DE102010023049A1 - Intelligent electrochemical battery component system for use in e.g. hybrid vehicle for supplying current to electrical power steering, has battery control unit to switch off battery units in cyclic intervals to diagnose battery units - Google Patents

Intelligent electrochemical battery component system for use in e.g. hybrid vehicle for supplying current to electrical power steering, has battery control unit to switch off battery units in cyclic intervals to diagnose battery units Download PDF

Info

Publication number
DE102010023049A1
DE102010023049A1 DE102010023049A DE102010023049A DE102010023049A1 DE 102010023049 A1 DE102010023049 A1 DE 102010023049A1 DE 102010023049 A DE102010023049 A DE 102010023049A DE 102010023049 A DE102010023049 A DE 102010023049A DE 102010023049 A1 DE102010023049 A1 DE 102010023049A1
Authority
DE
Germany
Prior art keywords
battery
units
battery units
intelligent
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102010023049A
Other languages
German (de)
Inventor
Anmelder Gleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102010023049A priority Critical patent/DE102010023049A1/en
Publication of DE102010023049A1 publication Critical patent/DE102010023049A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The system has two switch units (S-x, S-y) and two diagnostic units (D-x, D-y) that are connected with each other by a battery control unit. The battery control unit switches off one of battery units (B-x, B-y) for diagnostic and/or maintenance purposes, where nominal voltage of the battery component system is equal to the product of the number of switched-on active battery units and nominal voltage of the battery units. The battery units are switched off in cyclic intervals by the battery control unit to diagnose the battery units, when the battery units are in an unloaded or loading state.

Description

Die Erfindung betrifft ein Intelligentes Batterie Baukasten System, dessen Verwendung, sowie ein Verfahren zu dessen Einsatz. „Intelligent” deshalb, weil es durch die Kombination von Messung, Überwachung und Aktuatorik flexibel auf veränderte Randbedingungen reagieren kann.The invention relates to an intelligent battery modular system, its use, and a method for its use. "Intelligent" because it can respond flexibly to changing boundary conditions by combining measurement, monitoring and actuator technology.

STAND DER TECHNIKSTATE OF THE ART

Bisher bekannt sind elektro-chemische Batteriesysteme, die auf der Aneinanderkopplung von galvanischen Elementen basieren. Diese sind normalerweise zumindest grossteils in Reihe geschaltet, da die einzelnen handelsüblichen galvanischen Element-Kombinationen nur Spannungen von bis zu 1,2–2,0 V erzeugen können. Besonders bei leistungsstarken Einheiten werden deshalb beispielsweise 240 Einzeleinheiten verbunden, um entsprechend hohe Spannungsquellen aufzubauen. Dies ist notwendig, damit die elektrischen Ströme niedrig gehalten und die Bauteile geringer dimensioniert werden können. Ebenso reduzieren sich hierbei die Verluste durch die Ohm'sche Aufheizung des Systems.So far known are electro-chemical battery systems based on the coupling of galvanic elements. These are usually connected in series, at least in large part, since the individual commercially available galvanic element combinations can only generate voltages of up to 1.2-2.0 V. For high-performance units, for example, 240 individual units are connected to build up correspondingly high voltage sources. This is necessary so that the electrical currents can be kept low and the components can be made smaller. Likewise, the losses are reduced by the ohmic heating of the system.

MÄNGEL/NACHTEILE der SdTDEFECTS / DISADVANTAGES of the SdT

Diese Reihenschaltung bedingt aber auch wichtige Nachteile: da der gesamte Lade- bzw. Entladestrom immer durch alle der in Reihe geschalteten Batterie-Einheiten fliesst, hat dies zur Folge, dass das komplette Batterie-System immer nur so leistungsfähig ist, wie seine schwächste Batterie-Einheit (Nachteil #1). Diesem Effekt entgegnet man mit hohen Qualitätsanforderungen in Konstruktion und Fertigung, was wiederum hohe Kosten verursacht (Nachteil #2). Parallel hierzu versucht man teilweise durch aufwendige Überwachung von Temperatur, Messung des Gesamtstroms und der Einzelbatteriespannungen den sog. Ladezustand (SOC, State of Charge) abzuschätzen, um das Gesamtsystem immer in einem sicheren Betriebszustand zu halten. Eine Einzelstrom-Messung ist nicht möglich (Nachteil #3). Da aber die galvanischen Elemente mit zunehmender Betriebsdauer und unter unterschiedlichen Randbedingungen unterschiedlich im chemischen Verhalten „driften”, muss ein zusätzliches Sicherheitspuffer in Bezug auf Bestromung mit berücksichtigt werden, d. h. die volle Leistungfähigkeit des Batterie-Systems wird zu keiner Zeit zu 100% genutzt, sondern nur zu etwa 50–60% (Hauptnachteil #4).However, this series connection also causes important disadvantages: since the entire charge or discharge current always flows through all the battery units connected in series, this means that the complete battery system is only as powerful as its weakest battery Unit (disadvantage # 1). This effect is countered with high quality requirements in design and manufacturing, which in turn causes high costs (disadvantage # 2). Parallel to this, it is sometimes attempted to estimate the so-called state of charge (SOC) by complex monitoring of temperature, measurement of the total current and the individual battery voltages in order to always keep the overall system in a safe operating state. A single-stream measurement is not possible (disadvantage # 3). Since, however, the galvanic elements "drift" differently in their chemical behavior with increasing operating time and under different boundary conditions, an additional safety buffer must be taken into consideration with regard to the current supply; H. The full performance of the battery system is never 100% used, but only about 50-60% (major disadvantage # 4).

