskraftmaschine, mit einem Turbinengehäuse (12), welches einen Aufnahmeraum (14) zum wenigstens bereichsweisen Aufnehmen eines Turbinenrads (16) der Turbine (10) umfasst, und mit einer Stelleinrichtung (36), mittels welcher ein Strömungsquerschnitt in einem Turbinenradaustrittsbereich (38) stromab des Turbinenrads (16) variabel einstellbar ist, wobei die Stelleinrichtung (36) eine Mehrzahl von unabhängig voneinander, relativ zum Turbinengehäuse (12) verstellbaren Stellelementen (40) umfasst, mittels welchen der Strömungsquerschnitt variabel einstellbar ist.

Description

  • Die Erfindung betrifft eine Turbine für einen Abgasturbolader gemäß dem Oberbegriff von Patentanspruch 1.
  • Die fortwährende Verschärfung von Emissionsgrenzwerten, insbesondere hinsichtlich der Stickoxid-(NOx-) und der Ruß-Emissionen führt auch zu einer starken Beeinflussung von Aufladeeinrichtungen zur Aufladung von Verbrennungskraftmaschinen von Kraftwagen. Die wachsenden Anforderungen hinsichtlich der Bereitstellung eines gewünschten Ladedrucks aufgrund von hohen Abgasrückführraten über den mittleren Lastbereich bis hin zur Volllast führt dazu, Turbinen von Abgasturboladern der Aufladeeinrichtungen geometrisch mehr und mehr zu verkleinern. Dies bedeutet, dass erwünscht hohe Turbinenleistungen durch eine Steigerung der Aufstaufähigkeit bzw. durch die Reduzierung der Schluckfähigkeit der Turbinen im Zusammenspiel mit der zugeordneten Verbrennungskraftmaschine realisiert werden.
  • Des Weiteren wird gegebenenfalls das Eintrittsdruckniveau der Turbinen durch den Gegendruck von stromab angeordneten Partikel- bzw. Rußfiltern weiterhin nach oben getrieben, was eine weitere geometrische Verkleinerung der Turbinen mit sich zieht, um Leistungsanforderungen auf der Verdichterseite für die Verbrennungsluft-Lieferung befriedigen zu können.
  • Zur Optimierung der Turbinen der Abgasturbolader ist es bekannt, einen Strömungsquerschnitt im Austrittsbereich eines Turbinenrads der Turbine mittels einer Stelleinrichtung variabel einzustellen.
  • So offenbart die EP 1 866, 534 B1 eine Turbine für einen Abgasturbolader einer Verbrennungskraftmaschine, mit einem Turbinengehäuse, welches einen Aufnahmeraum zum wenigstens bereichsweisen Aufnehmen eines Turbinenrads der Turbine umfasst. Die Turbine umfasst ferner eine Stelleinrichtung, mittels welcher ein Strömungsquerschnitt in einem Turbinenradaustrittsbereich stromab des Turbinenrads variabel einstellbar ist.
  • Im Rahmen der Entwicklung von Turbinen für Abgasturbolader hat sich der Schwerpunkt der Auslegungen der Turbinen für mobile Anwendungen wie z. B. bei Fahrzeugmotoren auf Gefälleaufteilungen aufgrund der starken transienten Anforderungen in der Weise entwickelt, dass in den meisten Fällen vor dem Turbinenrad gegenüber dem Radkanal der größere Exergiebetrag des Gesamtgefälles in Geschwindigkeit umgesetzt wird. Der Reaktionsgrad der Turbine, dessen Definition der Quotient der Geschwindigkeitsumwandlung von Rad zur Düse bedeutet, liegt somit bei den Turbinen der Fahrzeuganwendungen im Allgemeinen unterhalb des Wertes 0,5. Der Reaktionsgrad, an dem die maximalen Turbinenwirkungsgrade erzielbar sind, hat sich bei den meisten Radialturbinen jedoch im Bereich von Reaktionsgraden von 0,5 manifestiert.
  • Es ist daher Aufgabe der vorliegenden Erfindung, eine Turbine für einen Abgasturbolader der eingangs genannten Art derart weiterzuentwickeln, dass die Turbine besonders effizient zu betreiben ist.
