DE102011101142A1 - Device for varying temperature of electrical resistance layer for de-icing aircraft component e.g. wing, has support surface made of glass fiber reinforced fabric or aluminum honeycomb plates and coated with carbon nano tube dispersion - Google Patents
Device for varying temperature of electrical resistance layer for de-icing aircraft component e.g. wing, has support surface made of glass fiber reinforced fabric or aluminum honeycomb plates and coated with carbon nano tube dispersion Download PDFInfo
- Publication number
- DE102011101142A1 DE102011101142A1 DE201110101142 DE102011101142A DE102011101142A1 DE 102011101142 A1 DE102011101142 A1 DE 102011101142A1 DE 201110101142 DE201110101142 DE 201110101142 DE 102011101142 A DE102011101142 A DE 102011101142A DE 102011101142 A1 DE102011101142 A1 DE 102011101142A1
- Authority
- DE
- Germany
- Prior art keywords
- wing
- resistance layer
- glass fiber
- support surface
- fiber reinforced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract 8
- 239000002041 carbon nanotube Substances 0.000 title claims abstract 8
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract 8
- 239000006185 dispersion Substances 0.000 title claims abstract 5
- 239000004744 fabric Substances 0.000 title claims abstract 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract 3
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract 3
- 239000003365 glass fiber Substances 0.000 title abstract 3
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims abstract 3
- 239000002131 composite material Substances 0.000 claims abstract 2
- 229920000642 polymer Polymers 0.000 claims abstract 2
- 230000001105 regulatory effect Effects 0.000 claims abstract 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000007792 addition Methods 0.000 claims 1
- 229910002113 barium titanate Inorganic materials 0.000 claims 1
- 239000012876 carrier material Substances 0.000 claims 1
- 239000004035 construction material Substances 0.000 claims 1
- 229910052500 inorganic mineral Inorganic materials 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 239000011707 mineral Substances 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 230000005855 radiation Effects 0.000 claims 1
- 238000001228 spectrum Methods 0.000 claims 1
- 239000000446 fuel Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D15/00—De-icing or preventing icing on exterior surfaces of aircraft
- B64D15/12—De-icing or preventing icing on exterior surfaces of aircraft by electric heating
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Surface Heating Bodies (AREA)
Abstract
Description
Jedes Luftfahrzeug ist bei bestimmten Wetterbedingungen auf ein zuverlässiges Enteisungs-System angewiesen. Die Tragflächen sind durch ihre aerodynamische Bedeutung ein hochsensibler Bereich, der unabdingbar von Eis und Schnee frei zu halten ist.Every aircraft relies on a reliable de-icing system in certain weather conditions. Due to their aerodynamic significance, the wings are a highly sensitive area, which is essential for keeping ice and snow clear.
Nach dem Stand der Technik wird zu diesem Zweck warme Luft durch die Tragflächen-Vorderkante gepumpt, die dem Verdichter der Triebwerke entnommen und ventilgesteuert durch ein Rohrleitungssystem geleitet wird. Dabei wird die korrekte Funktion überwacht und auf Undichtigkeit geprüft.In the prior art, for this purpose warm air is pumped through the airfoil leading edge, which is taken from the compressor of the engines and valve controlled passed through a piping system. The correct function is monitored and checked for leaks.
Nachteil dieses Systems ist die aufwendige Konstruktion, ihr hohes Gewicht, die mangelnde Leistung und die Fehleranfälligkeit. Die Zapfluft wird dem Verdichter entnommen, also verringert sich die Leistungsbilanz des Triebwerkes. Optimal wäre, wenn die Luft ausschließlich für die Schuberzeugung verbraucht wird.Disadvantage of this system is the complex construction, its high weight, the lack of performance and the susceptibility to errors. The bleed air is taken from the compressor, thus reducing the power balance of the engine. It would be optimal if the air is used exclusively for thrust generation.
Vereisung an den Tragflächen tritt dann ein, wenn Luftfeuchtigkeit mit tiefen Temperaturen zusammentreffen. Beim Start kann die bordeigene Enteisungsanlage wegen Schubveringerung nicht benutzt werden, sie bleibt inaktiv. Beim Durchflug durch Wolken gibt es keine Probleme, abgesehen von erhöhten Treibstoffverbrauch. Beim Landeanflug sinkt die Drehzahl der Triebwerke, dennoch bleibt das System aktiv und Zapfluft wird dem Verdichter entnommen um gegebenenfalls durchstarten zu können.Icing on the wings occurs when humidity coincides with low temperatures. At startup, the on-board de-icing system can not be used due to thrust reduction, it remains inactive. When passing through clouds, there are no problems, except for increased fuel consumption. When approaching the speed of the engines, but the system remains active and bleed air is taken from the compressor to start if necessary.