TECHN. PROBLEMSTELLUNG/AUFGABETECHN. PROBLEM / TASK

Es ist die Aufgabe und das Ziel der vorliegenden Erfindung, die vorgenannten Nachteile #1–4 zu eliminieren bzw. entscheidend zu reduzieren und zusätzliche Möglichkeiten der Wartung und des Austausches fehlerhafter Batterie-Einheiten während (!) des laufendes Betriebszustandes bereitzustellen.It is the object and the aim of the present invention to eliminate or significantly reduce the aforementioned disadvantages # 1-4 and to provide additional possibilities of maintenance and replacement of defective battery units during (!) The current operating condition.

MITTEL ZUR LÖSUNG/LÖSUNG SELBSTMEANS SOLUTION / SOLUTION SELF

Diese Aufgabe wird mittels eines Intelligenten Batterie Baukasten Systems (IBBS) nach Anspruch 1.–10. gelöst, bestehend mindestens aus 2 Batterie-Einheiten (Bx, By, Bn), mit jeweils einer Schalteinheit (Sx, Sy, Sn) und einer Diagnoseeinheit (Dx, Dy, Dn) (1), wobei alle Schalt- und Diagnoseeinheiten mit einer übergeordneten Batterie-Control-Unit (BCU) verbunden sind, die die Aufgabe hat, jeweils eine Batterie-Einheit zu Diagnose- und/oder Wartungszwecken wegzuschalten (2), wobei die Nennspannung des Systems gleich der Anzahl n der eingeschaltenen „aktiven” Batterie-Einheiten multipliziert mit ihrer Einzel-Nennspannung ist.This object is achieved by means of an intelligent battery modular system (IBBS) according to claim 1.-10. comprising at least two battery units (Bx, By, Bn), each having a switching unit (Sx, Sy, Sn) and a diagnostic unit (Dx, Dy, Dn) ( 1 ), wherein all the switching and diagnostic units are connected to a higher-level battery control unit (BCU), which has the task of switching off each one battery unit for diagnostic and / or maintenance purposes ( 2 ), wherein the rated voltage of the system is equal to the number n of switched-on "active" battery units multiplied by their rated single voltage.

Die Batterie-Einheiten (Bx, By, Bn) können selbstredend wiederum aus Unter-Batterie-Einheiten bestehen, dies hängt von der konstruktiven Auslegung der Baugruppen ab. Es bietet sich jedoch an, die optimale Austausch-Einheit bzw. Wartungseinheit auch als Batterie-Einheit (Bx, By, Bn) zu definieren.The battery units (Bx, By, Bn) can of course consist of sub-battery units, this depends on the structural design of the modules. However, it makes sense to define the optimal replacement unit or maintenance unit as a battery unit (Bx, By, Bn).

Dieses Intelligente Batterie Baukasten System, bei dem die BCU in zyklischen Intervallen (3) jede Batterie-Einheit (Bx, By, Bn) zu Diagnosezwecken wegschaltet, kann dadurch den jeweiligen State-Of-Charge (SOC) durch Messung auch der Einzelströme (4) bestimmen.This intelligent battery building block system, in which the BCU is operated at cyclic intervals ( 3 ) switches off each battery unit (Bx, By, Bn) for diagnostic purposes, can thereby determine the respective state-of-charge (SOC) by measuring also the individual currents ( 4 ).

Der Einsatz des IBBS bietet sich überall dort an, wo es auf Leistungsfähigkeit, Zuverlässigkeit und Sicherheit ankommt, nämlich für portable Multimediageräte, Hybrid- und Elektrofahrzeuge und im Bereich Energieversorgung als Bestandteil eines Smart-Grid-Systems.The use of the IBBS is ideal for performance, reliability and safety, such as portable multimedia devices, hybrid and electric vehicles, and energy supplies as part of a smart grid system.