  • Diese Aufgabe wird durch eine Turbine für einen Abgasturbolader mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen und nicht-trivialen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben.
  • Eine solche Turbine für einen Abgasturbolader einer Verbrennungskraftmaschine, insbesondere eines Kraftwagens, umfasst ein Turbinengehäuse, welches einen Aufnahmeraum zum wenigsten bereichsweisen Aufnehmen eines Turbinenrads der Turbine aufweist. Die Turbine umfasst ferner eine Stelleinrichtung, mittels welcher ein Strömungsquerschnitt in einem Turbinenradaustrittsbereich stromab des Turbinenrads variabel einstellbar ist.
  • Erfindungsgemäß umfasst die Stelleinrichtung eine Mehrzahl von unabhängig voneinander, relativ zum Turbinengehäuse verstellbaren Stellelementen, mittels welchen der Strömungsquerschnitt variabel einstellbar ist. Mit anderen Worten umfasst die Stelleinrichtung wenigstens zwei Stellelemente, welche diskret zwischen wenigstens zwei voneinander unterschiedlichen Stellungen relativ zum Turbinengehäuse bewegbar sind. Dies bedeutet, dass vorteilhafterweise jedes der Stellelemente jeweils einzeln bewegt werden kann, ohne zumindest ein anderes der Stellelemente ebenfalls bewegen zu müssen.
  • In einer ersten der Stellungen ist dabei der Strömungsquerschnitt in dem Turbinenradaustrittsbereich gegenüber der anderen Stellung reduziert. Dies bedeutet, dass die Stellelemente zwischen den Stellungen öffen- und schließbar sind. Bei den Stellelementen handelt es sich insbesondere um Geometrieelemente, durch welche eine sogenannte Radaustrittsvariabilität geschaffen ist. Mittels dieser Radaustrittsvariabilität kann der Strömungsquerschnitt im Turbinenradaustrittsbereich bedarfsgerecht und variabel eingestellt werden, so dass die Turbine an unterschiedliche Betriebspunkte und damit an unterschiedliche Abgasmassenströme der Verbrennungskraftmaschine anpassbar ist. So kann die Turbine besonders effizient betrieben werden und weist einen besonders hohen Turbinenwirkungsgrad auf.
  • Mittels der Stelleinrichtung der erfindungsgemäßen Turbine ist es möglich, den Strömungsquerschnitt im Turbinenradaustrittsbereich, welcher auch als Radaustrittsquerschnitt bezeichnet wird, so weit zu quantifizieren, dass eine Gefälleaufteilung des Gesamtgefälles der Turbine zumindest nahezu so eingestellt wird, dass das halbe Exergiegefälle stromauf des Turbinenrads in Geschwindigkeitsenergie umgesetzt wird und die zweite Hälfte des Exergiegefälles im Radkanal des Turbinenrads, also im Relativsystem, in Geschwindigkeitsenergie umwandelt. Dadurch ist ein Reaktionsgrad der Turbine darstellbar, welcher im Bereich von 0,5 liegt bzw. wenigstens 0,5 oder mehr beträgt.
  • Ist die Turbine beispielsweise als Varioturbine ausgebildet, welche die Stelleinrichtung stromab und gegebenenfalls eine weitere Stelleinrichtung stromauf des Turbinenrads umfasst, und/oder ist die Turbine asymmetrisch ausgebildet, so ist es von Vorteil, die Turbine im Nennpunkt der Verbrennungskraftmaschine bei einer Optimierung auf den Fahrbereich häufig mit niederen Wirkungsgraden und überhöhten Reaktionsgraden von größer als 0,6 zu betreiben.
