DE102009037151A1 - Solar cell i.e. silicon solar cell, has laminar rear contact made of aluminum, and busbars provided on rear side of cell, where cell has enlarged rear contact surface covering with reduced rear contact edge distance of specific range - Google Patents

Solar cell i.e. silicon solar cell, has laminar rear contact made of aluminum, and busbars provided on rear side of cell, where cell has enlarged rear contact surface covering with reduced rear contact edge distance of specific range Download PDF

Info

Publication number
DE102009037151A1
DE102009037151A1 DE102009037151A DE102009037151A DE102009037151A1 DE 102009037151 A1 DE102009037151 A1 DE 102009037151A1 DE 102009037151 A DE102009037151 A DE 102009037151A DE 102009037151 A DE102009037151 A DE 102009037151A DE 102009037151 A1 DE102009037151 A1 DE 102009037151A1
Authority
DE
Germany
Prior art keywords
solar cell
cell
rear contact
edge
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102009037151A
Other languages
German (de)
Inventor
Julian Dr. Ing. Mattheis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOLSOL GmbH
Original Assignee
SOLSOL GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLSOL GmbH filed Critical SOLSOL GmbH
Priority to DE102009037151A priority Critical patent/DE102009037151A1/en
Publication of DE102009037151A1 publication Critical patent/DE102009037151A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The cell (1) has a laminar rear contact (2) made of aluminum, and busbars (3) provided on a rear side of the cell, where the busbars are made of silver-aluminum. An edge (4) of 0.5 mm to 2 mm remains between the rear contact and solar cell edges. A space between the rear contact and the solar cell edges is provided with edge metallization (6) by a material application device (5). An optical image detection system detects contours of the cell and contours of the rear contact. The cell has enlarged rear contact surface covering with reduced rear contact edge distance of 0.5 mm. An independent claim is also included for a method for manufacturing a solar cell.

Description

Beschreibung/Gebiet der ErfindungDescription / Field of the Invention

Die Anmeldung betrifft ein Verfahren zur Verbesserung der Rückseitenpassivierung einer Solarzelle durch Vergrößerung der Rückkontaktflächenbedeckung.The Application relates to a method for improving backside passivation a solar cell by enlarging the Back contact area coverage.

Heutige industriell gefertigte Solarzellen aus kristallinem Silizium erzielen Wirkungsgrade von ca. 16% (multikristallin) und 17% (monokristallin). Sie sind damit vom Idealwert von 29%, der theoretisch mit Siliziumsolarzellen erreicht werden kann, entfernt.today achieve industrially manufactured crystalline silicon solar cells Efficiencies of about 16% (multicrystalline) and 17% (monocrystalline). They are thus of the ideal value of 29%, which theoretically with silicon solar cells can be achieved, removed.

Eine Quelle für Verluste, die in der Solarzelle auftreten, liegt in der nicht-perfekten Passivierung der Rückseite. Lichtgenerierte Ladungsträger rekombinieren an der Rückseite mit einer Rekombinationsgeschwindigkeit Sb. Sie tragen im Kurzschlussfall nicht zum Kurzschlussstrom bei und im Leerlauffall verringert die Rekombination die Leerlaufspannung. Dadurch sinkt auch der Wirkungsgrad der Solarzellen.One source of losses in the solar cell is the imperfect passivation of the backside. Light-generated charge carriers recombine at the backside with a recombination rate S b . They do not contribute to the short-circuit current in the event of a short circuit, and the recombination reduces the no-load voltage during no-load operation. This also reduces the efficiency of the solar cells.