FUNKTIONBESCHREIBUNG AM BEISPIELFUNCTIONAL DESCRIPTION OF THE EXAMPLE

Die Funktionsweise des Intelligenten Batterie Baukasten Systems soll anhand des Einsatzes in einem Hybridfahrzeug, in diesem Fall ein sog. Vollhybrid, der auch nur mit Elektromotor fahrbar ist, erläutert werden. Das Hybridbatterie-System hat folgende Hauptfunktionen: 1. Anfahren ohne Benzinmotor. 2. Unterstützung des Antriebes bei Beschleunigung und Bergauffahrt. 3. Speicherung der Bremsenergie bei Bergabfahrt in Form von elektro-chemischer Energie. 4. Allein-Elektroantrieb bei niedriger Geschwindigkeit (Stadtfahrt). 5. Starten des Benzinmotors nach Bedarf. 6. Versorgung von elektrischen Verbrauchern wie Elektro-Servo-Lenkung, Klimakompressor, Heckscheibenheizung u. a.The operation of the intelligent battery modular system is based on the use in a hybrid vehicle, in this case, a so-called full hybrid, which is also mobile only with electric motor can be explained. The hybrid battery system has the following main functions: 1. Starting without petrol engine. 2. Support of the drive during acceleration and uphill driving. 3. Storage of braking energy when driving downhill in the form of electro-chemical energy. 4. Alone electric drive at low speed (city driving). 5. Start the gasoline engine as needed. 6. Supply of electrical consumers such as electric servo steering, air conditioning compressor, rear window heating u. a.

Das Hybrid-Batterie-System besteht normalerweise aus einer Hybrid-Batterie-Einheit, einer doppelpoligen Abschalteinheit, 8 Temperatursensoren, 1 Strommesszange, einer Belüftungseinheit zur Kühlung und einer Hybridbatterie-ECU. Die Hybrid-Batterie-Einheit besteht aus 38 flachen nebeneinander stehenden Unterbaugruppen (auch Module genannt), die wiederum aus 6 Einzelzellen-NiMH-Elementen bestehen mit 7,2 V Nennspannung. Die Module sind 180° gedreht angeordnet und beidseitig in Serie mit Muttern und Laschen kontaktiert. Je 2 Module sind spannungsüberwacht und im Fehlerprotokoll identifizierbar, d. h. 19 Spannungsmesswerte. Das ganze Paket wird mechanisch verspannt, um Deformationen zu vermeiden.The hybrid battery system usually consists of a hybrid battery unit, a double-pole trip unit, 8 temperature sensors, 1 Clamp meter, a ventilation unit for cooling and a hybrid battery ECU. The hybrid battery unit consists of 38 flat subassemblies (also called modules) next to each other, which in turn consist of 6 single-cell NiMH elements with 7.2 V nominal voltage. The modules are arranged rotated 180 ° and contacted on both sides in series with nuts and tabs. Each 2 modules are voltage monitored and identifiable in the error log, ie 19 voltage readings. The whole package is mechanically tensioned to avoid deformation.

Der SOC wird aus den Werten des Batteriestroms (IB), der Spannungen der 19 Modulpaare (UMP), der Betriebstemperatur und einem definiertem Batterie-Modell jeweils abgeschätzt bzw. berechnet und mit Sollwerten verglichen. Der SOC soll hierbei sicherheitsbedingt (s. Nachteile) immer zwischen bispielsweise 45% und 85% liegen.The SOC is respectively estimated and calculated from the values of the battery current (I B ), the voltages of the 19 module pairs (U MP ), the operating temperature and a defined battery model and compared with nominal values. For safety reasons (see disadvantages), the SOC should always be between 45% and 85%, for example.

Für das erfindungsgemäße IBBS werden nun weitere Module hinzugefügt, z. B. 2 × Modulpaare (Erhöhung Anzahl um ca. 10,6%), mit 2 zusätzlichen Spannungseinheiten. Die Diagnose und Schalteinheiten werden als „Baukastenmodul” (DSBM) seitlich an die Hybrid-Batterie angeflanscht. Die Spannungsüberwachung braucht nur von der Hybrid-Batterie-ECU übernommen werden oder umgekehrt. Die doppelpolige Abschalteinheit des Hybrid-Batterie-Systems kann entfallen. Diese Funktion übernimmt das DSBM des IBBS.For the IBBS invention further modules are now added, for. B. 2 × module pairs (increase number by about 10.6%), with 2 additional voltage units. The diagnostics and switching units are flanged laterally to the hybrid battery as a "modular module" (DSBM). Voltage monitoring need only be done by the hybrid battery ECU or vice versa. The double-pole switch-off unit of the hybrid battery system can be omitted. This function is handled by the DSBM of the IBBS.