  • Die durch die Stelleinrichtung dargestellte Radaustrittsvariabilität ermöglicht es, auf den Reaktionsgrad der Turbine von der Radseite her einzuwirken, um die Durchsatzfähigkeit der Turbine von Seiten des Turbinenrads zu steigern und die Turbine bei hohen Durchsätzen mit günstigen Reaktionsgraden und relativ niederen Austrittsverlusten zu betreiben. So kann auch eine sogenannte Abblaseeinrichtung, mittels welcher das Turbinenrad von Abgas umgangen und somit nicht angetrieben wird, entfallen. Eine solche Abblaseeinrichtung führt in der Regel zu unerwünscht hohen Verlusten. Durch den Entfall einer solchen Abblaseeinrichtung kann auch bei der gegebenenfalls geometrisch relativ klein ausgestalteten Turbine, welche somit geringe Strömungsquerschnitte aufweist, auch bei hohen Drehzahlen und/oder Lasten der Verbrennungskraftmaschine ein sehr geringer Kraftstoffverbrauch der Verbrennungskraftmaschine dargestellt werden. Dies ist insbesondere bei einer als Ottomotor ausgebildeten Verbrennungskraftmaschine von Vorteil, da hier aufgrund der Anforderungen an das Fahrverhalten herkömmlicherweise Abblaseraten von weit mehr als 50% vorgesehen sind (die nun entfallen können).
  • Die geometrisch kleine Ausgestaltung der Turbine birgt dabei den Vorteil eines sehr guten transienten Verhaltens und/oder einer vorteilhaften Abgasrückführfunktionalität (AGR-Funktionalität), insbesondere bei hohen Drehzahlen und/oder Lasten bei gleichzeitiger Realisierung einer ausreichenden Luftversorgung der Verbrennungskraftmaschine über den Antrieb eines Verdichters des Abgasturboladers mittels der Turbine im Fahrbetrieb.
  • Mit anderen Worten lassen sich mit der erfindungsgemäßen Turbine auch große Abgasrückführraten (AGR-Raten) realisieren. Dies bedeutet, dass auch besonders große Mengen an Abgas von der Abgasseite auf die Luftseite der Verbrennungskraftmaschine rückgeführt werden können, so dass sich insbesondere die Stickoxid- und Ruß-Emissionen besonders gering halten lassen.
  • Die erfindungsgemäße Turbine ist insbesondere als Radialturbine ausgebildet, bei welcher das Abgas das Turbinenrad zumindest im Wesentlichen in radialer Richtung an- und zumindest im Wesentlichen in axialer Richtung abströmt.
  • Die erfindungsgemäße Turbine kann auch als zweiflutige Turbine ausgebildet sein, deren Turbinengehäuse wenigstens zwei Fluten zur Führung des Abgases aufweist. Die Fluten können dabei asymmetrisch zueinander ausgebildet sein. Eine solche asymmetrische, zweiflutige Turbine weist für jede der Fluten quasi einen Reaktionsgrad auf, den man mittels der Stelleinrichtung im Turbinenradaustrittsbereich von Seiten des Turbinenrads her zur Realisierung eines geringen Kraftstoffverbrauchs und geringer Emissionen und zur Optimierung weiterer thermodynamischer und mechanischer Größen beeinflussen kann. Gleiches trifft auch auf die erfindungsgemäße Turbine zu, wenn diese als sogenannte Standard-Turbine mit lediglich einer Hut ausgebildet ist.
  • Bei einer vorteilhaften Ausführungsform der Erfindung umfasst die Turbine eine weitere Stelleinrichtung mit wenigstens einem relativ zum Turbinengehäuse verstellbaren weiteren Stellelement, mittels welchem ein weiterer Strömungsquerschnitt in einem Turbinenradeintrittsbereich variabel einstellbar ist. Dies bedeutet, dass der stromauf des Turbinenrads angeordnete weitere Strömungsquerschnitt mittels des weiteren Stellelements variabel und damit bedarfsgerecht einstellbar ist. Dadurch ist eine Radeintriebsvariabilität geschaffen, mittels welcher die Turbine besonders effizient an unterschiedliche Betriebspunkte der Verbrennungskraftmaschine anpassbar und somit betreibbar ist.
  • Vorteilhafterweise ist die Radaustrittsvariabilität mit der Radeintrittsvariabilität gekoppelt, um optimale Bedingungen hinsichtlich der motorischen Forderungen zu erfüllen. Ferner hält dies den Bauraumbedarf, die Teileanzahl, das Gewicht und die Kosten der erfindungsgemäßen Turbine gering.