Stand der TechnikState of the art

Dem heutigen Stand der Technik zufolge besteht die Rückseite von beidseitig kontaktierten Siliziumsolarzellen aus einem flächig aufgedruckten Rückkontakt aus Aluminiumpaste. In einem fast-firing Prozess wird die aufgedruckte Paste in das p-Typ dotierte Silizium einlegiert, wodurch eine p+ Dotierung entsteht. Dadurch erzielt man eine Feldeffektpassivierung der Rückseite, das sogenannte Back-surface-field (BSF): Die Überwindung dieses Feldes würde die negativ geladenen Minoritätsladungsträger Energie kosten, sie werden also im Idealfall von der Rückseite ferngehalten und rekombinieren dort nicht mit den Majoritätsladungsträgern, den Löchern. Mit einer solchen Passivierung werden – für eine Basisdotierung der Solarzelle von 1–6 Ohm cm – Rekombinationsgeschwindigkeiten zwischen 200 und 600 cm/s erzielt.According to the current state of the art, the back side of silicon solar cells contacted on both sides consists of a surface-printed back contact made of aluminum paste. In a fast-firing process, the printed paste is alloyed into the p-type doped silicon, resulting in p + doping. This achieves a field effect passivation of the back, the so-called back-surface-field (BSF): Overcoming this field would cost the negatively charged minority carriers energy, so they are ideally kept away from the back and do not recombine there with the majority carriers, the holes , With such a passivation - for a basic doping of the solar cell of 1-6 ohm cm - recombination speeds between 200 and 600 cm / s achieved.

Zusätzlich zur Aluminiummetallisierung benötigt die Solarzelle für die Verlötung im Modul noch Busbars, die nach dem Stand der Technik aus einer aufgedruckten Silber-Aluminium Paste bestehen. Denn die Aluminiumoberfläche lässt sich aufgrund der sehr stabilen nativen Oxidschicht mit herkömmlichen Lötverfahren nicht löten. Unter den Busbars entsteht kein ausgeprägtes BSF, wodurch die Rekombinations-geschwindigkeit mit Werten Sb > 10000 cm/s deutlich höher ist als in den BSF-passivierten Bereichen. Sowohl der flächige Rückkontakt als auch die Busbars werden heute üblicherweise mit Siebdruckverfahren aufgebracht.In addition to the aluminum metallization, the solar cell for soldering in the module still requires busbars, which consist of the prior art of a printed silver-aluminum paste. Because the aluminum surface can not be soldered with conventional soldering due to the very stable native oxide layer. Under the busbars, no pronounced BSF is formed, as a result of which the recombination rate with values S b > 10000 cm / s is markedly higher than in the BSF passivated regions. Both the flat back contact and the busbars are now usually applied by screen printing.

Bisherige technische ProblemePrevious technical problems

Außerdem gibt es am Rand der Solarzellenrückseite noch einen Bereich, der vollkommen unbedruckt und daher unpassiviert ist. Es ist aus mehreren Gründen unvorteilhaft, über den Rand der Solarzelle hinauszudrucken. Pastenflecken auf der Vorderseite können zu Kurzschlüssen führen, verursachen optisch minderwertige Qualität, es kommt zu erhöhtem Bruch beim Druckprozess und außerdem wird teure Paste verschwendet. Daher wird ein Sicherheitsrandabstand von typischerweise 1 mm zum Rand gelassen.There are also it on the edge of the solar cell back another area that is completely unprinted and therefore unpassivated is. It is for several reasons unfavorable, over to print out the edge of the solar cell. Paste stains on the front can to short circuits to lead, cause optically inferior quality, it comes to increased breakage in the printing process and moreover wasted expensive paste. Therefore, a margin margin becomes of typically 1mm to the edge.