Mit Start des Hybrid-Systems verschaltet das IBBS zuerst die zuletzt konfigurierten 19 Modulpaare miteinander und fängt dann an, zyklisch je 2 Modulpaare wieder wegzuschalten und gleichzeitig die bereits geprüften 2 Modulpaare wieder „hinzu”- zu schalten. Die findet normalerweise im unbestromten bzw. wenig bestromten Zustand statt. Bei den weggeschalteten 2 Modulpaaren überprüft das IBBS die Betriebstemperatur, den Spannungszustand und den Stromfluss über einen Prüf-Kondensator zur Bestimmung des SOC des Modulpaares bzw. der gesamten Hybridbatterie. Die Spannungsversorgung verbleibt immer bei 38 Modulen, ausser man erlaubt eine „Booster-Funktion”. Durch das IBBS kann zusätzlich eine „Booster-Funktion” realisiert werden, bei der auch die 2 zusätzlichen Modulpaare kurzzeitig zugeschaltet werden, um die Systemspannung zu erhöhen. Die gilt sowohl für die Entlade- wie für die Ladefunktion.When the hybrid system is started, the IBBS first interconnects the last configured 19 pairs of modules and then begins to switch off 2 pairs of modules cyclically and at the same time "add" - the already tested 2 module pairs again. This usually takes place in the de-energized or little-energized state. For the 2 module pairs disconnected, the IBBS checks the operating temperature, the voltage state and the current flow via a test capacitor to determine the SOC of the module pair or the entire hybrid battery. The power supply always remains at 38 modules, unless one allows a "booster function". The IBBS can also be used to implement a "booster function" in which the 2 additional pairs of modules are also switched on for a short time in order to increase the system voltage. This applies to both the discharge and the charging function.

Identifiziert das IBBS einen Abfall der Leistungsfähigkeit eines Modulpaares, so schaltet es dieses dauerhaft „weg” und gibt eine Fehlermeldung an das OBD (Onboard-Diagnosesystem) des Fahrzeugs. Die Hybrid-Batterie bleibt damit zu 100% einsatzfähig. Das „schwache” Modulpaar kann dann bei der nächsten Inspektion ausgetauscht werden. Das IBBS fährt mit der Intervallprüfung fort, da es weiterhin ein zusätzliches Modulpaar zur Verfügung hat, solange bis wieder ein schwaches Modulpaar identifiziert und weggeschaltet wird und der entsprechende Fehlerspeichereintrag im OBD stattfindet. Aufgrund des Eintrags kann das schwache Modulpaar in der Werkstatt ausgetauscht, der Fehlerspeicher gelöscht und der Prüfzyklus wieder gestartet werden. Zusätzlich kann im Crashfall sofort die Abschaltung aller Modulpaare erfolgen, was die Brandgefahr bei Beschädigung erheblich reduziert.If the IBBS identifies a drop in the performance of a module pair, it permanently switches it off and gives an error message to the OBD (on-board diagnostic system) of the vehicle. The hybrid battery thus remains 100% operational. The "weak" module pair can then be replaced at the next inspection. The IBBS continues with the interval check because it still has an additional module pair available until a weak module pair is identified and switched off again and the corresponding error memory entry takes place in the OBD. Due to the entry, the weak module pair can be exchanged in the workshop, the error memory cleared and the test cycle restarted. In addition, the shutdown of all module pairs can be done immediately in the event of a crash, which significantly reduces the risk of fire if damaged.

WEITERE BEISPIELEFURTHER EXAMPLES

Ein weiteres Beispiel eines möglichen Einsatzes des IBBS wird für den Bereich Energie-Versorgung/Smart-Grid erläutert. Die heutigen Stromversorgungs-Systeme sind auf feste Maximalkapazitäten ausgelegt und haben kaum Möglichkeiten, flexibel auf Netzschwankungen d. h. geänderte Anforderungen zu reagieren. Durch den ökologisch notwendigen steigenden Einsatz von regenerativen Energieerzeugungs-Einheiten wie Windparks und Solarmodul-Parks wird diese Situation weiter verstärkt. Die Lösung hierfür ist das sog. Smart-Grid-System.Another example of a possible use of the IBBS is explained for the area of energy supply / smart grid. Today's power supply systems are designed for fixed maximum capacities and have few options, flexible to mains fluctuations d. H. changed requirements to respond. The ecologically necessary increasing use of renewable energy generation units such as wind farms and solar module parks will further intensify this situation. The solution for this is the so-called smart grid system.

Ein Smart-Grid-System verbindet die Subsysteme „kommunikativ” miteinander, sodass die Verbrauchern und Erzeuger Ihre Energieabrufe bzw. Kapazitäten vorallem zeitlich so koordinieren können, dass die Gesamtkapazität möglichst optimal ausgenutzt wird. Die „flexiblen” Verbraucher werden durch „intelligente” Abrechnungsmethoden mit entsprechend niedrigeren Tarifen belohnt, bzw. die anderen mit hohen Tarifen „bestraft”.A smart grid system connects the subsystems "communicatively" with each other so that consumers and producers can coordinate their energy calls and capacities, especially in terms of time, so that the total capacity is utilized as optimally as possible. The "flexible" consumers are rewarded with "intelligent" billing methods with correspondingly lower tariffs, or the others "punished" with high tariffs.