  • Bei der Optimierung der Verbrennungskraftmaschine hinsichtlich der Verbrauchs- und Emissionsreduzierung hat sich bei unterschiedlichsten Betriebsbedingungen gezeigt, dass eine Variabilität der Strömungsquerschnitte düsen- sowie radseitig einer asymmetrischen Turbine und/oder einer einflutigen Vollvarioturbine, die eine Einflussnahme auf die AGR-Rate wie auch auf das Luftverhältnis λ nehmen können, sehr günstige Voraussetzungen bieten, den Kraftstoffverbrauch und die Emissionen gering zu halten bei gleichzeitiger Realisierung des vorteilhaften Fahrverhaltens der Verbrennungskraftmaschine, insbesondere bei Nutzfahrzeug- wie auch bei Personenkraftwagen-Anwendungen. Ferner hat es sich gezeigt, dass die Turbine insbesondere mittels der Stelleinrichtung mit den Stellelementen im Turbinenradaustrittsbereich besonders effizient betreibbar ist, was mit einem geringen Kraftstoffverbrauch der Verbrennungskraftmaschine einhergeht.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
  • Die Zeichnung zeigt in:
  • 1a ausschnittsweise eine schematische Längsschnittansicht einer Turbine für einen Abgasturbolader einer Verbrennungskraftmaschine mit einer Radaustrittsvariabilität;
  • 1b eine schematische Vorderansicht der Turbine gemäß 1a;
  • 2a ausschnittsweise eine schematische Längsschnittansicht einer weiteren Ausführungsform der Turbine gemäß den 1a und 1b;
  • 2b ausschnittsweise eine weitere schematische Längsschnittansicht der Turbine gemäß 2a;
  • 2c ausschnittsweise eine weitere schematische Längsschnittansicht der Turbine gemäß den 2a und 2b;
  • 2d ausschnittsweise eine weitere schematische Längsschnittansicht der Turbine gemäß den 2a–c; und
  • 3 ausschnittsweise eine schematische Längsschnittansicht einer weiteren Ausführungsform der Turbine gemäß den 2a–d mit einer Radeintrittsvariabilität.
  • Die 1a–b zeigen eine Turbine 10 für einen Abgasturbolader einer beispielsweise als Hubkolben-Verbrennungskraftmaschine ausgebildeten Verbrennungskraftmaschine. Die Turbine 10 umfasst ein Turbinengehäuse 12, welches einen Aufnahmeraum 14 aufweist. In dem Aufnahmeraum 14 ist ein Turbinenrad 16 der Turbine 10 zumindest bereichsweise aufgenommen. Dabei ist das Turbinenrad 16 um eine Turbinenraddrehachse 18 relativ zu dem Turbinengehäuse 12 drehbar aufgenommen. Durch Wandungen des Turbinengehäuses 12 ist eine sogenannte Düse 20 in axialer Richtung begrenzt, über welche dem Turbinenrad 16 Abgas der Verbrennungskraftmaschine zumindest im Wesentlichen in radialer Richtung zugeführt wird. Dies ist durch einen ersten Richtungspfeil 22 veranschaulicht.
  • Das Turbinenrad 16 umfasst eine Radnabe 24, welche mit einer Mehrzahl von Radschaufeln 26 verbunden ist. Die Radschaufeln wessen eine jeweilige Radkante 28 auf, welche einen ersten Kantenbereich 30, einen sich daran anschließenden zweiten Kantenbereich 32 sowie einen sich daran anschließenden dritten Kantenbereich 34 umfasst. Wie der 1a zu entnehmen ist, erstreckt sich dabei der erste Kantenbereich 30 zumindest im Wesentlichen in axialer Richtung, d. h. zumindest im Wesentlichen parallel zur axialen Richtung. Der dritte Kantenbereich 34 erstreckt sich zumindest im Wesentlichen in radialer Richtung bzw. leicht schräg dazu. Zwischen dem ersten Kantenbereich 30 und dem dritten Kantenbereich 34 ist der zweite Kantenbereich 32 angeordnet, welcher sich schräg zur axialen Richtung erstreckt und mit den Kantenbereichen 30, 34 jeweils einen von 180° unterschiedlichen Winkel einschließt.