Der Siliziumwafer, aus dem die Solarzelle gefertigt ist, hat typischerweise eine Abmessung von 156 × 156 mm2 oder 125 × 125 mm2. Bei monokristallinen Wafern sind die Ecken zudem abgerundet, weil sie aus einem ursprünglich runden Stab gesägt werden. Die Toleranzen beim Herstellungsprozess betragen ca. +/– 0.5 mm. Gleichzeitig weist auch das Sieb, das beim Bedrucken der Rückseite zum Einsatz kommt, Toleranzen auf. Typischerweise werden mit einem Sieb ca. 5000–20.000 Solarzellen bedruckt. Dabei leiert das Sieb aus, wodurch der bedruckte Bereich sich verändert und somit die Toleranzen noch größer werden. Zusammengenommen sind die Toleranzen so groß, dass sich in der Massenproduktion ein Sicherheitsrandabstand von ca. 1 mm als bester Wert herausgestellt hat.The silicon wafer from which the solar cell is made typically has a dimension of 156 x 156 mm 2 or 125 x 125 mm 2 . In monocrystalline wafers, the corners are also rounded, because they are sawn from an originally round bar. The tolerances in the manufacturing process are approx. +/- 0.5 mm. At the same time, the screen that is used when printing on the back has tolerances. Typically, about 5000-20,000 solar cells are printed with a sieve. The screen empties, which changes the printed area and thus increases the tolerances. Taken together, the tolerances are so great that in mass production a margin margin of about 1 mm has been found to be the best value.

Dieser Rand von einem mm hat einen Bedeckungsgrad an der Gesamtfläche der Solarzelle von ca. 2.5% bei 156 × 156 mm2 Zellen und von ca. 3.2% bei 125 × 125 mm2 Zellen. Für monokristalline Solarzellen gilt wegen der abgerundeten Ecken ein noch größerer Bedeckungsgrad. Bei einer Dotierung von 1–6 Ohm cm weist eine unpassivierte Siliziumoberfläche eine Rekombinationsgeschwindigkeit Sb > 10.000 cm/s auf.This edge of one mm has a coverage of the total area of the solar cell of about 2.5% at 156 × 156 mm 2 cells and from about 3.2% at 125 × 125 mm 2 cells. For monocrystalline solar cells is due to the rounded corners an even greater degree of coverage. At a doping of 1-6 ohm cm, an unpassivated silicon surface has a recombination speed S b > 10,000 cm / s.

Simulationen zeigen, dass eine vollkommen unpassivierte Rückseite im Vergleich zu einer ganzflächig mit BSF passivierten Rückseite eine Reduktion des Kurzschlussstroms um ca. 2 mA/cm2 und eine Reduktion der Leerlaufspannung um ca. 20 mV bewirkt.Simulations show that a completely unpassivated rear side causes a reduction of the short-circuit current by approx. 2 mA / cm 2 and a reduction of the no-load voltage by approx. 20 mV compared to a rear surface passivated with BSF over the entire surface.

Aus der flächenmäßigen Gewichtung von Kurzschlussstrom und Sperrsättigungsstrom ergibt sich mit obiger Flächenbedeckung des unpassivierten Randes ein Wirkungsgradverlust von ca. 0.1%. Zusätzlich wird durch die fehlende Rückseitenkontaktierung und die limitierte Querleitfähigkeit des Wafers auch der Füllfaktor reduziert, was einen weiteren Wirkungsgradverlust zur Folge hat.Out the area weighting of short circuit current and reverse saturation current results with above surface coverage of the unpassivated edge an efficiency loss of about 0.1%. In addition will due to the lack of back contact and the limited transverse conductivity the wafer also the fill factor reduced, resulting in a further loss of efficiency.

Problemlösung durch die ErfindungProblem solving by the invention

Der vorliegenden Erfindung liegt die Lösung des Problems zugrunde, den beim Siebdruck der Rückseitenmetallisierung verbleibenden unpassivierten Rand zu passivieren, ohne die Zelle zu zerbrechen, Pastenflecken auf der Frontseite zu erzeugen, Kurzschlüsse zu produzieren und Paste neben der Solarzelle zu verschwenden.The present invention is the solution the problem of passivating the unpassivated edge remaining in screen printing of the backside metallization without breaking the cell, creating paste stains on the front, producing shorts, and wasting paste next to the solar cell.