Energiespeicher-Systeme haben im Smart Grid die wichtige Funktion der „Anpassung” und Verteilung zwischen Erzeuger und Verbraucher. Bei Energieerzeugungsüberschuss z. B. bei viel Wind und Sonnenschein tagsüber wird nicht benötigte elektrische Energie zwischengespeichert und bei entsprechenden Bedarfsspitzen dem Smart Grid wieder zugeführt. Heutige Stromversorgungsnetze vertilgen über KEINE Speichereinheiten. Die Konsequenz hieraus war bisher die Auslegung der Erzeugungsanlagen nach den Maximalverbräuchen incl. Sicherheitspuffer, um eine zuverlässige Stromversorgung zu gewährleisten.Energy storage systems have in the Smart Grid the important function of "adaptation" and distribution between producer and consumer. For power generation excess z. B. with a lot of wind and sunshine during the day, unneeded electrical energy is cached and fed back to the smart grid at appropriate demand peaks. Today's power grids destroy over NO storage units. The consequence of this was previously the design of the generation plants according to the maximum consumption including safety buffer to ensure a reliable power supply.

Es gibt bereits Pilotanlagen mit elektro-chemischen Batterie-Speicher-Systemen, die diese Zwischenspeicherung für ein Subsystem übernehmen sollen. Hierbei wird eine den Spannungs-Anforderungen entsprechende Anzahl von Batterie-Einheiten in Serie verschaltet. Um die notwendigen grossen Speicher- bzw. Ladekapazitäten (im MWh-Bereich) zu erreichen, werden diese wiederum in grosser Anzahl parallel elektrisch verbunden. Eine Versuchsanlage wurde 2001 in Chino Californien mit 40 MWh mit ca. 4800 Blei-Akku-Systemen realisiert von EPRI.There are already pilot plants with electrochemical battery storage systems that should take over this caching for a subsystem. In this case, a number of battery units corresponding to the voltage requirements is connected in series. In order to achieve the necessary large storage or charging capacities (in the MWh range), these are in turn electrically connected in large numbers in parallel. A pilot plant was built in 2001 in Chino California with 40 MWh with approximately 4,800 lead-acid battery systems by EPRI.

Die o. g. Nachteile #1–4 gelten hierbei analog. Bei Ausfall nur einer Zelleneinheit wird die ganze in Serie geschaltete Batterie-Einheit deaktiviert. Deshalb werden grosse Sicherheitsreserven eingeplant und die Batteriesysteme nur in einem relativ kleinen „Leistungsbereich” betrieben.The o. G. Disadvantages # 1-4 apply analogously. If only one cell unit fails, the whole series-connected battery unit is deactivated. Therefore, large safety reserves are planned and the battery systems operated only in a relatively small "power range".

Bei Einsatz des IBBS wird die Leistungsfähigkeit des Gesamtsystems verbessert, sodass für einen definierte Speicherkapazität deutlich weniger Batterie-Einheiten notwendig sind, d. h. die Investitionskosten entsprechend niedriger ausfallen. Im Smart-Grid-System wird besonderen Wert auf Versorgungssicherheit gelegt, die durch das IBBS erheblich verbessert werden kann, da einerseits „schwache” Batterie-Einheiten weggeschaltet werden und der andererseits danach notwendige Austausch der diagnostizierten „schwachen” Batterie-Einheiten auch während des Betriebes sicher durchgeführt werden kann (Online-Wartung).When using the IBBS, the performance of the overall system is improved, so that for a defined storage capacity significantly less battery units are necessary, d. H. the investment costs are correspondingly lower. In the smart grid system, particular importance is attached to security of supply, which can be considerably improved by the IBBS, because on the one hand "weak" battery units are switched off and, on the other hand, afterwards necessary replacement of the diagnosed "weak" battery units even during operation can be done safely (online maintenance).

Selbstverständlich ist das Intelligente Batterie Baukasten System nicht auf den Einsatz in den beschriebenen Beispielen beschränkt, sondern universell einsetzbar. Weitere Anwendungsgebiete ergeben sich überall dort, wo bereits konventionelle Batterie-Systeme im Einsatz sind, zusätzliche Anwendungen werden sich sicher im Laufe der Weiterentwicklung ergeben.Of course, the intelligent battery modular system is not limited to use in the examples described, but universally applicable. Further areas of application are everywhere where conventional battery systems are already in use, additional applications will certainly arise in the course of further development.