  • Der erste Kantenbereich 30 wird auch als Anströmkante bezeichnet, da das Turbinenrad 16 bzw. die Radschaufel 26 über den ersten Kantenbereich 30 von dem Abgas angeströmt wird. Der zweite Kantenbereich 32 und der dritte Kantenbereich 34 werden auch als Abströmkanten bezeichnet, da das Turbinenrad 16 bzw. die Radschaufeln 26 über die Kantenbereiche 32, 34 von dem Abgas abgeströmt werden. Der dritte Kantenbereich 34 wird auch als Hauptaustrittskante bezeichnet.
  • Die Turbine 10 umfasst ferner eine Stelleinrichtung 36, mittels welcher ein Strömungsquerschnitt in einem Turbinenradaustrittsbereich 38, über welchen das Turbinenrad 16 von dem Abgas abgeströmt wird, stromab des Turbinenrads 16 variabel einstellbar ist.
  • Wie in Zusammenschau mit der 1b zu erkennen ist, umfasst die Stelleinrichtung 36 eine Mehrzahl von Stellelementen 40, welche unabhängig voneinander, relativ zum Turbinengehäuse 12 verstellbar sind. Durch Verstellen der Stellelemente 40 wird der Strömungsquerschnitt im Turbinenradaustrittsbereich 38 variabel eingestellt. So kann der Strömungsquerschnitt im Turbinenradaustrittsbereich 38, welcher auch als Austrittsquerschnitt bezeichnet wird, an unterschiedliche Betriebspunkte der Verbrennungskraftmaschine zumindest im Wesentlichen optimal angepasst werden. Dadurch, dass die Stellelemente 40 unabhängig voneinander verstellt bzw. relativ zum Turbinengehäuse 12 bewegt werden können, können Querschnittsbereiche des Strömungsquerschnitts im Turbinenradaustrittsbereich 38 bedarfsgerecht zu- und abgeschaltet werden, so dass der Strömungsquerschnitt verkleinert und vergrößert wird. Die Stellelemente 40 stellen Geometrie-Elemente dar, durch welche eine sogenannte Radaustrittsvariabilität geschaffen ist.
  • Die Stellelemente sind dabei Ringsegmente, welche zumindest im Wesentlichen in radialer Richtung bewegbar und somit öffenbar und schließbar sind. Den Ringsegmenten bzw. Konturringsegmenten (Stellelemente 40) sind wenigstens eine Drehachse SD zugeordnet, um welche die Stellelemente 40 verschwenkt werden können. Vorwiegend verläuft die Drehachse SD zumindest im Wesentlichen parallel zur Turbinenraddrehachse 18 des Turbinenrads 16. Ebenso ist es möglich, dass die Drehachse SD schräg oder anderweitig zur Turbinenraddrehachse 18 verläuft. Um das Öffnen und Schließen, d. h. das Bewegen der Stellelemente 40, relativ zum Turbinengehäuse 12 übersichtlich zu veranschaulichen, sind in der 1b ein erster Schnittpunkt a, ein zweiter Schnittpunkt b, ein dritter Schnittpunkt c und ein vierter Schnittpunkt d an den Schnittlinien einer Ringsegmentfläche ausgewählt und bei einer Drehung bzw. bei einem Verschwenken um die Drehachse SD mit einem φ in einer Öffnungslage der korrespondierenden Schnittpunkte a' (fünfter Schnittpunkt), b' (sechster Schnittpunkt), c' (siebter Schnittpunkt) und d' (achter Schnittpunkt) als ein Beispiel abgebildet.
  • Die Charakteristik des Öffnungsverlaufs von einer durch die Schnittpunkte a, b, c und d charakterisierten Schließstellung in die durch die Schnittpunkte a', b', c' und d' charakterisierte Offenstellung des variablen Strömungsquerschnitts im Turbinenradaustrittsbereich 38 hinsichtlich eines sogenannten Varioaustrittskantenbereichs 42 des zweiten Kantenbereichs 32 in Abhängigkeit von dem Winkel φ wird insbesondere durch die Lage der Drehachse SD und die Richtung zu den Schnittpunkten a, b, c und d bestimmt.
  • Durch entsprechendes Bewegen bzw. Verschwenken der Stellelemente 40 kann der Varioaustrittskantenbereich 42 mittels der Stellelemente 40 wie in der 1a abgedeckt oder demgegenüber freigegeben und so variabel eingestellt werden.