Die Erfindung löst das Problem mittels einer direkt-geschriebenen Metallisierung. Diese erfolgt berührungslos und stellt dadurch nur ein sehr geringes zusätzliches Bruchrisiko dar. Die Randmetallisierung kann z. B. durch Tintenstrahlverfahren, durch Dispenser-Verfahren oder durch Aerosoldruck-verfahren erfolgen, bei denen metallhaltige, also z. B. aluminiumhaltige Pasten oder Tinten auf die Solarzellenrückseite aufgebracht werden.The Invention solves the problem by means of a direct-written metallization. These done contactless and thus represents only a very small additional risk of breakage Randmetallisierung can z. By ink jet method, by dispenser method or by aerosol printing processes in which metal-containing, So z. For example, aluminum-containing pastes or inks on the solar cell back be applied.

Mittels eines optischen Bilderkennungssystems werden sowohl die Konturen der Solarzelle als auch die Konturen des siebgedruckten Bereichs erkannt. In einem geschlossenen Regelkreis werden die Konturinformationen z. B. direkt in Echtzeit an die Metallisierungseinheit weitergesendet. Diese passt sowohl die Breite als auch die Position der aufgebrachten Randmetallisierung z. B. on-the-fly so an, dass die Randmetallisierung und die Siebdruckmetallisierung aneinander grenzen und die Randmetallisierung möglichst nahe an den Waferrand heranreicht. Es wird zudem die Dicke der Metallisierungspaste so optimiert, dass ein ausreichendes BSF entsteht und eine ausreichende Querleitfähigkeit entsteht, ohne dass Paste verschwendet wird und es zu einer unnötigen thermomechanischen Belastung im Feuerprozess kommt. Dieser zusätzliche Prozessschritt kann direkt nach dem Aufdrucken des flächigen Rückkontakts erfolgen. Im nächsten Prozessschritt wird die Randmetallisierung zusammen mit dem flächigem Rückkontakt getrocknet und im Feuerofen einlegiert. Generell gilt, dass bei einer 0.1% absoluten Wirkungsgradsteigerung die Kostenreduktion ca. 1 ct/Wp beträgt. Dadurch lohnt sich der zusätzliche Prozessschritt der Randmetallisierung wirtschaftlich.through of an optical image recognition system, both the contours the solar cell as well as the contours of the screen printed area recognized. In a closed loop, the contour information z. B. forwarded in real time to the metallization unit. This fits both the width and the position of the applied Boundary metallization z. B. on-the-fly so that the edge metallization and the screen-printing metallization adjoin one another and the edge metallization preferably comes close to the wafer edge. It is also the thickness of the metallizing paste optimized so that a sufficient BSF is created and sufficient transverse conductivity arises without wasting paste and making it an unnecessary thermomechanical Burden in the fire process comes. This additional process step can take place immediately after printing the flat back contact. In the next process step the edge metallization is dried together with the flat back contact and in Furnace embedded. Generally, that at a 0.1% absolute Increase in efficiency, the cost reduction is about 1 ct / Wp. Thereby is worth the extra Process step of edge metallization economically.

Erläuterung der Erfindung mit Ausführungsbeispielen und ZeichnungenExplanation of the invention with embodiments and drawings

Nachfolgend werden beispielhaft Ausführungsformen mit Bezug auf die begleitenden Abbildungen beschrieben. Die in den Abbildungen dargestellten Elemente sind nicht maßstabsgetreu dargestellt. Sie dienen der Erläuterung wesentlicher Aspekte der Ausführungsformen.following Be exemplary embodiments with reference to the accompanying drawings. The in the Illustrated elements are not drawn to scale. she serve for explanation essential aspects of the embodiments.

