DE102011085088A1 - Micromechanical acceleration sensor for electronic stability program (ESP) system installed motor car, has two rocker arms whose length and mass is different - Google Patents
Micromechanical acceleration sensor for electronic stability program (ESP) system installed motor car, has two rocker arms whose length and mass is different Download PDFInfo
- Publication number
- DE102011085088A1 DE102011085088A1 DE201110085088 DE102011085088A DE102011085088A1 DE 102011085088 A1 DE102011085088 A1 DE 102011085088A1 DE 201110085088 DE201110085088 DE 201110085088 DE 102011085088 A DE102011085088 A DE 102011085088A DE 102011085088 A1 DE102011085088 A1 DE 102011085088A1
- Authority
- DE
- Germany
- Prior art keywords
- micromechanical
- acceleration sensor
- rocker
- arms
- different
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/125—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0035—Constitution or structural means for controlling the movement of the flexible or deformable elements
- B81B3/004—Angular deflection
- B81B3/0043—Increasing angular deflection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0228—Inertial sensors
- B81B2201/0235—Accelerometers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/01—Suspended structures, i.e. structures allowing a movement
- B81B2203/0145—Flexible holders
- B81B2203/0163—Spring holders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/01—Suspended structures, i.e. structures allowing a movement
- B81B2203/0181—See-saws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/0825—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
- G01P2015/0831—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/0825—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
- G01P2015/0837—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being suspended so as to only allow movement perpendicular to the plane of the substrate, i.e. z-axis sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0862—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system
- G01P2015/0871—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system using stopper structures for limiting the travel of the seismic mass
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pressure Sensors (AREA)
- Micromachines (AREA)
Abstract
Description
Die Erfindung betrifft einen mikromechanischen Z-Beschleunigungssensor.The invention relates to a micromechanical Z-acceleration sensor.
Stand der TechnikState of the art
Moderne Sensoren zur Messung von physikalischer Beschleunigung weisen üblicherweise eine mikromechanische Struktur aus Silizium (Sensorkern) und eine Auswerteelektronik auf. Sensorkerne, die es ermöglichen, eine Beschleunigung in einer Richtung orthogonal zu einer Hauptebene des Sensorkerns zu messen, werden als Z-Sensoren bezeichnet. Derartige Sensoren werden im Kraftfahrzeugbereich beispielsweise in ESP-Systemen oder auch im Bereich der Mobiltelefonie benutzt.Modern sensors for measuring physical acceleration usually have a micromechanical structure made of silicon (sensor core) and evaluation electronics. Sensor cores that allow acceleration in a direction orthogonal to a major plane of the sensor core to be measured are referred to as Z-sensors. Such sensors are used in the automotive sector, for example in ESP systems or in the field of mobile telephony.
Das genannte Sensorprinzip wird beispielsweise in Kapitel 6 der Dissertation
Offenbarung der ErfindungDisclosure of the invention
Es ist die Aufgabe der vorliegenden Erfindung, einen mikromechanischen Z-Beschleunigungssensor mit erhöhter Anschlagsbeschleunigung bereitzustellen.It is the object of the present invention to provide a micromechanical Z-acceleration sensor with increased impact acceleration.
Die Aufgabe wird gelöst mit einem mikromechanischen Z-Beschleunigungssensor, aufweisend eine mittels zweier Federeinrichtungen drehbar gelagerte Wippe, wobei Arme der Wippe unterschiedliche Massen aufweisen, dadurch gekennzeichnet, dass freie Weglängen der Arme unterschiedlich lang sind.The object is achieved with a micromechanical Z-acceleration sensor, comprising a rocker rotatably mounted by means of two spring devices, wherein arms of the rocker have different masses, characterized in that free path lengths of the arms are of different lengths.
Durch das Bereitstellen von unterschiedlichen Weglängen für die beiden Arme der Wippe ist es mittels des erfindungsgemäßen mikromechanischen Z-Beschleunigungssensors möglich, auf einfache Weise eine erhöhte Anschlagsbeschleunigung bereitzustellen.By providing different path lengths for the two arms of the rocker, it is possible by means of the micromechanical Z-acceleration sensor according to the invention to provide an increased impact acceleration in a simple manner.
Eine bevorzugte Ausführungsform des erfindungsgemäßen mikromechanischen Z-Beschleunigungssensors ist dadurch gekennzeichnet, dass ein unterhalb von einem der Arme angeordneter Bereich, der zu einem Anschlagen des Arms vorgesehen ist, als eine Vertiefung in einem Substrat ausgebildet ist. Ein Bereitstellen der Vertiefung im Substrat ist eine einfache Möglichkeit, um für einen der Arme der Wippe eine größere freie Weglänge zu ermöglichen um dadurch eine erhöhte Anschlagsbeschleunigung zu erzielen.A preferred embodiment of the micromechanical Z acceleration sensor according to the invention is characterized in that a region arranged below one of the arms and intended for striking the arm is formed as a depression in a substrate. Providing the recess in the substrate is an easy way to allow for one of the arms of the rocker a greater free path to thereby achieve an increased impact acceleration.