Die Erfindung sieht deshalb vor, das vorhandene Anti Icingsystem durch eine hochsichere elektrische Tragflächenbeheizung zu ersetzen. Das Rohrsystem wird durch unmittelbare Beschichtung der vorderen Tragflächeninnenseite mit einer nanoskaligen, elektrisch leitenden Matrix ersetzt. Dieses Material kann sowohl direkt auf das vorher isolierte Tragflächematerial im Spritzverfahren aufgebracht werden oder durch vorhergefertigte Inlets in die Vorderkante der Tragfläche mittels Halterungen montiert werden.The invention therefore provides to replace the existing anti-icing system by a highly secure electric hydrofoil heating. The pipe system is replaced by direct coating of the front wing inside with a nanoscale, electrically conductive matrix. This material can either be applied directly to the previously isolated support material by spraying or by prefabricated inlets into the leading edge of the support surface by means of brackets.
Sowohl die erforderliche Temperatur als auch die Zeitdauer des Einteisungsvorganges wird dabei elektronisch gesteuert. Die technischen Möglichkeiten können durch die Leistungsparameter der Matrix hinsichtlich Stromstärke, Leistung und Amperè sowie Temperatur den Erfordernissen der einzelnen Flugzeugtypen angepasst werden. Die Dichte der nanoskaligen Matrix aus Carbo Nano Tubes und anderen conduktiven Partikeln ist regelbar und richtet sich nach den Erfordernissen bei Start. Durchflug und Landung. Dabei ist die Zeitdauer der Tragflächenerwärmung sensorisch entsprechend der Witterungsverhältnisse gesteuert.Both the required temperature and the duration of the Einteisungsvorganges is controlled electronically. The technical possibilities can be adapted to the requirements of the individual aircraft types by means of the power parameters of the matrix with regard to current intensity, power and ampere as well as temperature. The density of the nanoscale matrix of Carbo Nano Tubes and other conductive particles is adjustable and depends on the requirements at startup. Flight and landing. The duration of the wing warming is sensory controlled according to the weather conditions.
Die elektrischen Werte können entsprechend der Spezifikation der nanoskaligen Matrix von 12 Volt bis 230 Volt gewählt werden. Auch Gleichstrombetrieb aus Akkus ist möglich. Der extrem hohe Wärmedurchgangswert der Matrix von 6000 Watt/Messeinheit übertrifft alle, als stromleitende Materialien bekannten Werkstoffe um ein Vielfaches.The electrical values can be chosen according to the specification of the nanoscale matrix from 12 volts to 230 volts. Also DC operation from batteries is possible. The extremely high heat transfer value of the 6000 watt / meter matrix surpasses all materials known as current-conducting materials by a multiple.
Gleiches trifft auch auf geometrisch andere Formgebungen zu, etwa auf röhrenförmig in die Tragflächennase eingelegte Heizmodule oder im Halbradius ausgeführte GfK-Formteile, die mit der nanoskaligen Matrix beschichtet sind.The same applies to geometrically different shapes, such as heating modules inserted tubularly in the wing nose or GfK molded parts designed in the half-radius, which are coated with the nanoscale matrix.
Die Vorteile der Erfindung:The advantages of the invention:
- – Leistungsreserve im Landeanflug falls Durchstarten erforderlich wird- Power reserve in landing approach if take-off is required
- – Kraftstoffersparnis gegenüber Zapfluftsystemen- Fuel savings compared to bleed air systems
- – Gewichtsersparnis gegenüber dem Zapfluftsystem und seiner Ventile- Weight savings compared to the bleed air system and its valves
- – bei grenzwertiger Wetterlage entfällt externe Enteisung mit chemischen Stoffen- in borderline weather, external de-icing with chemicals is not required
- – Triebwerke ohne Zapfluftanlage werden leichter und sicherer, ökologischer Vorteil- Engines without bleed air system become lighter and safer, ecological advantage
- – Kostenminderung bei der Konstruktion neuer Flugzeuge und Kraftstoffersparnis- Reduced costs in the construction of new aircraft and fuel economy
- – Umweltfreundlich durch wesentlich geringere Belastung mit Enteisungsflüssigkeit bei externer Enteisung- Environmentally friendly due to significantly lower stress with de-icing fluid in external de-icing
Politische Situation:Political situation:
- Die IATA will bis 2020 25% Kraftstoff einsparenIATA wants to save 25% fuel by 2020
- Bis 2050 sollen Emissionen um 50% gesenkt werdenBy 2050 emissions are to be reduced by 50%
- Ab 2012 sollen nur nach 97% Emissionen erlaubt werden, 2013 nur noch 95%From 2012 only 97% of emissions are to be allowed, in 2013 only 95%
- Ab 2013 sollen 15% Emissionszertifikate versteigert werden (Euro-Parlament)From 2013, 15% emission allowances will be auctioned (Euro-Parliament)
Vor diesem Hintergrund werden kraftstoffsparende und emissionsgeminderte Antriebssysteme immer wichtigerAgainst this background, fuel-efficient and emission-reduced drive systems are becoming increasingly important
Die vorliegende Erfindung entspricht genau diesen VorgabenThe present invention corresponds exactly to these specifications