In 1 ist eine erfindungsgemäße Solarzellenrückseite schematisch dargestellt und insgesamt mit der Ziffer 1 bezeichnet. Die Solarzelle 1 weist einen flächigen Rückkontakt 2 aus Aluminium oder einem anderen geeigneten Material auf. Auf der Rückseite befinden sich zusätzlich Busbars 3 aus einem geeigneten Material, z. B. Silber-Aluminium. Durch die bisherige Herstellungsweise des flächigen Rückkontakts 2 bleibt ein Rand 4 von 0,5 mm bis 2 mm zwischen dem Rückkontakt 2 und den Solarzellenkanten.In 1 a solar cell back of the invention is shown schematically and overall with the numeral 1 designated. The solar cell 1 has a flat back contact 2 made of aluminum or another suitable material. On the back there are also bus bars 3 made of a suitable material, eg. B. silver-aluminum. Due to the previous production method of the planar back contact 2 remains an edge 4 from 0.5 mm to 2 mm between the back contact 2 and the solar cell edges.

Mit einer Vorrichtung 5 wird die Lücke zwischen Rückkontakt 2 und Solarzellenkante mit einer Randmetallisierung 6 versehen.With a device 5 The gap between back contact 2 and solar cell edge with a border metallization 6 Mistake.

2 zeigt ein Ausführungsbeispiel mit geschlossenem Regelkreis. Ein optisches Bilderkennungssystem 7 erkennt die Konturen der Solarzelle 1 und die Konturen des flächigen Rückkontakts 2, sowie die Breite des zu metallisierenden Rands 4. Mittels einer Regelschleife 8 wird die Vorrichtung 5 so gesteuert, dass sie den bestehenden Rand 4 in der passenden Breite und Dicke mit Metall 6 auffüllt. 2 shows a closed loop embodiment. An optical image recognition system 7 Recognizes the contours of the solar cell 1 and the contours of the surface back contact 2 , as well as the width of the edge to be metallized 4 , By means of a control loop 8th becomes the device 5 so controlled that they are the existing edge 4 in the appropriate width and thickness with metal 6 fills.

Claims (6)

Solarzelle mit vergrößerter Rückkontaktflächenbedeckung durch einen verringerten Rückkontaktrandabstand von kleiner 0.5 mm.Solar cell with increased back surface coverage by a reduced Back contact edge distance of less than 0.5 mm. Verfahren zur Herstellung einer Solarzelle nach Anspruch 1 durch Verringerung des Rückkontaktrandabstands mittels Aufbringen eines passivierenden Materials an den Rändern der Solarzellenrückseite.Process for producing a solar cell according to claim 1 by reducing the back contact margin by applying a passivating material at the edges of the Solar cell back. Verfahren nach Anspruch 2, bei dem das passivierende Material ein Metall ist, z. B. Aluminiumpaste.The method of claim 2, wherein the passivating Material is a metal, z. B. aluminum paste. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Material direkt auf den Rand der Solarzelle aufgebracht wird und in einem nachfolgenden Schritt zusammen mit dem flächigem Rückkontakt in den Wafer getrocknet und einlegiert wird.Method according to claim 2, characterized in that that the material is applied directly to the edge of the solar cell is and in a subsequent step together with the planar back contact is dried in the wafer and alloyed. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Beschaffenheit des bestehenden Randes durch ein optisches Bilderkennungssystem erkannt wird. Das optische Bilderkennungssystem steuert die Materialaufbringungsvorrichtung, welche den bestehenden Rand in passender Breite und Höhe beschichtet.Method according to claim 4, characterized in that that the texture of the existing edge by an optical Image recognition system is detected. The optical image recognition system controls the material application device, which the existing edge in appropriate width and height coated. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Aufbringen des Materials durch berührungslose Metallisierungsverfahren wie Tintenstrahlverfahren, Dispenserverfahren oder Aerosoldruckverfahren erfolgt.Method according to claim 5, characterized in that that the application of the material by non-contact metallization such as ink-jet method, dispenser method or aerosol printing method he follows.
DE102009037151A 2009-08-05 2009-08-05 Solar cell i.e. silicon solar cell, has laminar rear contact made of aluminum, and busbars provided on rear side of cell, where cell has enlarged rear contact surface covering with reduced rear contact edge distance of specific range Ceased DE102009037151A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102009037151A DE102009037151A1 (en) 2009-08-05 2009-08-05 Solar cell i.e. silicon solar cell, has laminar rear contact made of aluminum, and busbars provided on rear side of cell, where cell has enlarged rear contact surface covering with reduced rear contact edge distance of specific range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009037151A DE102009037151A1 (en) 2009-08-05 2009-08-05 Solar cell i.e. silicon solar cell, has laminar rear contact made of aluminum, and busbars provided on rear side of cell, where cell has enlarged rear contact surface covering with reduced rear contact edge distance of specific range