Claims (10)

Intelligentes Batterie Baukasten System (IBBS), bestehend mindestens aus 2 Batterie-Einheiten (Bx, By, Bn), mit jeweils einer Schalteinheit (Sx, Sy, Sn) und einer Diagnoseeinheit (Dx, Dy, Dn) (1), wobei alle Schalt- und Diagnoseeinheiten mit einer übergeordneten Batterie-Control-Unit (BCU) verbunden sind, die die Aufgabe hat, jeweils eine Batterie-Einheit zu Diagnose- und/oder Wartungszwecken wegzuschalten (2), wobei die Nennspannung des Systems gleich der Anzahl n der eingeschaltenen „aktiven” Batterie-Einheiten multipliziert mit ihrer Einzel-Nennspannung ist. Das „Wegschalten” findet im unbelasteten oder wenig belasteten Zustand statt.Intelligent Battery Modular System (IBBS), consisting of at least 2 battery units (Bx, By, Bn), each with a switching unit (Sx, Sy, Sn) and a diagnostic unit (Dx, Dy, Dn) ( 1 ), wherein all the switching and diagnostic units are connected to a higher-level battery control unit (BCU), which has the task of switching off each one battery unit for diagnostic and / or maintenance purposes ( 2 ), wherein the rated voltage of the system is equal to the number n of switched-on "active" battery units multiplied by their rated single voltage. The "switching off" takes place in the unloaded or slightly loaded state. Intelligentes Batterie Baukasten System nach Anspruch 1, bei dem die BCU in zyklischen Intervallen (3) jede Batterie-Einheit (Bx, By, Bn) zu Diagnosezwecken wegschaltet, um den jeweiligen State-Of-Charge (SOC) durch Messung auch der Einzelströme (4) zu bestimmen.An intelligent battery building block system according to claim 1, wherein the BCU is operated at cyclic intervals ( 3 ) switches off each battery unit (Bx, By, Bn) for diagnostic purposes in order to determine the respective state-of-charge (SOC) by measuring the individual currents ( 4 ). Intelligentes Batterie Baukasten System nach Anspruch 1 und 2, bei dem die BCU zur Bestimmung des State-Of-Charge (SOC) der jeweils weggeschalteten Batterie-Einheit die Parameter Einzelspannung (Ux, Uy, Un), Temperatur (Tx, Ty, Tn) und Entladestrom über einen Diagnose-Kondensator (Ix, Iy, In) misst und abspeichert und mit Grenzwerten vergleicht. Der State-Of-Charge (SOC) des gesamten Systems wird hieraus berechnet.Intelligent battery modular system according to claim 1 and 2, wherein the BCU for determining the state-of-charge (SOC) of the respectively disconnected battery unit, the parameters individual voltage (Ux, Uy, Un), temperature (Tx, Ty, Tn) and measures discharge current via a diagnostic capacitor (Ix, Iy, In) and stores and compares with limits. The state-of-charge (SOC) of the entire system is calculated from this. Intelligentes Batterie Baukasten System nach Anspruch 1.–3., bei dem die BCU bei Unterschreiten bestimmter Leistungskennwerte ein dauerhaftes Wegschalten einzelner Batterie-Einheiten (Bx, By, Bn) veranlasst, um die Systemleistung weiter zu gewährleisten und die gibt gleichzeitig eine entsprechend Fehlermeldung aus. Andererseits kann durch kurzzeitiges Zuschalten aller Batterie-Einheiten (Bx, By, Bn) eine „Booster-Funktion” realisiert werden.Intelligent battery modular system according to claim 1.-3., In which the BCU causes falls below certain performance characteristics, a permanent disconnection of individual battery units (Bx, By, Bn) to continue to ensure system performance and simultaneously outputs a corresponding error message , On the other hand, by briefly connecting all battery units (Bx, By, Bn) a "booster function" can be realized. Intelligentes Batterie Baukasten System nach Anspruch 1.–4., bei dem die Konstruktion derart ausgelegt ist, dass einzelne Batterie-Einheiten (Bx, By, Bn) sicher ausgetauscht werden können, ohne den System-Betriebszustand zu beeinträchtigen (Online-Wartung).Intelligent battery assembly system according to claim 1.