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201110101142 DE102011101142A1 (en) | 2011-05-11 | 2011-05-11 | Device for varying temperature of electrical resistance layer for de-icing aircraft component e.g. wing, has support surface made of glass fiber reinforced fabric or aluminum honeycomb plates and coated with carbon nano tube dispersion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201110101142 DE102011101142A1 (en) | 2011-05-11 | 2011-05-11 | Device for varying temperature of electrical resistance layer for de-icing aircraft component e.g. wing, has support surface made of glass fiber reinforced fabric or aluminum honeycomb plates and coated with carbon nano tube dispersion |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102011101142A1 true DE102011101142A1 (en) | 2012-11-15 |
Family
ID=47070462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE201110101142 Withdrawn DE102011101142A1 (en) | 2011-05-11 | 2011-05-11 | Device for varying temperature of electrical resistance layer for de-icing aircraft component e.g. wing, has support surface made of glass fiber reinforced fabric or aluminum honeycomb plates and coated with carbon nano tube dispersion |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102011101142A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180257756A1 (en) * | 2013-11-18 | 2018-09-13 | Rohr, Inc. | Virtual aerodynamic surface systems |
CN110963045A (en) * | 2019-12-24 | 2020-04-07 | 南京航空航天大学 | Automatic anti-icing and deicing device for fuel wing of aircraft and working method of automatic anti-icing and deicing device |
-
2011
- 2011-05-11 DE DE201110101142 patent/DE102011101142A1/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180257756A1 (en) * | 2013-11-18 | 2018-09-13 | Rohr, Inc. | Virtual aerodynamic surface systems |
US11072413B2 (en) * | 2013-11-18 | 2021-07-27 | Rohr, Inc. | Virtual aerodynamic surface systems |
CN110963045A (en) * | 2019-12-24 | 2020-04-07 | 南京航空航天大学 | Automatic anti-icing and deicing device for fuel wing of aircraft and working method of automatic anti-icing and deicing device |
CN110963045B (en) * | 2019-12-24 | 2024-02-13 | 南京航空航天大学 | Automatic deicing device for fuel wing of quoted aircraft and working method of automatic deicing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2714516B1 (en) | Composite structure having an ice protection device, and production method | |
US10457404B2 (en) | Carbon nanotube anti-icing and de-icing means for aircraft | |
US9511562B2 (en) | Nanoreinforced films and laminates for aerospace structures | |
Chu et al. | FDTS‐modified SiO2/rGO wrinkled films with a micro‐nanoscale hierarchical structure and anti‐icing/deicing properties under condensation condition | |
CN110856290A (en) | Graphene composite membrane for preventing and removing ice, composite material structural member and preparation method | |
US8662452B2 (en) | Article with de-icing/anti-icing function | |
US10472977B2 (en) | Erosion strip integrated with carbon allotrope-based deicing/ anti-icing elements | |
DE12702329T1 (en) | Aircraft anti-icing, de-icing and heating configuration, integration and powering systems, as well as aerodynamic and complex surfaces | |
BR102014002158B1 (en) | structural substrate for an aircraft structure and process for forming a structural substrate | |
EP3333080B1 (en) | Carbon allotrope heater material with resistivity ranges suited for aircraft ice protection | |
DE102008006523A1 (en) | Fiber composite component for an aircraft or spacecraft | |
US20140014776A1 (en) | System containing an electric heating element and method for installation and use thereof | |
Müller et al. | UAV icing: Development of an ice protection system for the propeller of a small UAV | |
DE102011101142A1 (en) | Device for varying temperature of electrical resistance layer for de-icing aircraft component e.g. wing, has support surface made of glass fiber reinforced fabric or aluminum honeycomb plates and coated with carbon nano tube dispersion | |
Brampton et al. | Actuation of bistable laminates by conductive polymer nanocomposites for use in thermal-mechanical aerosurface de-icing systems | |
Park | Aircraft De-Icing System Using Thermal Conductive Fibers | |
CN104727945A (en) | De-icing system of aircraft engine inlet | |
CN110723294A (en) | Aircraft anti-icing system and method of making same | |
Gao et al. | An experimental investigation on an electric-thermal strategy for wind turbines icing mitigation | |
Jingxin et al. | Experimental Investigation of Super-hydrophobic/Electro-thermal Synergistically Anti-icing/De-icing Strategy in Ice Wind Tunnel. | |
Laroche | Comparative evaluation of embedded heating elements as electrothermal ice protection systems for composite structures | |
Wang et al. | A New Class of Carbon-Nanotube-Based, Self-Heating Superhydrophobic Coatings for UAV Icing Mitigation | |
Affonso et al. | Carbon Nanotube (CNT) based Ice Protection System applied to a small aircraft | |
Idzikowski et al. | Ground and in-fligh testing of cooling efficiency of turboprop engine compartment | |
Schutzeichel | Multiphysical and multi scale modelling of composite materials for aircraft De-Icing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R086 | Non-binding declaration of licensing interest | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20131203 |