  • In der 1 ist eine strichlierte Linie 44 dargestellt, welche eine vorteilhafte und angestrebte Kontur-Abstandslinie bei entsprechender Drehachsenlage der Drehachse SD im Öffnungszustand darstellt. Am Beispiel des Punktes b ergibt sich dessen Lage folgendermaßen:
    b = r × φ, wobei r den Abstand bzw. Radius zwischen der Drehachse SD und dem Schnittpunkt b bezeichnet.
  • Neben der Anzahl der Ringsegmente bzw. der Stellelemente 40 geht somit über die Winkellage der Drehachse SD zur Turbinenraddrehachse 18 des Turbinenrads 16 ein besonders großer Einfluss auf die Variabilität bzw. den Winkelgrad des Strömungsquerschnitts aus. Um gezielt ein Abheben der Ringsegmente zwischen einem maximalen Radius Rmax und einem minimalen Radius Rmin zu beeinflussen, wird die Drehachse SD, bis auf die Kollisionsvermeidung der Ringsegmente untereinander und zum Turbinenrad 16, als vollständig freier Parameter gesehen, der stark zu dem gezeigten einfachsten Beispiel gemäß den 1a und 1b der Parallelführung der Drehachse SD zur Turbinenraddrehachse 18 differiert.
  • Zur Festlegung der Lage der Drehachse SD ist beispielsweise der Ziel-Abhebeabstand eines entsprechenden Ringsegments von dem Varioaustrittskantenbereich 42 bei dem minimalen Radius Rmin gegenüber dem maximalen Radius Rmax deutlich größer zu wählen, wodurch eine vorteilhafte Beeinflussung der Kantenströmung zur Turbinenwirkungsgradanhebung und zur Durchsatzkapazitäten-Steigerung entsteht.
  • Dieser Optimierungsgedanke wird bei den axial bewegbaren Stellelementen 40 der Turbine 10 gemäß den 2a–d in Form von Ringsegmenten bzw. Ringen durch die Reihenfolge der Querschnittsöffnungen der Ringsegmente vom minimalen Radius Rmin hin zum maximalen Radius Rmax des Varioaustrittskantenbereichs 42 vorteilhafterweise beim Öffnen ebenfalls angewendet.
  • In der 2a sind dabei alle drei Stellelemente 40 geschlossen, so dass der Varioaustrittskantenbereich 42 maximal abgedeckt ist. In der 2b ist das in radialer Richtung innerste der Stellelemente 40 geöffnet. In der 2c ist zusätzlich das in radialer Richtung mittlere Stellelement 40 geöffnet. In der 2d ist zusätzlich das radial äußerste Stellelement 40 geöffnet. In den 2a–d ist durch Richtungspfeile 50 jeweilig veranschaulicht, wie die Radschaufel 26 bei entsprechender Einstellung der Stellelemente 40 von dem Abgas abgeströmt wird.
  • Die 3 zeigt eine weitere Ausführungsform der Turbine 10 gemäß den 2a–d, welche zusätzlich eine weitere Stelleinrichtung 45 in einem Turbinenradeintrittsbereich 46 aufweist. So ist eine Radantriebsvariabilität geschaffen, so dass auch ein weiterer Strömungsquerschnitt im Turbinenradeinzugsbereich 46 variabel eingestellt werden kann.
  • Darüber hinaus ist eine Kopplungseinrichtung 48 vorgesehen, über welche die mittels der Stelleinrichtung 36 dargestellte Radaustrittsvariabilität mit der mittels der weiteren Stelleinrichtung 45 dargestellten Radeintrittsvariabilität gekoppelt ist. So kann ein zumindest im Wesentlichen optimales Verhalten der aufzuladenden Verbrennungskraftmaschine dargestellt werden mit vielerlei Vorteilen hinsichtlich der stationären wie auch instationären Betriebsweise, wobei eine Abblasung, d. h. eine Umgehung des Turbinenrads 16 mit Abgas, vermieden werden kann. Dies führt zu einem besonders geringen Kraftstoffverbrauch der Verbrennungskraftmaschine.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 1866534 B1 [0005]