-4, wherein the construction is designed so that individual battery units (Bx, By, Bn) can be replaced safely without affecting the system operating state (online maintenance). Intelligentes Batterie Baukasten System nach Anspruch 1.–5., bei dem die Schalteinheiten in Abhängigkeit von den zu verwendeten Stromstärken entweder aus integrierten (IC's) und/oder diskreten Elektronik-Bausteinen und/oder aus Schnellschaltventilen bestehen.Intelligent battery modular system according to claim 1.-5., Wherein the switching units depending on the currents to be used either of integrated (ICs) and / or discrete electronic components and / or fast-acting valves. Intelligentes Batterie Baukasten System nach Anspruch 1.–6., bei dem im „inaktiven” unbestromtem Zustand alle Schalteinheiten „offen” sind, was sowohl die Sicherheit gegen Brandgefahr vermindert, die Arbeitssicherheit erhöht und die gegenseitige Entladung ausschliesst. Weiter kann im Crashfall bei einer Autobatterie sofort die Hochspannung abgeschaltet werden.Intelligent battery modular system according to claim 1.-6., Wherein in the "inactive" de-energized state all switching units are "open", which both reduces the risk of fire, increases occupational safety and excludes the mutual discharge. Furthermore, the high voltage can be switched off immediately in the event of a crash in the case of a car battery. Verwendung eines Intelligentes Batterie Baukasten Systems nach Anspruch 1.–7. in der Multimedia-Branche, um portable Geräte betriebssicher und ausreichend über Lebensdauer mit Strom zu versorgen.Use of an intelligent battery modular system according to claim 1.-7. in the multimedia industry to provide portable, reliable and long-life power to portable devices. Verwendung eines Intelligentes Batterie Baukasten Systems nach Anspruch 1.–7. in der Automobiltechnik, besonders in der Verwendung als Energie-Speicher-Einheit bei Hybrid- und Elektro-Fahrzeugen.Use of an intelligent battery modular system according to claim 1.-7. in automotive engineering, especially in use as an energy storage unit in hybrid and electric vehicles. Verwendung eines Intelligenten Batterie Baukasten Systems nach Ansprüchen 1.–7. im Energiebereich als betriebssichere Energie-Speicher-Einheit eines Smart-Grid-Systems, die die Möglichkeit beinhaltet, auch während des Betriebes einzelne Batterie-Einheiten zur Wartungszwecken gefahrlos auszutauschen.Use of an intelligent battery modular system according to claims 1.-7. In the energy sector as a reliable energy storage unit of a smart grid system, which includes the ability to safely replace individual battery units for maintenance during operation.
DE102010023049A 2010-06-08 2010-06-08 Intelligent electrochemical battery component system for use in e.g. hybrid vehicle for supplying current to electrical power steering, has battery control unit to switch off battery units in cyclic intervals to diagnose battery units Ceased DE102010023049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102010023049A DE102010023049A1 (en) 2010-06-08 2010-06-08 Intelligent electrochemical battery component system for use in e.g. hybrid vehicle for supplying current to electrical power steering, has battery control unit to switch off battery units in cyclic intervals to diagnose battery units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010023049A DE102010023049A1 (en) 2010-06-08 2010-06-08 Intelligent electrochemical battery component system for use in e.g. hybrid vehicle for supplying current to electrical power steering, has battery control unit to switch off battery units in cyclic intervals to diagnose battery units