Publications (1)

Publication Number Publication Date
DE102009037151A1 true DE102009037151A1 (en) 2011-02-17

Family

ID=43448249

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009037151A Ceased DE102009037151A1 (en) 2009-08-05 2009-08-05 Solar cell i.e. silicon solar cell, has laminar rear contact made of aluminum, and busbars provided on rear side of cell, where cell has enlarged rear contact surface covering with reduced rear contact edge distance of specific range

Country Status (1)

Country Link
DE (1) DE102009037151A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070169806A1 (en) * 2006-01-20 2007-07-26 Palo Alto Research Center Incorporated Solar cell production using non-contact patterning and direct-write metallization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070169806A1 (en) * 2006-01-20 2007-07-26 Palo Alto Research Center Incorporated Solar cell production using non-contact patterning and direct-write metallization

Similar Documents

Publication Publication Date Title
EP0630525B1 (en) Process for producing a solar cell with combined metallization
DE102005025125B4 (en) Process for producing a solar cell contacted on one side and solar cell contacted on one side
EP2289109B1 (en) Method for producing a monocrystalline solar cell
DE112006003567T5 (en) A method of forming electrical contacts on a semiconductor wafer using a phase change ink
DE202008017782U1 (en) Silicon solar cell with a back etched highly doped surface layer area
EP2561557B1 (en) Method for producing a solar cell
DE112014001346T5 (en) Process for wet-chemical polishing for improved low-viscosity pressure in solar cell production
DE112014004469T5 (en) Electropolishing and porosation
DE102011075352A1 (en) A method of back contacting a silicon solar cell and silicon solar cell with such backside contacting
DE4224345A1 (en) THERMAL HEAD
WO2011098273A2 (en) Solar cell, method for producing a solar cell and printing screen for applying a contact of a solar cell
DE102006021804A1 (en) Solar cell module and method for the production of solar cell modules
DE102009043975A1 (en) solar cell
DE102007035068A1 (en) Method for manufacturing silicon solar cell with selective emitter, involves producing laminar emitter at emitter surface of solar cell substrate and applying corroding barrier on sub ranges of emitter surface
WO2010043201A2 (en) Method for producing a wafer-based, rear-contacted hetero solar cells and hetero solar cell produced by the method
WO2013067998A1 (en) Semiconductor wafer solar cell which is contacted on both faces and which comprises a surface-passivated rear face
DE102020100353B3 (en) Process for the production of a back-contacted solar cell and a back-contacted solar cell
WO2013080072A2 (en) Solar cell and process for producing a solar cell
DE102009037151A1 (en) Solar cell i.e. silicon solar cell, has laminar rear contact made of aluminum, and busbars provided on rear side of cell, where cell has enlarged rear contact surface covering with reduced rear contact edge distance of specific range
DE112017004982B4 (en) Solar cells with differentiated p-type and n-type region architectures
DE102010020557A1 (en) Method for producing a single-contact solar cell from a silicon semiconductor substrate
DE102014224679A1 (en) solar cell
DE102008029107B4 (en) Method for producing a metal structure on a surface of a semiconductor substrate
DE102010015970B4 (en) A set of photovoltaic cells, photovoltaic cell module, arrangement for applying predetermined information to a set of photovoltaic cells, method for determining information from a set of photovoltaic cells, arrangement for determining information from a set of photovoltaic cells
EP2465145A2 (en) Method for producing an emitter electrode for a crystalline silicon solar cell and corresponding silicon solar cell

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20120823