Claims (8)

  1. Turbine (10) für einen Abgasturbolader einer Verbrennungskraftmaschine, mit einem Turbinengehäuse (12), welches einen Aufnahmeraum (14) zum wenigstens bereichsweisen Aufnehmen eines Turbinenrads (16) der Turbine (10) umfasst, und mit einer Stelleinrichtung (36), mittels welcher ein Strömungsquerschnitt in einem Turbinenradaustrittsbereich (38) stromab des Turbinenrads (16) variabel einstellbar ist, dadurch gekennzeichnet, dass die Stelleinrichtung (36) eine Mehrzahl von unabhängig voneinander, relativ zum Turbinengehäuse (12) verstellbaren Stellelementen (40) umfasst, mittels welchen der Strömungsquerschnitt variabel einstellbar ist.
  2. Turbine (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Stellelemente (40) unabhängig voneinander zumindest im Wesentlichen in radialer Richtung verstellbar sind.
  3. Turbine (10) nach Anspruch 2, dadurch gekennzeichnet, dass die Stellelemente (40) um wenigstens eine zugeordnete Schwenkachse (SD) verschwenkbar sind.
  4. Turbine (10) nach Anspruch 3, dadurch gekennzeichnet, dass die Schwenkachse (SD) zumindest im Wesentliche parallel zur Drehachse (18) des Turbinenrads (16) verläuft.
  5. Turbine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Stellelemente (40) unabhängig voneinander zumindest in axialer Richtung verstellbar sind.
  6. Turbine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Stellelemente (40) zumindest im Wesentlichen als sich in Umfangsrichtung über den Umfangs des Turbinenrads (16) erstreckende Ringkonturelemente ausgebildet sind.
  7. Turbine (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine weitere Stelleinrichtung (44) mit wenigstens einem relativ zum Turbinengehäuse (12) verstellbaren weiteren Stellelement vorgesehen ist, mittels welchem ein weiterer Strömungsquerschnitt in einem Turbinenradeinstrittsbereich (46) variabel einstellbar ist.
  8. Turbine (10) nach Anspruch 7, dadurch gekennzeichnet, dass wenigstens eines der Stellelemente (40) und das wenigstens eine weitere Stellelement über eine Koppeleinrichtung (48) miteinander gekoppelt und mittels der Koppeleinrichtung (48) gemeinsam verstellbar sind.
DE102011113432A 2011-09-14 2011-09-14 Turbine für einen Abgasturbolader Withdrawn DE102011113432A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102011113432A DE102011113432A1 (de) 2011-09-14 2011-09-14 Turbine für einen Abgasturbolader
PCT/EP2012/002998 WO2013037437A2 (de) 2011-09-14 2012-07-17 Turbine für einen abgasturbolader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011113432A DE102011113432A1 (de) 2011-09-14 2011-09-14 Turbine für einen Abgasturbolader