Publications (1)

Publication Number Publication Date
DE102010023049A1 true DE102010023049A1 (en) 2011-12-08

Family

ID=44973823

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010023049A Ceased DE102010023049A1 (en) 2010-06-08 2010-06-08 Intelligent electrochemical battery component system for use in e.g. hybrid vehicle for supplying current to electrical power steering, has battery control unit to switch off battery units in cyclic intervals to diagnose battery units

Country Status (1)

Country Link
DE (1) DE102010023049A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101800A1 (en) 2012-03-02 2013-09-05 ropa development GmbH Utility network component for a utility network
DE102013203192A1 (en) 2013-02-27 2014-08-28 Robert Bosch Gmbh Connectable battery module
DE102013208811A1 (en) 2013-05-14 2014-11-20 Robert Bosch Gmbh Battery module with a plurality of battery cells, battery system with multiple battery modules and spacers
DE102014203130A1 (en) 2014-02-21 2015-08-27 Robert Bosch Gmbh Connectable battery module
WO2018072799A1 (en) * 2016-10-18 2018-04-26 Nerve Smart Systems Aps Charging station for charging electrical vehicles
CN114312267A (en) * 2021-01-28 2022-04-12 华为数字能源技术有限公司 Vehicle-mounted distributed power supply system, vehicle-mounted power supply control method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4422005A1 (en) * 1994-06-13 1995-12-14 Lennart Preu Passenger car with electric drive
DE19545833B4 (en) * 1995-12-08 2005-10-13 Bayerische Motoren Werke Ag Battery with several single cells connected in series
DE60112502T2 (en) * 2000-04-28 2006-06-01 Toyota Jidosha K.K., Toyota Method for replacing a secondary battery
DE102008010971A1 (en) * 2008-02-25 2009-08-27 Robert Bosch Gmbh Protection system for battery modules
DE102009025211A1 (en) * 2009-06-16 2010-01-28 Daimler Ag Battery cell arrangement for traction battery of battery and hybrid vehicles, has fuse element assigned to serial cells to disconnect cell in case of failure of other cells, where failed cell is separated by fuse element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4422005A1 (en) * 1994-06-13 1995-12-14 Lennart Preu Passenger car with electric drive
DE19545833B4 (en) * 1995-12-08 2005-10-13 Bayerische Motoren Werke Ag Battery with several single cells connected in series
DE60112502T2 (en) * 2000-04-28 2006-06-01 Toyota Jidosha K.K., Toyota Method for replacing a secondary battery
DE102008010971A1 (en) * 2008-02-25 2009-08-27 Robert Bosch Gmbh Protection system for battery modules
DE102009025211A1 (en) * 2009-06-16 2010-01-28 Daimler Ag Battery cell arrangement for traction battery of battery and hybrid vehicles, has fuse element assigned to serial cells to disconnect cell in case of failure of other cells, where failed cell is separated by fuse element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101800A1 (en) 2012-03-02 2013-09-05 ropa development GmbH Utility network component for a utility network
WO2013128009A2 (en) 2012-03-02 2013-09-06 ropa development GmbH Supply network component for a supply network
US10008869B2 (en) 2012-03-02 2018-06-26 Unicorn Energy GmbH Supply network component for a supply network
DE102013203192B4 (en) * 2013-02-27 2016-10-20 Robert Bosch Gmbh Battery module, battery direct converter with such a battery module and battery direct inverter with at least two direct battery converters
WO2014131738A1 (en) 2013-02-27 2014-09-04 Robert Bosch Gmbh Activatable battery module
DE102013203192A1 (en) 2013-02-27 2014-08-28 Robert Bosch Gmbh Connectable battery module
US10230135B2 (en) 2013-02-27 2019-03-12 Robert Bosch Gmbh Connectable battery module
DE102013208811A1 (en) 2013-05-14 2014-11-20 Robert Bosch Gmbh Battery module with a plurality of battery cells, battery system with multiple battery modules and spacers
DE102014203130A1 (en) 2014-02-21 2015-08-27 Robert Bosch Gmbh Connectable battery module
WO2018072799A1 (en) * 2016-10-18 2018-04-26 Nerve Smart Systems Aps Charging station for charging electrical vehicles
US11084391B2 (en) 2016-10-18 2021-08-10 Nerve Smart Systems, APS Charging station comprising multiple batteries for charging electrical vehicles
CN114312267A (en) * 2021-01-28 2022-04-12 华为数字能源技术有限公司 Vehicle-mounted distributed power supply system, vehicle-mounted power supply control method and device
CN114312267B (en) * 2021-01-28 2024-04-09 华为数字能源技术有限公司 Vehicle-mounted distributed power supply system, vehicle-mounted power supply control method and device

Similar Documents

Publication Publication Date Title
EP2759018B1 (en) Battery management system, battery, motor vehicle having a battery management system, and method for monitoring a battery
DE102011079126B4 (en) Battery management system, battery, motor vehicle with battery management system and method for monitoring a battery
DE102014221547A1 (en) Method for monitoring the state of charge of a battery
DE102011079292A1 (en) Battery management system and associated method for determining a state of charge of a battery, battery with battery management system and motor vehicle with battery management system
DE102010023049A1 (en) Intelligent electrochemical battery component system for use in e.g. hybrid vehicle for supplying current to electrical power steering, has battery control unit to switch off battery units in cyclic intervals to diagnose battery units
DE102011079291A1 (en) Battery management system and method for determining the states of charge of battery cells, battery and motor vehicle with battery management system
DE102013019373B4 (en) Method for operating traction batteries removed from motor vehicles in a stationary system, electrical energy buffer device for a stationary system and battery test stand
DE102015207072A1 (en) CONTROL METHOD AND SYSTEM OF A FUEL CELL SYSTEM
DE102014103117A1 (en) Estimating coolant conductivity in a multi-voltage fuel cell system
DE112008002750T5 (en) fuel cell
DE112008002923T5 (en) Fuel Cell System
EP2794335A2 (en) Battery system and method
DE102020130547A1 (en) Power control system, electrically powered vehicle, and power control method
DE102014216289A1 (en) Method for measuring the state of charge of a flow battery stack and battery management system
DE102014211797A1 (en) System and method for monitoring a nickel-cadmium battery in a passenger aircraft
DE102016014932A1 (en) Technology for variably interconnecting a traction energy storage system
DE102013225366B4 (en) SYSTEM AND METHOD FOR CONTROLLING A FAN OF A FUEL CELL VEHICLE
DE102016106715A1 (en) Method and device for monitoring an on-board battery charger
DE102010045514A1 (en) Method for operating a motor vehicle
WO2012025280A2 (en) Battery system having a dc/dc converter in the high-voltage network for supplying a microcontroller
DE102016012228A1 (en) Traction energy storage system for a vehicle
DE102018216316A1 (en) Electrochemical battery system
DE102014221549B4 (en) Method for monitoring the state of charge of a battery
DE102017201241A1 (en) Battery unit and method for operating a battery unit
DE102016008978A1 (en) Traction energy storage system for a vehicle

Legal Events

Date Code Title Description
R016 Response to examination communication
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final