Eine weitere bevorzugte Ausführungsform des erfindungsgemäßen mikromechanischen Z-Beschleunigungssensors ist dadurch gekennzeichnet, dass ein Ausmaß der Vertiefung vorzugsweise ungefähr einem Abstand zwischen der Wippe und dem Substrat entspricht. Mit diesen geometrischen Abmessungen wird vorteilhaft ein günstiger Kompromiss zwischen einer erhöhten Anschlagsbeschleunigung und einem prozesstechnischen Zusatzaufwand zur Herstellung der Vertiefung im Substrat erreicht.A further preferred embodiment of the micromechanical Z acceleration sensor according to the invention is characterized in that an extent of the depression preferably corresponds approximately to a distance between the rocker and the substrate. With these geometric dimensions, a favorable compromise between an increased impact acceleration and a process-technical additional effort for producing the depression in the substrate is advantageously achieved.
Eine bevorzugte Ausführungsform des mikromechanischen Z-Beschleunigungssensors ist dadurch gekennzeichnet, dass in der Vertiefung keine Kondensatorelektrode angeordnet ist. Durch das Weglassen der Kondensatorelektrode kann auf einfache Weise die freie Weglänge für einen der Arme der Wippe noch weiter erhöht und dadurch die Anschlagsbeschleunigung weiter erhöht sein.A preferred embodiment of the micromechanical Z-acceleration sensor is characterized in that no capacitor electrode is arranged in the depression. By omitting the capacitor electrode, the free path length for one of the arms of the rocker can be further increased in a simple manner, thereby further increasing the impact acceleration.
Eine bevorzugte Ausführungsform des mikromechanischen Z-Beschleunigungssensors ist dadurch gekennzeichnet, dass die Arme unterschiedlich lang oder im Wesentlichen gleichlang sind. Dadurch wird auf einfache Weise ein Gestaltungsspielraum für den Z-Beschleunigungssensor insofern erhöht, als die massenmässige Asymmetrie der Arme der Wippe auf unterschiedliche Arten bereitgestellt werden kann.A preferred embodiment of the micromechanical Z-acceleration sensor is characterized in that the arms have different lengths or essentially the same length. As a result, a design freedom for the Z-acceleration sensor is increased in a simple manner insofar as the mass asymmetry of the arms of the rocker can be provided in different ways.
Die Erfindung wird nachfolgend mit weiteren Merkmalen und Vorteilen anhand von drei Figuren erläutert. Die Figuren sind vor allem dazu gedacht, die erfindungswesentlichen Prinzipien zu verdeutlichen.The invention will be explained below with further features and advantages with reference to three figures. The figures are primarily intended to illustrate the principles essential to the invention.
In den Figuren zeigt:In the figures shows:
In
Eine Neigungsänderung der Wippe
Erfindungsgemäß ist nunmehr vorgesehen, dass unter dem Arm
Durch die Vertiefung
Die Anschlagsbeschleunigung ist ein wichtiger Parameter von Spezifikationen von mikromechanischen Z-Beschleunigungssensoren, welcher definiert, wie hoch eine nach oben gerichtete vertikale Beschleunigung sein darf, bis ein Wippenarm der Wippe gegen einen Anschlagsbereich anstößt. The impact acceleration is an important parameter of specifications of micro-mechanical Z acceleration sensors, which defines how high an upward vertical acceleration may be until a rocker arm of the rocker abuts against a stop region.
Mittels der Erfindung kann dieser Parameter vorteilhaft bedeutend erhöht sein.Advantageously, this parameter can be significantly increased by means of the invention.
Es versteht sich von selbst, dass die Seitenansichten der
Zusammenfassend wird mittels der Erfindung ein mikromechanischer Z-Beschleunigungssensor vorgeschlagen, der mittels einer einfachen Maßnahme in Form eines vergrößerten Wippenweges aufgrund eines abgesenkten Anschlagsbereichs im Si-Substrat eine erhöhte Anschlagsbeschleunigung bereitstellt. Abhängig von einem Ausmaß einer Vertiefung unter einem der Arme der Wippenstruktur kann ein Ausmaß der Anschlagsbeschleunigung je nach Anforderung dimensioniert werden. Es versteht sich von selbst, dass die genannte Vertiefung
Für den Fachmann versteht es sich von selbst, dass die beschriebenen Merkmale der Erfindung in beliebiger Weise miteinander kombiniert werden können, ohne vom Kern der Erfindung abzuweichen. Insbesondere ist es auch möglich, das erfindungsgemäße Prinzip auf andere Sensortechnologien, beispielsweise auf piezoresistive mikromechanische Beschleunigungssensoren anzuwenden.It will be understood by those skilled in the art that the described features of the invention may be combined with one another in any manner without departing from the gist of the invention. In particular, it is also possible to apply the principle according to the invention to other sensor technologies, for example to piezoresistive micromechanical acceleration sensors.