Publications (1)

Publication Number Publication Date
DE102011113432A1 true DE102011113432A1 (de) 2012-04-26

Family

ID=45923429

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011113432A Withdrawn DE102011113432A1 (de) 2011-09-14 2011-09-14 Turbine für einen Abgasturbolader

Country Status (2)

Country Link
DE (1) DE102011113432A1 (de)
WO (1) WO2013037437A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173668A1 (de) * 2013-04-22 2014-10-30 Volkswagen Aktiengesellschaft Abgasturbolader
CN111094704A (zh) * 2017-09-14 2020-05-01 Abb涡轮系统有限公司 废气涡轮的扩散器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1866534B1 (de) 2005-04-04 2008-09-24 Honeywell International Inc. Turbolader mit variabler strömung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411678A1 (de) * 1994-04-05 1995-10-12 Mtu Friedrichshafen Gmbh Abgasturbolader mit Radialturbine
JP2005163692A (ja) * 2003-12-04 2005-06-23 Toyota Motor Corp 作動流体逃がし通路を有する排気タービン
DE102008049782A1 (de) * 2008-09-30 2010-04-08 Daimler Ag Abgasturbolader für eine Brennkraftmaschine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1866534B1 (de) 2005-04-04 2008-09-24 Honeywell International Inc. Turbolader mit variabler strömung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173668A1 (de) * 2013-04-22 2014-10-30 Volkswagen Aktiengesellschaft Abgasturbolader
CN111094704A (zh) * 2017-09-14 2020-05-01 Abb涡轮系统有限公司 废气涡轮的扩散器
CN111094704B (zh) * 2017-09-14 2022-07-08 Abb瑞士股份有限公司 废气涡轮的扩散器

Also Published As

Publication number Publication date
WO2013037437A2 (de) 2013-03-21
WO2013037437A3 (de) 2014-02-13

Similar Documents

Publication Publication Date Title
EP1759091B8 (de) Turbinenrad in einer abgasturbine eines abgasturboladers
DE102008020406A1 (de) Abgasturbolader für eine Brennkraftmaschine eines Kraftfahrzeugs und Brennkraftmaschine
DE102008039085A1 (de) Brennkraftmaschine mit einem Abgasturbolader
EP2705222B1 (de) Turbine für einen abgasturbolader
DE102008049782A1 (de) Abgasturbolader für eine Brennkraftmaschine
WO2010069301A2 (de) Vollvarioturbinen für abgasturbolader
DE102010053951A1 (de) Turbine für einen Abgasturbolader
DE102017216329A1 (de) Radialverdichter mit einem Irisblendenmechanismus für eine Aufladevorrichtung eines Verbrennungsmotors, Aufladevorrichtung und Lamelle für den Irisblendenmechanismus
DE102007017826A1 (de) Abgasturbolader sowie ein Verfahren zum Betreiben eines solchen Turboladers
DE102014223044A1 (de) Abgasturbolader und Brennkraftmaschine
DE102013017694A1 (de) Radialverdichter für einen Abgasturbolader
DE102011120167A1 (de) Verdichter für einen Abgasturbolader,insbesondere eines Kraftwagens
DE10233042A1 (de) Abgasturbolader für eine Brennkraftmaschine
WO2012065675A1 (de) Turbine für einen abgasturbolader einer verbrennungskraftmaschine
EP2576989B1 (de) Turbine für einen Abgasturbolader
DE102011113432A1 (de) Turbine für einen Abgasturbolader
DE102012016984B4 (de) Turbine für einen Abgasturbolader sowie Verbrennungskraftmaschine mit einer solchen Turbine
WO2011110209A1 (de) Stauaufgeladene verbrennungskraftmaschine
WO2018059726A1 (de) Turbine für einen abgasturbolader einer verbrennungskraftmaschine
DE102011115251A1 (de) Verbrennungskraftmaschine für einen Kraftwagen
DE102011111747A1 (de) Verdichter für einen Abgasturbolader
DE102011120555A1 (de) Leitgitter für eine Turbine eines Abgasturboladers sowie Turbine für einen Abgasturbolader
DE102012102186A1 (de) Turbine für einen Abgasturbolader
DE102011120168A1 (de) Verdichter für einen Abgasturbolader
DE102012022510A1 (de) Turbine für einen Abgasturbolader sowie Verfahren zum Betreiben einer solchen Turbine

Legal Events

Date Code Title Description
R230 Request for early publication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20150401