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- EP 0244581 [0004] EP 0244581 [0004]
- EP 0773443 B1 [0005] EP 0773443 B1 [0005]
- DE 102006058747 A1 [0005] DE 102006058747 A1 [0005]
Zitierte Nicht-PatentliteraturCited non-patent literature
- „Oberflächenmikromechanik-Sensoren als elektrische Teststrukturen zur Charakterisierung ihrer Herstellungsprozesse“; Maute, Matthias; Universität Tübingen 2003 [0003] "Surface micromechanical sensors as electrical test structures to characterize their manufacturing processes"; Maute, Matthias; University of Tübingen 2003 [0003]
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201110085088 DE102011085088A1 (en) | 2011-10-24 | 2011-10-24 | Micromechanical acceleration sensor for electronic stability program (ESP) system installed motor car, has two rocker arms whose length and mass is different |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201110085088 DE102011085088A1 (en) | 2011-10-24 | 2011-10-24 | Micromechanical acceleration sensor for electronic stability program (ESP) system installed motor car, has two rocker arms whose length and mass is different |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102011085088A1 true DE102011085088A1 (en) | 2013-04-25 |
Family
ID=48051164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE201110085088 Pending DE102011085088A1 (en) | 2011-10-24 | 2011-10-24 | Micromechanical acceleration sensor for electronic stability program (ESP) system installed motor car, has two rocker arms whose length and mass is different |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102011085088A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019104098A (en) * | 2017-12-14 | 2019-06-27 | 三菱電機株式会社 | Minute electronic mechanical device and inspection method thereof, acceleration sensor and movable mirror device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0244581A1 (en) | 1986-04-04 | 1987-11-11 | Robert Bosch Gmbh | Sensor for the automatic triggering of passenger security devices |
EP0773443B1 (en) | 1995-11-07 | 2000-05-24 | TEMIC TELEFUNKEN microelectronic GmbH | Micro-machined accelerometer |
DE102006058747A1 (en) | 2006-12-12 | 2008-06-19 | Robert Bosch Gmbh | Micromechanical z-sensor |
-
2011
- 2011-10-24 DE DE201110085088 patent/DE102011085088A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0244581A1 (en) | 1986-04-04 | 1987-11-11 | Robert Bosch Gmbh | Sensor for the automatic triggering of passenger security devices |
EP0773443B1 (en) | 1995-11-07 | 2000-05-24 | TEMIC TELEFUNKEN microelectronic GmbH | Micro-machined accelerometer |
DE102006058747A1 (en) | 2006-12-12 | 2008-06-19 | Robert Bosch Gmbh | Micromechanical z-sensor |
Non-Patent Citations (1)
Title |
---|
"Oberflächenmikromechanik-Sensoren als elektrische Teststrukturen zur Charakterisierung ihrer Herstellungsprozesse"; Maute, Matthias; Universität Tübingen 2003 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019104098A (en) * | 2017-12-14 | 2019-06-27 | 三菱電機株式会社 | Minute electronic mechanical device and inspection method thereof, acceleration sensor and movable mirror device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012207939A1 (en) | Spring stop for accelerometer | |
DE102006026880B4 (en) | Micromechanical acceleration sensor | |
DE102013222747A1 (en) | Micromechanical Z-sensor | |
DE102009029248A1 (en) | Micromechanical system for detecting acceleration | |
DE102014202816B4 (en) | Rocker device for a micromechanical Z-sensor | |
DE102009000167A1 (en) | sensor arrangement | |
DE102017220412A1 (en) | Micromechanical inertial sensor | |
DE102015209941A1 (en) | Micromechanical acceleration sensor | |
DE102017212875A1 (en) | Micromechanical device and method for producing a micromechanical device | |
DE102009000594A1 (en) | Acceleration sensor and method for operating an acceleration sensor | |
DE102013007593A1 (en) | ACCELERATION SENSOR AND METHOD FOR PRODUCING A ACCELERATION SENSOR | |
DE102020211922A1 (en) | Micromechanical structure and micromechanical sensor | |
DE102014101448A1 (en) | Accelerometer with low sensitivity to thermo-mechanical stress | |
DE102020205616A1 (en) | Micromechanical sensor arrangement, method for using a micromechanical sensor arrangement | |
DE102015207639B4 (en) | Seismic sensing element for a micromechanical sensor | |
DE102014223314A1 (en) | Rocker device for a micromechanical Z-sensor | |
DE102018209500B4 (en) | Micromechanical z-inertial sensor | |
DE102016203153A1 (en) | Method for operating a micromechanical z-acceleration sensor | |
DE102011085088A1 (en) | Micromechanical acceleration sensor for electronic stability program (ESP) system installed motor car, has two rocker arms whose length and mass is different | |
DE102017219929A1 (en) | Micromechanical z-inertial sensor | |
DE102011006397B4 (en) | Micromechanical component with an interlocking structure | |
WO2021083589A1 (en) | Micromechanical component, in particular inertial sensor, comprising a seismic mass, a substrate and a cap | |
DE102020204767A1 (en) | Micromechanical device with a stop spring structure | |
DE102008042357A1 (en) | Micromechanical component, particularly micromechanical sensor, has substrate with substrate layer and seismic mass in form of compensator | |
WO2017085003A1 (en) | Micromechanical structure for an acceleration sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R016 | Response to examination communication |